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Abstract 

In this paper, we carry out an explicit analysis of a bifurcation problem for a solid circular cylinder 
composed of a particular compressible nonlinearly elastic material. This problem is concerned with the 
bifurcation of a solid body into a configuration involving an internal cavity. A discussion of its physical 
interpretation is then carried out. In particular, it is shown that this model may be used to describe the 
nucleation of a void from a pre-existing micro-void. 

Introduction 

In a recent paper  [1], J.M. Bail has made an extensive study of a class of bifurcation 
problems for the equations of nonlinear elasticity. It  is suggested in [1] that these 
problems are relevant to the phenomenon of internal rupture, in which a hole forms in 
the interior of a solid body which contains no hole in the undeformed state. 

The purpose of the present paper is to study a bifurcation problem of the type 
considered in [1] for a particular elastic material under plane strain conditions, and to 
interpret this problem in terms of the growth of a pre-existing micro-void, rather than 
in terms of rupture. 

I t  is shown that under remotely applied stretch X > 1, an infinitesimally small 
pre-existing void (a "micro-void")  does not grow until X reaches a certain critical value 
Xc,. Sudden growth takes place thereafter. (See Figure 1). It is found that the 
deformation field (for all values of X), as well as the value X cr in this problem are in 
fact identical to the corresponding quantities arising in the bifurcation problem. Thus, 
the latter may be viewed as providing an idealized model for describing the sudden 
growth of a micro-void. 

In Section 2, we consider a plane strain bifurcation problem for a solid circular 
cylinder of radius a composed of a particular homogeneous isotropic compressible 
elastic material, namely the "Blatz-Ko material." This well-known model, characteriz- 
ing the constitutive behavior in plane strain of a certain foam rubberlike material, was 
proposed by Blatz and Ko [2] on the basis of experiments carried out by them. The 
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Figure 1. Variation of the deformed cavity radius R c with prescribed stretch 7t. The solid curve pertains to 
the bifurcation of a solid cylinder (Section 2) while the dashed curves describe the growth of a pre-existing 
void for different undeformed void radii b (Section 3). The solid curve also describes the limiting case of a 
micro-void (b ~ 0 + ). 

surface of the cylinder is subjected to a prescribed radial stretch k > 1. One solution to 
this problem is that of a pure homogeneous stretching in which the cylinder expands 
radially. However, when ~ exceeds a critical value kcr, (~cr = 1.25954), we find in 
addition a second solution involving a cylindrical internal cavity. 

It  should be noted that the Blatz-Ko material does not satisfy many of the 
constitutive hypotheses imposed by Ball in his bifurcation studies (see Section 7 of [1]). 
Thus, the results obtained in [1] using the direct method of the calculus of variations, 
are not directly applicable to the bifurcation problem considered here. 

In order to interpret physically the mathematical bifurcation problem studied in 
Section 2 we turn our attention in Section 3 to the uniform radial extension of a hollow 
circular cylinder with undeformed radii b,a (b < a). The inner surface is free of 
traction while the outer is subjected to prescribed surface displacement, with k > 1 
denoting the applied stretch. The body is composed, again, of the Blatz-Ko material. A 
closed form solution to this problem is obtained. Attention is then focused on features 
of this solution for the case b ---, 0 + corresponding to a micro-void. In particular, it is 
shown that (in this limit) the radius R c of the deformed cavity remains zero for all 
values of the applied stretch on the range 1 < ~ < kcr. For ~ > ~¢r, this radius is 
positive and increases rapidly with increasing ~. See Figure 1. This behavior is 
analogous to the phenomenon of cavitation in fluids where infinitesimal pre-existing 
nuclei of undissolved gas grow into clearly visible cavities ([3], p. 482). [It is worth 
recalling that such behavior does not, of course, occur in the corresponding problem in 
classical linear elasticity. In the latter context the radius R~ of the inner cavity after 
deformation is 

2(1 - u)aZb()~ - 1) 
R e = b +  

( 1 -  2 u ) a 2 +  b 2 ' 

where 1, is Poisson's ratio, 0 < 1, < 1/2.  Thus as b ---, 0 + ,  we see that R c ~ 0 no matter 
what the value of the applied stretch 2~ > 1.] 

Finally in Section 4, we carry out a comparison between the solutions to the 
bifurcation and micro-void problems. It is shown that the deformation fields in both 
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problems coincide identically for all values of )~. Consequently, the bifurcation 
problem may be viewed as providing an idealized model describing the growth of a 
pre-existing micro-void. 

1. Prel iminaries from finite elastostatics 

Let the open region D O of the (x], x2)-plane denote the cross-section of a right 
cylinder in its undeformed configuration. A plane deformation of the body, parallel to 
the (xl, x2)-plane, is described by a sufficiently smooth transformation 

y = y ( x ) = x + u ( x )  on Do, (1.1) 

which maps D o onto a domain D. Here y is the position vector after deformation of 
the particle which in the undeformed configuration was located at x, while u(x)  
denotes the displacement vector field. For the moment, y (x )  is assumed to be twice 
continuously differentiable and invertible on D 0. The deformation gradient tensor F is 
defined by 

F = I + v u ,  J = d e t F > 0  o n D  0. (1.2) 

Let ~'(y) be the (in-plane) true stress tensor field accompanying the deformation at 
hand. Equilibrium, in the absence of body forces, then demands that 

d i v e - ( y ) = 0 ,  ~'=~'T on D. (1.3) 

Suppose now that the body under consideration is homogeneous, compressible and 
elastic and possesses an elastic potential W(F)  representing the strain-energy density 
per unit undeformed volume. Then the constitutive law for the in-plane true stress is 

1 
'r = 7 WFFT" (1.4) 

In the bifurcation problem considered first, the undeformed cylinder is solid and 
thus D O is simple-connected. The boundary of D O is assumed to be subjected to the 
prescribed displacement 

u ( x ) = ( X - 1 ) x  on aD O , (1.5) 

where the parameter 2~ > 1 is prescribed and denotes the applied stretch. The analysis 
of this problem necessarily involves a deformation which is not one-to-one, and so in 
order to investigate this, the preceding regularity conditions must be relaxed. Thus we 
allow for the possibility that the mapping (1.1) is one-to-one everywhere on D o except 
at a single point x o. In this event, x o is assumed to map onto a closed regular curve C, 
while the simply-connected domain D o then maps onto a doubly-connected domain D, 
with C denoting its inner boundary. Thus, in this situation, equation (1.2) is required to 
hold merely on the domain D o with x 0 deleted, while equation (1.3) holds on the 
doubly-connected domain D. The inner boundary C is now assumed to be traction-free 
and so 

1"n = 0 on C, (1 .6)  

where n denotes the unit outward normal vector on C, and ~" is the limiting value of 
the true stress (presumed to exist) as a point on C is approached from within D. 

The boundary-value problem of concern in Section 2 thus consists of the determina- 
tion of displacement fields u(x) satisfying the field equations (1.2)-(1.4) subject to the 
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boundary condition (1.5); when C exists, the boundary condition (1.6) must also be 
satisfied, and (1.2) is not required to hold at the point Xo. Obviously, one solution to 
this problem is 

u(x)  = ( ) t -  1)x on Do, (1.7) 

describing a pure homogeneous deformation of the body. Our purpose in the next 
Section is to seek a second solution, describing a bifurcated configuration of the 
cylinder involving a cylindrical cavity. 

2. Bifurcation problem for a solid cylinder 

2.1. Formulation 

We suppose now that the cylinder is circular with radius a, so that its cross-section 
D O = {(r, O) 10 < r < a, 0 < 0 ~< 2~r} and that the point x 0 coincides with the origin. 
The cylinder is subjected to a prescribed radial displacement at its surface r = a. The 
resulting deformation is a mapping which takes the point (x 1, x2) = (r  cos 0, r sin O) 
to the point (Yl, Y2) = (R cos O, R sin ®). We assume that the deformation is an 
axisymmetric plane strain one so that O = O and R = R(r). In order to avoid 
interpenetration, it is required that 

R = R ( r ) > O  o n 0 < r < a ,  R(0)>~0. (2.1) 

Observe that if R(0) > 0, the deformation (1.1) is not one-to-one at the origin. 
The polar components of the deformation gradient tensor F associated with the 

deformation are given by 

rrr = R(r ) ,  Foo = R ( r ) / r ,  F~o = For = 0, (2.2) 

where the dot denotes differentiation with respect to the argument. The Jacobian 
determinant J = det F is assumed to be positive on 0 < r < a and so R( r )  > 0 in this 
interval. The corresponding principal stretches ha, ~2 are 

X l = X r = k ( r ) ,  )~2=Xo=R(r ) / r ,  0 < r < a .  (2.3) 

We turn now to the constitutive relation for an isotropic compressible elastic 
material characterized, in plane strain, by its elastic potential l,V(2t a, ~t2) representing 
the strain energy per unit undeformed volume. The principal components r 1, r E of the 
true stress tensor ~" are given by 

1 0W 1 0W (2.4) 
rl ~2 0~1 ' '7"2 ~1 0h2" 

In the particular case of the Blatz-Ko material * [2] W is given by 

W(X1 )%) = t t -2 - 4), (2.5) , "~ (~kl + ~k22 + 2X1~k2 

where/~ denotes the shear modulus of the material at infinitesimal deformations. Since 

* An extensive discussion of the stress response of this material to various states of deformation is given by 
Knowles and Steinberg in [4]. 
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in the present problem the radial and hoop stresses ~'Rn, %o are in fact the principal 
stresses, one finds from (2.3)-(2.5) that 

( "rRR(r ) =~t 1 R ( r ) ~ 3 ( r  ) , zoo(r)  =t~ 1 R 3 ( r ) R ( r  ) . (2.6)* 

The equilibrium equations in the absence of body forces in the present case reduce 
to the single equation 

d k 
-~r TRR + ~ (~'RR- zOO)= 0, 0 < r < a .  (2.7) 

This, together with (2.6), yields the following nonlinear singular second-order ordinary 
differential equation for R(r):  

3rR3R - R3R + r3j~ 4 = 0 ,  0 < r < a. (2.8) 

Since the cylinder is subjected to prescribed uniform radial displacement of its 
boundary r = a, we have 

R ( a )  = Xa, (2.9) 

where ;k > 1 is the prescribed radial stretch. 
One solution (the "homogeneous solution") of the differential equation (2.8) 

satisfying the boundary condition (2.9) and condition (2.1) is 

R ( r )  = 2~r. (2.10) 

Note that the second of (2.1) holds with equality in this case. This corresponds to a 
homogeneous deformation in which the cylinder expands radially and the one-to-one 
mapping (1.1) maps the undeformed solid circular region D o onto the deformed solid 
circular region D. 

Our purpose here is to exhibit explicitly a solution of (2.8), (2.9), (2.1) satisfying the 
second of (2.1) with inequality, i.e. 

R(0) > 0, (2.11) 

corresponding to the situation in which an internal hole has appeared at the origin. The 
boundary C of this cavity, y2 + y2 = R(0)2, will be assumed to be traction-free. It will 
be demonstrated that such a solution exists only when the prescribed stretch h exceeds 
a critical value ~kcr (= 1.25954). 

The traction-free boundary condition on the cavity arises as a natural boundary 
condition in the variational treatment of Ball [1]. It should be noted that the 
bifurcation studies in [1] are carried out for displacement and traction boundary-value 
problems in n-dimensions for both incompressible and compressible materials. For 
incompressible materials the results are comprehensive and explicit while those in the 
more difficult compressible case are comparatively limited. 

2.2. Solution 

In a recent paper [5] the present authors have shown how the differential equation (2.8) 
may be solved explicitly. Thus on making the substitution 

t ( r ) = r ~ ( = 2 ~ r / X o ) > O ,  0 < r < a ,  (2.12) 

* It is convenient for our purposes to consider ~(r) rather than the more conventional r(R). 
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equation (2.8) may be written as the first-order equation 

3 r i - t ( 1 - t ) ( t  2 + t + 4 ) = 0 ,  0 < r < a ,  (2.13) 

where i = d t / d r .  There are two cases to consider. First of all, we observe that t ( r )  - 1 
on 0 < r < a is a solution of (2.13), and (2.12) then shows that R ( r )  = cr, where c is a 
constant. In this way, one recovers the homogeneous solution (2.10). Suppose then that 
t ~ 1. Using arguments similar to those presented in [5] it can be shown that without 
loss of generality t ( r )  may be assumed to be less than unity on 0 < r < a so that from 
(2.12), (2.13) it follows that 

0 < t < l ,  d t / d r > O  f o r 0 < r < a .  (2.14) 

Equation (2.13) may be readily integrated to yield 

r 8 = C t6h ( t )  , (2.15) 
(1 - t)4(t 2 + t + 4) 

where C > 0 is a constant of integration and we have set 

6 . _ a / 2 t + l ~ , > O ) "  (2.16) h ( t ) = e x p  ~ tan 1 ~ ] / ~  

On the other hand (2.12) and (2.13) give 

1 dR 3 
( > 0), (2.17) 

R dt ( l - t ) ( / 2 + t + 4 )  

which in turn yields 

R4 = D ( t  2 + t + 4)h( t )  (2.18) 
(1 - t) 2 

Again, D > 0 is a constant of integration. Observe from (2.17), (2.14) that the 
deformed and undeformed radial coordinates (R, r) vary monotonically with t. 
Equations (2.15), (2.16), (2.18) provide a parametric solution to the differential equa- 
tion (2.8). The range of the parameter t is 

0 ~< t ~< t~ (2.19) 

where ta(O < ta < 1) is the value of t corresponding to r = a and is to be determined 
from (2.15), that is, 

Ct6h( t~)  = a 8. (2.20) 

( 1 - - t a )  ( ta -l- ta + 2 

It is clear from (2.15) that t --* 0 as r --* 0. 
Turning now to the boundary conditions, first of all we see that (2.9) together with 

(2.18) requires that 

~k4a 4 = D(t~  + t a + 4)h( ta)  (2.21) 
(1 - ta)  2 

Since (2.18) yields 

R (0) = (4h (0) D )1/4, (2.22) 
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we see that (2.11) will indeed by satisfied (and so an internal hole may develop) 
provided a positive constant D can be found. In this event, the radius of the resulting 
cavity is given by (2.22). Finally, to satisfy the traction-free boundary condition on the 
cavity surface (t = 0), we require an expression for the normal stress component ZRR 
which follows from (2.6), (2.15)-(2.18) as 

= 0 ~< t ~< t o. (2.23) 
TRR ~£ 1-- h~__~(t2+t+4)3/2 , 

Thus we obtain 

C / D  2 = 64h (0). (2.24) 

Equations (2.20), (2.21) and (2.24) are three equations for the unknowns C, D and t o 
corresponding to prescribed values of the stretch h. 

On substitution from (2.24) in (2.20) and (2.21) it follows that 

ta) (t~ + t~ + D 2= a 8 ( 1 _  4 2 4) 
64h(O)t6h( t~ ) , (2.25) 

h( ta ) ( t  2 + t a + 4) 3 
64h(0)~ 8. (2 .26)  

t 6 

Thus if, for prescribed ~ > 1, (2.26) can be solved for a number t o such that 0 < t a < 1, 
then (2.24), (2.25) provide the values of the constants C, D (> O) and (2.15), (2.16) 
(2.18) with 0 <~ t <~ t a is the bifurcated solution involving an internal cavity. 

To verify that (2.26) can indeed be solved for an appropriate value of la ,  w e  simply 
observe that the auxiliary function G(t) defined by 

G ( t ) = h ( t ) ( t  2 + t + a ) 3 t  -6 for0~<t~<l ,  (2.27) 

(associated with the left hand side of (2.26)) can be easily shown to be monotone 
decreasing and G(0) = ~ ,  G(1) = 216h(1). It follows that (2.26) can be solved, in fact 
uniquely, for a root ta, 0 < t~ < 1 provided 

~8 > 216h(1_______~) (2.28) 
64h (0) ' 

that is, 

(216h(1)  ) a/8 
X > X ~ -  64h (0) = 1.25954. (2.29) 

Thus whenever the prescribed stretch h is greater than ~¢~, the existence of a bifurcated 
solution involving a cavity is guaranteed and this solution is given by (2.15), (2.16), (2.18), 
(2.19), (2.24)-(2.26). 

2.3. Discussion 

When the prescribed stretch ~ does not exceed the value X cr we have seen that a 
homogeneous solution (2.10) exists describing a uniform expansion of the cylinder. On 
the other hand, when ~ > Xcr we have obtained, in addition, a bifurcated solution 
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involving an internal cylindrical hole. The radius Re = R(0) of the cavity in the 
deformed configuration is given by (2.22) and (2.25) i.e. (_~)8 _ta) (ta_l_ta + (1 '* 2 4)h(0) 

= 4h(ta)t6 (>  0) (2.30) 

where G is the root of (2.26). It is not difficult to confirm from (2.30) and (2.16) that 
Rc increases with decreasing G. Furthermore it follows from (2.26) and the monotonic 
decreasing character of G(t) in (2.27) that t a decreases with increasing ~. Thus the 
cavity radius R c increases monotonically as the prescribed stretch ?~ is increased. Note 
that as ?~ ---, oo (and so from (2.26), as ta ~ 0) it follows from (2.30) that R e ~ oo. The 
variation of the cavity radius with prescribed stretch as described by (2.26), (2.30) is 
depicted by the solid curve in Figure 1 (on the range ~, > ~ c,). 

We note from (2.3), (2.12), (2.15)-(2.18) that hr ~ 0, ?~0 ~ oo and J = ?~,?~0 ~ ~ as 
one approaches the cavity wall (i.e. as t ---, 0). This is hardly surprising since the center 
of the undeformed cylinder maps onto every point of the cavity wall and the 
deformation is not one-to-one at the origin. It can also be easily verified that in the 
limit ~ -~ ~'e, + (i.e. as t~ ~ 1) the bifurcated solution R(r) converges to the homoge- 
neous solution ?~r at each value of r, 0 ~< r ~< a. 

It is of interest to examine the character of the system of governing partial 
differential equations, namely the displacement equations of equilibrium 

02W(F) (2.31) c~Bys(F)u~.8~ = 0 where c ~ 8 ( F )  OF~OF~8' 

at the solutions obtained here. The usual cartesian tensor notation has been employed 
in (2.31). Necessary and sufficient conditions for the ellipticity of the system of 
equations (2.31) have been obtained by Knowles and Sternberg in [6]. In the special 
case of the Blatz-Ko material, W is given by (2.5) and these conditions are particularly 
simple. Thus from equation (2.57) of [6] it follows that the equations (2.31) are elliptic 
at the axisymmetric solutions here if and only if the principal stretches h,,  h o are such 
that (t = ~',/)~e) 

2 - V~- < t < 2 + VS. (2.32) 

Since in the present problem we have t ~< 1, it follows that the right hand inequality in 
(2.32) always holds; ellipticity will be lost whenever the left hand inequality is violated. 
For the homogeneous solution R(r) = Ar one has t = 1 at all points in the body and at 
all values of the prescribed stretch. The governing equations are thus elliptic at this 
solution no matter how large the value of X. On the other hand in the case of the 
bifurcated solution, t increases monotonically from the value t = 0 at the cavity to the 
value t = t~ at the outer boundary. Thus ellipticity is always lost at the bifurcated 
solution in a zone adjacent to the cavity. 

3. Growth of a micro-void 

3.1. Formulation and solution 

In order to better understand the physical implications of the preceding bifurcation 
problem, we turn our attention here to consider the growth of a small pre-existing void 
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under remotely applied stretch (the "micro-void problem"). In this section we sum- 
marize the solution to the latter problem. 

Consider now a circular cylinder which is hollow in its undeformed configuration 
and has inner and outer radii b and a respectively. The cylinder is subjected to a 
prescribed uniform radial displacement at its outer boundary so that R ( a ) =  2la, 

> 1. The inner surface is free of traction. The differential equation governing the 
deformation R ( r )  continues to be given by (2.8) which now holds on b < r < a. The 
associated stress components are found from (2.6). 

The solution procedure given in Section 2 can be readily adapted to the present 
problem. The resulting deformation field is, again, given parametrically by (2.15), 
(2.16), (2.18) with the parameter t now being in the range 

t b <~ t <~ t a. (3.1) 

Here t a ( < l  ) and tb (>0  ) are the values of t corresponding to r = a  and r = b  
respectively and are to be determined, according to (2.15), by 

Ct6h( ta)  = a 8, Ct6h( tb)  = b 8. (3.2) 

(1 4 2  4) (1 t b ) a ( t ~ + t b + 4 )  - - ta )  ( t a + t a +  

On using (2.18), the boundary condition at the outer surface yields 

O(  t 2 + t a -I- 4)h( ta)  = ~4a4" (3.3) 

(1 - t ~ )  2 

Finally, the vanishing of the radial stress r R R at r -- b results in 

h(  t b )(  tzb + t b + 4) 3 = C / D  2, (3.4) 

in view of (2.6)1, (2.12), (2.15), (2.18). 
Thus for prescribed ~ > 1, the solution is given by (2.15), (2.16), (2.18) with t in the 

range (3.1) and the four constants t~, t b, C > 0, D > 0 are to be found from (3.2)-(3.4). 
Since we are chiefly concerned with small voids (b << a), we will not carry out a 
general discussion of the foregoing solution. 

It is convenient for our purposes to eliminate C, D between (3.2)-(3.4) and so 
obtain 

( t  2 + ta + 4)3h( ta)  
x 8 (3.5) 

6 2 4)3h(tb) ta ( tb + t b + 

3.2. Discussion 

Observe first that the radius R c of the deformed void is given by (2.18) evaluated at 
t = tb, which, on using (3.2)-(3.4), can be written as 

Rc = btb 3/4, (3.6) 

with t b given by (3.2)-(3.4). Graphs of R c / a  versus X, obtained through numerical 
calculations, are shown by the dashed curves in Figure 1. Observe that' for small values 
of the undeformed void radius b, (e.g. b / a  = 0.02) the void first grows slowly until 
approaches a critical value. Rapid growth takes place beyond this point. As b ~ 0 + ,  
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the dashed curves approach the solid curve, corresponding to a void of zero radius - a 
"micro-void". In this case, the micro-void remains unchanged for h ~< ~cr and sud- 
denly begins to grow as X exceeds Xcr. 

We now examine this limiting case of a micro-void in some detail. Thus, we consider 
the limit of the preceding solution as b ~ 0 + with a, X and r held fixed. Note from 
(3.2)2 and (2.16) that there are two cases to be considered, namely that in which * 
t b --* 0 and that in which C ~ 0. 
Case (1) t b ---, 0: 

Equations (3.3)-(3.5) are readily seen to lead to 

ta6(t 2 + t a + 4)3h(ta) = 64h(0)~ 8, (3.7) 

- t ~ ) ( t a + G +  0 2= aS(1 4 2 4) 

64h(O)trah(G ) , (3.8) 

C = 64h (0) D 2, (3.9) 

in this limit. Consequently, in this limit, the solution is formally given by (2.15), (2.16), 
(2.18) with the parameter t in the range 

0 <~ t <~ ta, (3.10) 

and with the positive constants G( < 1), C, D now given by (3.7)-(3.9). 
The existence of this solution is ensured, provided (3.7) can be solved for a number 

t~ such that 0 < t a < 1, corresponding to the prescribed value of 2~ > 1. As shown in 
Section 2 in connection with (2.26), such a (unique) root t a of (3.7) exists when ~ > ~cr 
where Xc~ is given by (2.29). Consequently case (1), in fact, applies in the range 

> ~c~, and on this interval, the deformation converges as b--, 0 + to the solution 
described in the preceding paragraph. 

To further illustrate this convergence, it is instructive to derive an expression for the 
radius R C of the deformed void in the present limit. A straightforward calculation 
using (3.6), (3.2), (3.4) leads to 

( _ ~ ) 8  C h ( 0 ) +  3 ( 4 - 3 t a ) [ C h ( O ) ] 5 / 6 [ b ]  4/3 
= 4a s 2 ~ ~ 4a s ] ka}  +o(b4 /3 ) ,  (3.11) 

as b ~ 0 + ,  where t~ and C are found from (3.7)-(3.9). To leading order this gives 

( ~ )  - t ~ ) ( G + G +  ( > 0 ) .  (3.12) 
8= (1 ' 2 4)h(O) 

4 h ( G ) t  6 

Note that in the present case, the deformed void radius Re does not tend to zero as the 
undeformed radius b ~ 0 + .  Equations (3.7), (3.12) describe the solid curve in Figure 1 
(on the range ~ > ~ ) .  
Case (2) C ---, 0: 

Note from (3.2)1 that in this case t~ ---, 1 as b ~ 0 + and so (3.5) yields 

h ( t b ) ( t  ~ + t b + 4) 3 = 216h (1)h -8 (3.13) 

* In what follows, it is to be understood that all limits involving the quantities ta, tb, C and D are the 
appropriate one-sided limits. 
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in this limit. Furthermore observe from (3.3) that necessarily D ~ 0. However, the ratio 
C / D  2 remains bounded and is given by (3.4), (3.13) as 

C / D  2 = 216h (1) h -8. (3.14) 

Monotonicity arguments similar to those used in Case (1) show that (3.13) can be 
solved for a value of t b (0 < t b < 1) if and only if ~ < ?~r, and consequently case (2), in 
fact, applies in the range 1 < ~ < ~ r "  

Thus, when 2~ <hcr ,  the deformation converges as b ~ 0 + to (2.15), (2.18) where t 
lies in the interval t b ~< t ~< 1, and t b, C / D  2 are given by (3.13), (3.14), with C--, 0, 
D --* 0. We now show that this deformation field, in fact, coincides with a homogeneous 

deformation.  Observe from (2.15), (2.18) that 

( R )  8 = - D z ( t 2 + t + 4 ) 3 h ( t )  (3.15) 
C t 6 

Furthermore it follows from (2.15) that, since C ~ 0, we must have t ( r )  ~ 1 for each 
fixed value of r in 0 < r ~< a. Thus, in this limit we find from (3.15) and (3.14) that 

R = ?~r. (3.16) 

Moreover, it follows from (2.12) and (3.16) that /~(r) ---, ~ for 0 < r ~< a as b ~ 0 + .  
However, since t b tends to the root of (3.13) and not to unity, the derivative R(b)  does 
not approach h as b ~ 0 + .  

Again, it is of interest to derive an expression for the radius R c of the deformed 
void when h < Xcr. This is given by (2.18) evaluated at t --- t b which can be written, on 
using (3.2)2, (3.4) as 

R c = b t ;  3/4 + o ( b ) ,  as b ~ 0 + ,  (3.17) 

provided t b is found from (3.13). Thus in the present case the deformed radius 
R c ~ 0 + as the undeformed radius b ~ 0 + ,  and so the dashed curves in Figure 1 (in 
the range 1 < ~ < ~cr) approach the horizontal axis. 

4. Concluding remarks 

Finally, we proceed to a comparison between the solutions to the two problems 
discussed in Sections 2 and 3. Observe first that in the case k > kcr, equations 
(2.24)-(2.26) pertaining to the bifurcated solution are identical to (3.7)-(3.9) obtained 
for the solution of the micro-void problem. Thus the values of the constants ta, D and 
C are exactly the same in both solutions. Moreover, the ranges of the parameter t in 
both solutions, given by (2.19), (3.10), then coincide and so the deformation fields in 
both problems are identical. 

Secondly, when ~ < kcr, equation (2.10) pertaining to the homogeneous solution of 
the bifurcation problem is exactly the same as equation (3.16) for the micro-void 
problem and so the deformation fields in both problems are identical for this range of 

also. 
Consequently, the bifurcation problem of Section 2 may be viewed as providing an 

idealized model describing the growth of a pre-existing micro-void. In particular, the 
solid curve in Figure 1, initially obtained for the bifurcation problem, is now seen to 
also describe micro-void growth. 
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Note added in proof 

The results obtained in this paper may be readily extended to the corresponding three-dimensional 
axisymmetric problem involving nucleation of a spherical void. (See [7] for other results on spherically 
symmetric deformations of the Blatz-Ko material). In this case, the corresponding value of the critical stretch 
is given by ~¢r = 1.30874. 
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