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ABSTRACT 

This paper contains an analysis of the interaction of longitudinal waves with a penny-shaped crack located 
in an infinitely long elastic cyclinder. The problem is reduced to a Fredholm integral equation of the 
second kind which is solved numerically for a range of values of the frequency of the incident waves and 
the radius of the cylinder. Numerical values of the dynamic stress intensity factor at the rim of the crack 
have been calculated. 

1. Introduction 

Recently, great interest has been shown in the problems of the interaction of elastic 

waves with cracks situated in elastic solids. The study of these problems is motivated 

by their applications to seismology and exploration geophysics. Elastic waves prop-  
agating in a solid are modified by the presence of cracks, and a study of wave 

diffraction can yield information regarding the nature of flow in the interior of the 

solids. 
The  stress and strain fields produced in solids containing cracks due to a given 

static loading of various types have been discussed in great detail in the literature 

(see, e.g. [1]). For oscillatory loading, however,  the problem becomes more  complex 
due to the presence of additional wave length parameters ,  namely the wave lengths 
of the propagat ing longitudinal and shear waves. In recent years a number  of such 

problems have been studied. Robertson [2], Mal [3, 4, 5, 6, 7], Sih and Leober  [8] 
have studied the diffraction of longitudinal and torsional waves which are normally 
incident on the crack surface. All these at tempts have been based on the assumption 
that the crack is sufficiently far away from the neighbouring boundaries, and hence 
the distribution of stresses in the solid is attributed to crack geometry  or to the wave 
frequency of the elastic waves. Mathematically speaking, the boundaries of the solid 
are assumed to be infinitely d i s t an t  from the crack. Like static problems, the 
boundary  value problems of the interaction of elastic waves with cracks near the free 
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boundaries are difficult to solve since they involve additional geometric parameters 
describing the dimensions of the solids. 

In this paper we have considered one such problem in which a penny-shaped crack 
is situated in an infinitely long elastic cylinder and interacted by an elastic wave. As 
is well known, elastic waves can be decomposed into longitudinal and torsional 

waves. The displacement fields corresponding to the longitudinal and torsional waves 
are respectively parallel and perpendicular to the direction of propagation. In both 
cases, the amplitude of the displacement will, in general, be a function of position. In 

this paper our object is to consider only the longitudinal waves. The problem 
concerning the torsional waves shall be reported somewhere else. Using Fourier sine 
and cosine transforms as well as Hankel transforms, the solution of the displacement 
equations appropriate to our problem have been obtained. The problem is then 
reduced to the solution of a Fredholm integral equation of the second kind. Mal [6] 

has solved the problem of interaction of longitudinal waves with a penny-shaped 
crack situated in an infinite elastic solid. He has taken the amplitude of the 
longitudinal waves equal to be a constant. Sneddon and Welch [9] have studied the 
distribution of stress in an elastic cylinder containing a penny-shaped crack and 
opened by a constant pressure applied to the surface of the crack. In order to 
compare our results with those of Mal [6] and Sneddon and Welch [9], we perform 

numerical calculations by taking the amplitude of the displacement field equal to a 
constant. Numerical values of the dynamic stress intensity factor at the rim of the 

crack have been obtained for different wave frequencies and radii of the cylinder. 
The results are tabulated and illustrated graphically. A comparison of these results is 
given in the last section of this paper. 

2. Formulation of the problem 

Consider an infinitely long, isotropic, homogeneous elastic cylinder of radius 'a '  
containing a circular crack perpendicular to its axis. Consider a cylindrical polar 

coordinate system (r, 0, z) at the center of the crack and normalize all lengths with 
respect to the radius of the crack so that it is located at z = 0, 0-< r-< 1. The crack is 
assumed to be excited by normally incident elastic waves moving in the positive 
direction of z-axis. Let  ~o be the circular frequency of the incident waves. The 
problem of determining the stresses in the vicinity of the crack is equivalent to that 
of finding the distribution of stresses in a semi-infinite cylinder z -> 0, 0 -< r -< a, when 
the plane boundary z = 0 is subjected to the boundary conditions 

~c=(r,O)=-p~-p(r)exp(-i~ot), 0--<r--<l, (2.1) 

l-rz (r, 0) = 0, 0 --< r --< a, (2.2) 

uz(r, O) =0 ,  1 <~r<~a (2.3) 

The curved surface of the cylinder is supposed to be free from traction. This implies 
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that on the surface r = a we have 

r~(a, z ) = r ~ ( a ,  z)=O,  O~<z < ~ .  (2.4) 

In condition (2.1) the static pressure p, is assumed to be sufficiently large to ensure 
that the two faces of the crack do not come in contact during vibrations. Since the 
solution of the static problem may be superimposed on the dynamical problem, 
condition (2.1) can be written as 

r=(r, O) = - p ( r )  exp ( -kot) ,  O~ < r ~  < 1. (2.1) 

In what follows the time dependence of all the quantities assumed to be of the form 
exp (-ioot) will be suppressed. 

3. The equations of equilibrium and their solutions 

It is well known that the time harmonic equation for the displacement vector u, in 

the absence of body forces, satisfies the equation 

k12V(V • u) - k~2V x (V x u) + u = 0, (3.1) 

where k~= 0eo2/A +2/x and k~= 0w2//x, A and /x are Lame's elastic constants, 0 is 

the density, and oJ is the circular frequency of the incident waves. It may be 

observed that the dimensions of kl and k2 are (length) -1. By taking the crack radius 
as our unit of measurement of length, we have made kl and k2 dimensionless. In the 
case of symmetry with respect to the z-axis, the above equations reduce to the 

following two equations involving the radial and vertical components (u~, uz) of the 

displacement vector: 

k~2(u~#r + r-lu~.~ - r 2u~) + k jau  .... + (k~ 2 -  k~2)u .... + u~ = 0; ~ (3.2) 

kTau .... +kj2(uz. ,~+r l u z # ) + ( k 7 2 - k j 2 ) u  .... +uz=O.  

Here  a comma is used to denote partial derivatives. Expressions for the components 
of displacement vectors with the property that the shearing stress vanishes on the 

z = 0 plane are 

ur(r , z ) =  ~l[{exp ( - c~z ) -  2c~/3 exp (-/3z)/(2y 2 -  k~)}A(y); y ~ r], (3.3) 

uz(r, z ) =  ~fo[{Y ~a exp ( - a z ) - 2 a y  exp (-/3z)/(2y 2 -  k~)}A(y); y ~ r], (3.4) 

where a 2 =  y 2  k~, /32= y2_  k~, and ~ denotes the Hankel transform of order v. 
The solution of the system of equations (3.2) for an elastic cylinder can be obtained 
with the help of Fourier sine and cosine transforms. The corresponding expressions 
for the components of the displacement vector are 

u~(r, z) = ~ [ { B ( x ) I i ( a l r )  + xftlC(x)Ii(/31r)}; x --~ z], (3.5) 

u~ (r, z)  = --o~ [{xB (X)Io(oz 1 r) -t-/3~C(x)Io(/31r)}; x -+ z], (3.6) 
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where 2 2 -2 a l = x - ~ 1 ,  ¢3~ = x 2 -  k~, and o~ and ~c denote Fourier sine cosine trans- 

forms respectively. 
The complete solution of equations (3.2) for the problems stated above is given by 

the equations 

u~(r, z) = ~c[{B(x)I i (alr)+ x[31C(x)Ii([3J)}: x --~ z] 

+ Y(~[{exp ( - a z ) -  2a[3 exp (-/3z)/(2y 2 -  k~)}A(y); y ~ r], (3.7) 

uz(r, z) = - ,~[{xB(x) Io(a lr )+ [3~C(x)Io(~gr)}; x --~ z] 

-Ygo[{y -~ exp ( - a z ) - 2 a y  exp (-/3z)/(2y 2 -  k~)}A(y); y --~ r]. (3.8) 

By using the stress-strain relations, one can calculate the components of the stress 
tensor. The resulting expressions are 

I,L-l"rzz(r, z) = --O~c[{(2ot12 + k~)B(x)Io(ollr ) 4- 2x[JZIo([31r)C(x)}; x ~ z] 

-~o[{(2y  2 -  k 2) exp (-o~z) - 4a /3  exp (-/3z)/(2y 2 -  k~)}y-~A(y); 

y - ~  r], (3.9) 

/x-1%~ (r, z) = -~-~ [{B (x)2xaall(alr) + (2x 2 -  kZ)[31Ii((3xr)C(x), x --~ z] 

- Y(l[2a{exp ( - a z ) - e x p  (-/3z)}A(y); y ~ r], (3.10) 

/x-11-~ (r, z) = ~ [({(2x 2 -  k~)Io(alr)-  2alr- iIo(alr)}B(x)  

+ 2x(31{[31Io([31r) - r-111([31 r)}C(x)); x --~ z] 

+ Y(o[{(2a2 + k~) exp ( - a z )  - 4a/3y 2 exp (-/3z)/(2y 2 - kz2)}y-~A(y); 

y--~ r] 

- Ygl[2{exp ( - a z ) -  2a[3 exp (-/3z)/(2y 2 -  kZ)}y-lA(y);  y --+ r]. 

(3.11) 

4. Reduction of the problem to a Fredholm integral equation 

We divide the solution into two parts: 

(a) Conditions on the crack face 

We see that condition (2.2) is satisfied, while conditions (2.1') and (2.3) lead to the 

dual integral equations 

0~[{(2y 2 - k2) 2 -  4a/3y2}/(2y 2 -  kZ)]A(y)Jo(yr) dy = P(r), 0 <~ r ~ 1, 

o~(2y~-k~)-lA(y)Jo(yr) dy =0 ,  l<~r~a, 

where P(r) = ix-lp(r) - (2/~r) 1/2 S~{(2a~ + k2)Io(~1 r)B (x) + 2x[31Io(alx)}C(x) dx. Let  
2a(2Y 2 -  k 2 ) - l ( k 2 - k ~ ) A ( Y ) =  4~(Y). With this assumption the above equations can 
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be written as 

I0 ~y [ 1 + H(y)]q~ (y)Jo(ry) dy 0~<r~<l, Z P ( r ) ~  

fo°~q~(y)Jo(ry) dy=O, l ~r<~a, 
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(4.1) 

(4.2) 

where H(y)  = {(2y 2 -  k~)2-4a(3y2}/2ya(k~ - k~) - 1. H(y)  --~ 0 as y ~ % so the con- 
dition for obtaining the solution of the above equations is satisfied. The second of 
these equations is satisfied if q~(y) is written in terms of an unknown function g(t) 
through the equation 

i i q~(y) = g(t) sin (ty) dt = -g(1)  cos y/y + y-1 g'(t) cos (ty) dt, g(0) = 0. (4.3) 

If we substitute this value of ~(y) into the first equation, we get an Abel integral 
equation which on inversion becomes 

i 1 g(t)+ g(u)L~(u, t) du = R(t), (4.4) 

where 

L~(u, t) = 2,n. f o  H(y)  sin (uy) sin (ty) dy (4.5) 

and 

R(t) = _~2 fot r(t2 - r2)_l/ap(r ) dr 

210' = - -  (t 2 - r2)-l/2rP(r) dr 

- ( 2 ~  3/2\~/lo~{(2a~+k~)a~iB(x)sinh(~lt)+2x[31C(x)sinh([3~t)}dx. (4.6) 

Here we have used the result [10] 

Io ' r(t2- r2)-l/2I°(alr) dr = a~ -1 sinh (alt).  

(b) Conditions on the curved surface of the cylinder 

We now complete the solution of the problem by satisfying the boundary conditions 
on the curved surface of the cylinder. Conditions (2.4) lead to the following 
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relations: 

2xeqll(ala)B(x) +/31(2x 2 -  k2)Ii(Clla)C(x) 

= - (8 )  l/2 fo~{(e~a + xe)-l-((32 + x2)-l}axye(y)Jl(ay) dy = it(x); 

[(2x a -  k~)/o(a~a) - 2oqa-~I~(oqa)]B (x) + 2x[3~[[3~Io(f31a) - a-lIl([31a)]C(x) 

= - (2)  a'2 I=[(2aZ + kZ)(o~2 + xZ)-l-4o432yZ(2yZ- k~)-l([32 + xa)-l]A(y)Jo(ay) dy 

+ (8)1/2 Io[(OZa + x2)- l -  2132(2y2- kZ)(xa + [32)-l]o~a-lyA(y)Jl(ay) dy =i2(x ). 

From these equations we have 

B(x)M(x) = 2x[31{f31Io(a[3 0 - a ~Ii(a[30}il(x) - (2x 2 -  k~)Ii(a[3Oia(x), (4.7) 

C(x)M(x) = -{(2x 2 -  k~)Io(a~l) - 2oqa-lIl(aoq)}ia(x) + 2xoqll(aoq)i2(x), (4.8) 

where 

M(x) = [3114x2 al(31Ii(aal)Io(af31) - (2x 2 -  k~)2Ii(al3OIo(aaO 

- 2a-lalk~I1(aal)I~(a~)], 

x(27r)-l/2 [(2c~ + k~)Kl(aa~) sinh (uc~ 0 i~(x) - ( k ~ -  k~) 

-(2/3~ + k~) sinh (u[3~)K~(af3~)]g(u) du, 

(277") -1/2 i 1 
i2(x)- (k2_k2)o ~ [(2a2+k2)(2~+k2)Ko(aal)sinh(uaa) 

- 4a1131x2Ko(a~O sinh (u/3~)]g(u) du 

~01 (2/7r)1/2 [x2K1(a[31) sinh (u/3 0 - (2al + k2)Kl(aal) sinh (ual)]g(u) du. 
a(k 2 -  k~) 

i2(x) have been evaluated with the help of (4.3) and the 

(4.9) 
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The values of il(x) and 
following integrals given in [10]: 

o~y(yZ + ~2)-x sin (uy)Jl(ay) dy = Kl(a~l)  sinh (uo~0; 

o=(yZ + o~2) -1 sin (uy)Jo(ay) dy = oL~lKo(ac~) sinh (Ual); 

Io~Sin (ty)Jo(ay) dy = O, a > t. 

If we substitute these values of B(x) and C(x) into (4.6), we get 

Io' t 1 R(t) = 2  r(t2-r2)-~/2p(r) d r -  [L2(~, u) +L3(t, u)]g(u) du, 
Ixrr 
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where 

L2(t, U)= 
8 1" ~ X 2 

Jo a iM(x)  [(2al + k~)Kl(aal) sinh (ual) k~)a 

-(2/32 + k~)Kl(a[30 sinh (a/3 O] 

× [{(2a~ + k~)a[31Io(a[30 sinh (taO 

- (2/312 + k~)aallo(aaO sinh (t/31)} 

+{2a~Ii(aaO sinh (t/3,)-(2a~ + k~)I~(t[30 sinh (taO}] dx, (4.10) 

2 I[ L3(t, u) = ~.2(k2_ k~)a [4xaa~Ii(aal) sinh (031) 

2 2 2 - (2a~ + k2)(2/31 + k2)" I1(a[31) sinh (tal)] 

× [2al{2X2Kl(a[30 sinh (u/31) - (2a~ + k~)gl(aaO sinh (Ual)} 

- a{ (2a  2 + k~)(2/3~ + k~)Ko(aoq) sinh (Ual) 
dx 

-4al[31xZKo(a[3) sinh (u/3)] a~M(x)" (4.11) 

By substituting this value of R(t) in (4.4), we get the integral equation 

i01 2i g(t)+ L(t, u)g(u) du = - -  (t 2 -  r2)-l/Zrp(r) dr, 
Ixrr 

where L(t, u)=Ll(t,  u)+L2(t, u)+g3(t, u). 
In order to compare our results with those of Mal [6] and Sneddon and Welch [9], 

we shall take p(r) = P0 = constant. By setting g(t) = (po/lx)gl(t), we see that the above 
equation becomes 

Io 2t (4.12) gl(t)+ L(t, u)gl(u) du =-- .  
3T 

It is interesting to note that for ' a '  tending to infinity the above equation reduces to 
the integral equation obtained by Mal [6] for an infinite solid containing a circular 
crack which is excited by normally incident longitudinal harmonic waves. When 

o) << 1 it can be shown that 

Ll(t, u)=  0(o32), 

4 Io=[{F(ax) _ 1}{xu cosh (xu) sinh (xt) C2( t  , u )  + L 3 ( t  , u )  = 

+ xt cosh (xt) sinh (xu)} 

+sinh (xt) sinh (xu){2F(ax) - 3 + 2rl - aRx 2} 

dx 
- x2ut cosh (xt) cosh (xu)]{1 + O(~o2)} G(x~-)' 

where G(x) = x212(x) - (2 - 2n + x2)I~(x) and F(x) = x2Io(x)Ko(x) + ( 2 -  2n + x 2) x 

ll(x)Kl(x). 
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In the static case, when o) = 0, Eq. (4.12) reduces to the integral equation obtained 
by Sneddon and Welch [9, page 412]. 

The dynamical stress intensity factor is defined by the equation 

N = lira I(r-  l)~/2%z(r, 0)l l~r~ (4.13) 
r----~l + 

From Eq. (3.9), with the help of (4.3), (4.7) and (4.8), it can be easily shown that 

r=(r, 0) = (r 2 -  1)-l/2p0ga(l) + O(1). 

Hence the stress intensity factor is given by the equation 

N = P0 Igl(1)[/,/2. (4.14) 

The integral Eq. (4.12) is solved numerically in the next section. The solution is 
used to calculate the numerical values of the stress intensity factor. 

5. Numerical solutions 

Numerical calculations have been done for a particular example. In this example, we 
have taken 0 = 2.7 gm/cm 3, ~l = 0.339 and E = 0.75 x 10 al dyne/cm 2, where ~ is the 
Poisson's ratio and E the Young's modulus of the elastic material. Computations 
have been carried out for different values of the dimensionless wave frequency k2 
varying from 0 to 8. Five different values of the radius of the cylinder have been 
chosen, viz., 1.5, 2.0, 5.0, 6.5 and 8. It may be noted that the integrands of (4.5), 
(4.10) and (4.11) defining L~, L2 and L3, respectively have no poles, but only branch 
points. In the numerical calculation of these integrals, account of this fact has been 
made and a complex computer programming has been done in which oz,/3, a l  and 131 
have been interpreted in the following way (compare Robertson [2]): 

a = ( y ~ -  k~) 1;~, y > kl /3 = ( y ~ -  k~) m,  y > k2 

= - i ( k 2 - y 2 )  I/2, 0 < ~ y ~ k l ;  = - i ( k 2 - y 2 )  I/2, 0~<y~<k2; 

a l  = (x 2 -  k~) la,  x > kl t31 = (x 2 -  k2) 1/2, x > k2 

=-i(k~-x2)  1/2, O<~x<~kl; =- i (ka-x2)  1/2, O<~x<~k2. 

For the calculation of the integrals L1, L2 and L3, the five-point Gauss-Laguerre 
formula was found suitable and gave stable values of the integrals and of the integral 
equation (4.12). For solving the integral equation (4.12), the standard method of Fox 
and Goodwin [11] was applied. By virtue of relation (4.14), these solutions deter- 
mine the dynamic stress intensity factor. Results are given in the following table and 
illustrated graphically in the figure. When k2=0,  the problem reduces to the 
elastostatic problem considered by Sneddon and Welch [9]. 
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Variation of Stress Intensity Factor 
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k2 
0 1 2 3 4 5 6 7 8 a 

1.5 1.227 0.802 1.152 0.418 0.782 0.537 0.675 0.573 0.602 
2.0 1.027 0.784 1.120 0.563 0.714 0.482 0.592 0.503 0.578 
5.0 1.002 0.950 1.026 0.483 0.632 0.403 0.513 0.435 0.484 
6.5 1.000 1.050 1.210 0.782 0.813 0.362 0.481 0.412 0.421 
8.0 1.000 1.120 1 .341 0.713 0.892 0.320 0.450 0.330 0.403 

6. Discussion of the results 

It  is in te res t ing  to no te  tha t  for  k2 = 0 ,  the  p r o b l e m  discussed  he re  r educes  to 

e las tos ta t i c  p r o b l e m  s tud ied  by  S n e d d o n  and W e l c h  [9]. T h e  numer ica l  va lues  of the  

s t ress - in tens i ty  fac tor  a re  in good  a g r e e m e n t  with those  ca lcu la ted  f rom the  resul ts  

de r ived  by  Sneddon  and W e l c h  [9] for  the  s ta t ic  p r o b l e m .  I t  will be  in te res t ing  to 

c o m p a r e  the  resul ts  of this p a p e r  with those  de r ived  by  Mal  [6]. Ma l  has s tud ied  the  

in te rac t ion  of e las t ic  waves  with a p e n n y - s h a p e d  crack  s i tua ted  in an infini te e las t ic  

sol id.  A compar i son  of these  resul ts  will y ie ld  va luab le  i n fo rma t ion  a b o u t  the  effect 

of finite b o u n d a r i e s  on the  d i s t r ibu t ion  of  s tresses.  A look  at  the  g raph  showing  the  

var ia t ion  of stress in tens i ty  fac tor  with k2 for  the  p r o b l e m  s tud ied  by  Mal  [6] shows 

tha t  the  va lue  of the  stress in tens i ty  fac tor  first increases  f rom its e las tos ta t i c  value ,  

r eaches  a m a x i m u m  value ,  then  it dec reases  and shows an osc i l l a to ry  behav iour .  In 

con t ras t  to this in ou r  case the  va lue  of the  stress in tens i ty  factor ,  for  va lues  of a < 5, 

first dec reases  f rom its e las tos ta t i c  value ,  r eaches  a m i n i m u m  value ,  then  increases .  

A f t e r  r each ing  a m a x i m u m  value  at  k2 = 2, in our  case also the  curves  show an 

osc i l l a to ry  cha rac t e r  s imi lar  to tha t  of Ma l  [6]. F o r  a = 5, the  curve  has  a s l ightly 

d i f ferent  charac te r .  Wi th  fu r the r  increase  in the  va lues  of the  rad ius  of the  cy l inder  
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this  d i f f e r e n c e  b e c o m e s  m o r e  p r o n o u n c e d  and  t h e i r  s h a p e  b e c o m e s  s o m e w h a t  

s imi la r  to  t h a t  g iven  in t h e  p a p e r  of  M a l  [6]. T h i s  shows  t h a t  as t h e  r ad ius  of  t h e  

c y l i n d e r  i n c r e a s e s  t he  e f fec t  of  t h e  f in i te  b o u n d a r y  goes  on  d e c r e a s i n g .  
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