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Abstract. Conewise linear elastic (CLE) materials are proposed as the proper generalization to two 
and three dimensions of one-dimensional bimodular models. The basic elements of classical smooth 
elasticity are extended to nonsmooth (or piecewise smooth) elasticity. Firstly, a necessary and 
sufficient condition for a stress-strain law to be continuous across the interface of the tension and 
compression subdomains is established. Secondly, a sufficient condition for the strain energy 
function to be strictly convex is derived. Thirdly, the representations of the energy function, 
stress-strain law and elasticity tensor are obtained for orthotropic, transverse isotropic and isotropic 
CLE materials. Finally, the previous results are specialized to a piecewise linear stress-strain law 
and it is found out that the pieces must be polyhedral convex cones, thus the CLE name. 

1. Introduction 

This work is concerned with the formulation of constitutive laws for elastic 
materials presenting a different behavior in tension and compression under small 
deformations, as sketched in Fig. 1. Many fiber-reinforced and granular 
composites such as boron/epoxy, kevlar/rubber and graphite/epoxy can be 
cited as examples of such materials [Jones (1977); Vijayakumar and Rao 
(1987)]. Moreover, a damaged brittle material such as concrete or ceramics, 
which contains microcracks and/or microvoids, generally exhibits different 
stiffnesses or compliances under tensile and compressive loading, owing to the 
unilateral nature of the damage [Horii and Nemat-Nasser (1983); Chaboche 
(1990); Mazars, Berthaud and Ramtani (1990); Costa, Fremond and Mamiya 
(1992)]. 

In the literature [see, e.g. Tabaddor (1979)], the word "bimodulus" is often 
used for referring to a material whose one-dimensional stress-strain law is 
piecewise linear as represented in Fig. 1, because it is characterized by different 
Young's moduli in tension and compression. Concentrating the non-linearity 
at the origin is probably the simplest way for describing a dissymmetry 
between tensile and compressive behavior. Extension of such models to two- 
and three-dimensional cases began with the works of Ambartsumyan and his 
collaborators [Ambartsumyan (1965); Ambartsumyan and Khachatryan 
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Fig. 1. One-dimensional stress-strain law for a "bimodulus" material. 

(1966) and Ambartsumyan (1969),1 and was then pursued by a number of other 
authors [Shapiro (1966); Novak and Bert (1968); Green and Mkrtichian 
(1977); Spence and Mkrtichian (1977); Bert (1977); Jones (1977) Tabaddor 
(1979); Kamiya (1979); Vijayakumar and Rao (1987) and Sacco and Reddy 
(1992),1. In several studies [e.g. Green and Mkrtichian (1977); Rigbi (1980) and 
Medri (1982),1, the tension-compression non-linearity is mistaken with material 
anisotropy. Confusing the tension-compression non-linearity with material 
anisotropy is perhaps due to the fact that most previously proposed strain- 
stress relations were not written in invariant forms. For this same reason, it is 
sometimes difficult to verify if a given stress-strain relation respects the 
invariance conditions imposed by the material symmetries. Finally, a number 
of bimodulus constitutive laws [Green and Mkrtichian (1977); Rigbi (1980) 
and Sacco and Reddy (1992),1 based on principal stresses or strains are not 
piecewise linear due to the nonlinear dependence of the eigenvalues of a tensor 
on this tensor. Moreover such stress-strain relations imply high computational 
costs since they require the resolution of the eigenvalue problem. 

In this paper, we propose a definition of conewise linear elastic (CLE) 
materials as the proper generalization to two and three dimensions of one- 
dimensional bimodular models. To this end, some basic properties of classical 
smooth elasticity, namely existence, differentiability, convexity, (an-) isotropy 
and quadratic form of the elastic energy function [e.g., Gurtin (1981); Marsden 
and Hughes (1983) and Ciarlet (1988)1, are extended to nonsmooth or piecewise 

smooth elasticity. Firstly, a necessary and sufficient condition for a stress-strain 
law to be continuous (~o) across the interface of the tension and compression 
subdomains, i.e. for the energy function to be differentiable ( ~ )  across the 
same interface, is established. The effect of this condition on the interface shape 
is determined. Secondly, a sufficient condition for the strain energy function to 
be (wholewise) strictly convex is derived. The strain-stress relation is then 
obtained by inverting the stress-strain one and the complementary energy by 
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using a Legendre transformation. Thirdly, the invariant forms of the energy 
function, stress-strain law and elasticity tensor are obtained for isotropic, 
transverse isotropic and orthotropic CLE materials, by using the invariants of 
the strain tensor [e.g. Boehler (1978) and Spencer (1982)1. Finally, the previous 
results are specialized to a piecewise quadratic energy function with a piecewise 
linear stress-strain law, relevant for small deformation analyses, and it is found 
out that the pieces must be pyramids, i.e. polyhedral convex cones, thus the 
CLE name attributed to such materials. 

The paper is composed of five sections. In Section 2, the classical smooth 
elasticity background which is relevant for this work is summarized. In Section 
3, the generalized framework outlined above for nonsmooth elasticity is pro- 
posed. In Section 4, the developed theory is specialized to orthotropic, 
transversely isotropic and isotropic CLE materials undergoing small deforma- 
tions. A few conclusions are drawn in Section 5. 

2. Smooth elasticity background 

In this section, some elements of smooth nonlinear elasticity are summarized 
for later reference [e.g., Gurtin (1981); Marsden and Hughes (1983) and Ciarlet 
(1988)1. A few developments regarding the representation of the fourth-order 
elasticity tensor are novel. 

The main notations used in the article are the following. The Green- 
Lagrange material strain E and the second Piola-Kirchhoff material stress S 
are used throughout. Both measures are symmetric E = E r, S = S r and 
objective, i.e. invariant in a change of frame of reference E* = E, S* = S. Both 
E and S belong to "vector" spaces of symmetric second-order tensors, herein 
denoted ~ and 6: respectively and equipped with a norm and inner product, 
e.g., IIEII = (tr E2) 1/2 and E : H  = tr(ErH). The internal energy density product 
is again denoted S:E. Fourth order elasticity and compliance tensors are 
respectively denoted 5 and IF and their vector spaces SP and dr. The tensor 
product of two second-order tensors is defined by [A®B]X = (B: X)A, VX ~ g'. 
Another three useful similar products are defined by [A ® B]X = AXB r, 
VXed' [Halmos (1958), Del Piero (1979) and Lucchesi et al. (1990)1, 
[A ~ B]X = AXTB T, 'v'X ~8  and [A ~ B]X = (AXB r + BXTAT)/2, VXES, i.e. 
A _~ B = [A_~ B + B ~ A]/2 [Curnier (1993)1. The intrinsic (direct) notation 
is used throughout. 

Although E and S are valid measures for large displacements and large 
strain formulations, the present study is limited to the large displacement but 
small strain case. Thus E belongs in fact to the convex subset 8 ' =  

{E~gl IIEIt ~< M << 1}. 
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2.1. Smooth hyperelasticity 

Classically, a hyperelastic material is characterized by the existence of a smooth 
(twice continuously differentiable) potential energy density W(E) from which 
the stress-strain law S(E) and the symmetric elasticity tensor S(E) are derived: 

W = W(E), W(0) = 0, W~(~2(g , /~ ) ;  

S = S(E) = VrW(E), S(0) = 0, 8 ~ 1 ( ~ ,  5:); 

$ = S(E) = VE2W(E), $ ~ ego(g, S ) .  

(2.1) 

(2.2) 

(2.3) 

In (2.1) and (2.2), the energy W and thestress S are assumed to be zero in the 
reference configuration, without loss of generality and for simplicity respec- 
tively (whereas 5(0) must be positive definite as specified in (2.8)). The 
fourth-order Hessian tensor 5 possesses two minor symmetries resulting from 
those of E and S and a major one due to the existence of W: 

5(E)A = 0, VE6g,  VAt .C;  S(E)H = [$(E)H] r, VE, H ~ g ;  

H :5 (E)G  = G:5(E)H,  YE, G, H E g c ~ S r ( E )  = S(E); 

(2.4) 

(2.5) 

where ~¢ is the space of skew second-order tensors. The major symmetry (2.5) 
is a necessary and sufficient condition for the existence of W [Marsden and 
Hughes (1983)]. 

2.2. Convexity. Monotony. Positiveness 

For stability reasons in small strain situations, it is usually assumed that the 
material elastic potential W is strictly convex or equivalently that the stress- 
strain law S is strictly monotone or finally that the elasticity tensor 5 is 
positive definite, i.e. that rE ,  H e g, E ~ H, 

W[AE + (1 -2)I-I]  < 2W(E) + (1 - 2 ) W ( H ) ,  V2~[0, 1], 

W(H) > W(E) + S(E) :(H - E), 

[S(H) - S(E)] :(H - E) > 0, 

(H - E): $(E)(H - E) > 0. 

(2.6a) 

(2.6b) 

(2.7) 

(2.8) 

REMARK. Although convexity of the nominal energy function (in terms 
of the deformation gradient) is not acceptable at finite strains for multiple 
reasons (objectivity, non-uniqueness, basic inequalities...), convexity (2.6) of 
the material energy function is acceptable at least at small strains, i.e. 
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replacing ~ by ~' in (2.6)-(2.8). Note that since W ~ 2 ( ~ , ~ ) ,  (2.6a)~- 
(2.6b) ~ (2.7) ¢: (2.8) whereas (2.7) =~ (2.8) only holds in the non-strict case. In 
words, positive definiteness is sufficient but not necessary for strict convexity. 

Due to strict convexity, the inverse strain-stress law exists and derives from 
an elastic complementary energy density given by a Legendre transformation 

W* = W*(S) = S:E - W(E), 

E = E(S) = S-1(S) = VsW*(S), 

E = E ( s )  = 5 - ' ( s )  = 

W*(0) = 0, (2.9) 

E(0) = 0, (2.10) 

(2.11) 

The complementary energy and the strain are equal to zero at the stress origin, 
just as their inverses. The inverse elasticity tensor IF is called the compliance 
tensor. It has the same symmetry and positiveness properties as 5. 

2.3. Material symmetries 

For a constitutive law to comply with the material symmetries, W and (thus) 
S and 5 must be invariant under the corresponding symmetry group f#, i.e. 
VE~¢, VQ~___ 0, 

W(QEQ r) = W(E), (2.12) 

S(QEQ r) = QS(E)Q z, (2.13) 

5(QEQ r) = [Q ® Q-15(E)[Q ®Q]r ,  (2.14) 

where • is the full proper orthogonal group. For an is®tropic material ~ = 
whereas f# c ~ for an anisotropic one. 

REMARK. The invariance conditions (2.12)-(2.14) involve congruences which 
can be systematically written by means of the tensor product ® as, VE~8, 
V Q e ~  _~ C, 

W([Q ® Q]E) = W(E), 

S(I-Q ® Q]E) = [Q ® Q]S(E), 

5( [Q _@ Q]E) = [(Q @_ Q) _@ (Q ~ Q)]5(E). 

It can be shown that (2.12) =~ (2.13) =~ (2.14). 
Representation theorems give the most general form that W can take in 

terms of basic invariants of E under the group ~ and, by differentiation, the 
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corresponding forms for S and S: 

W(E) = (o(I~, IF,:= {I,(E), i = 1, p}, (2.15), 

&o 
S(E) = og~G,, coi:= ~ (Is), G~:= VJ,(E), (i - 1, p), (2.16) 

S(E) = aJijG i • Gj + toiVF,Gi, (i, j = 1, p), 

t32ta (2.17) 
°gij:= dlial~ (Is) = toil, VF,Gi = V2Ii(E) • 

In (2.15)-(2.17), I i are invariants of E under ~ forming an irreducible 
"functional" basis for the energy function t~ (with first derivatives o h = dt~/dI~ 
and symmetric second derivatives o9 o = t32to/alialj), and G~ = VEIi are the 
corresponding generators, invariant under ~, for second-order symmetric 
tensors as well as for fourth-order symmetric tensors by means of their 
gradients VEG ~ and the tensor products G~ ® G i. The summation/enumeration 
convention on dummy/frank repeated indices is used throughout. 

The symmetry condition o) o = coj~ stated in (2.17) is necessary and sufficient 
for a law in the form S(E) = ~oi(IF.)Gi(E ) to derive from a potential to(l~. 
Equation (2.17) suggests a decomposition of the elasticity tensor into a "bulk" 
part and a "shear" part along 

.5(E) = .~(E) + 5'(E), .~(E) = (DijG i ~) G j ,  5'(E) = (o,VF,G,. 

For anisotropic materials, the group f9 is most conveniently characterized by 
means of texture tensors A a as follows: 

f# = { Q ~ I Q A a Q  r = A~, a = 1,d}. (2.18) 

Finding a representation of the fq-anisotropic function W(E) is then equivalent 
to constructing an O-isotropic function ff'(E, A~) such that W(E) = W(E, A~) 
[e.g., Boehler (1978) and Liu (1982)-I. The texture tensors A~, symmetry groups 
~, corresponding invariants It, second-order generators G~ and fourth-order 
generators VzG~ are summarized in Table 1 for isotropic (A 1 = I), transverse 
isotropic (A~ = I, A 2 = A )  and orthotropic (A~ = I, A 2 = A, A 3 = B)  materials. 
In the orthotropic case, the third direction vector and associated texture tensor 
are uniquely determined by orthogonality as e = a ^ b and C = I -  A -  B. 
Consequently, I can be replaced by C, tr E by tr CE and tr E2/2 by tr CE 2 
(tr E3/3 stays) in the isotropy column, in order to retrieve a cyclic symmetry 
over the three directions a, b and e (A 1 = A, A 2 = B, A a = C). 

REMARKS. (i) Without the hyperelasticity hypothesis S = VE W adopted here, 
the generator Gp+ 1 = (AE 2 + E2A) and its gradient 

VzGp+l = A ~ E  + E ~ A  
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Table 1. Elements of representation for the main types of anisotropy in hierarchical order 

Symmetry Isotropy (d = 1, p = 3) Transverse Isotropy (2, 5) Orthotropy (3, 7) 

A~(a= 1, d) 1 A = a ® a ,  Ilall =1 S = b ® b ,  [Ibl[ = 1 ,a 'b=0  

f~ e = { Q ~ I Q I Q r = I }  Y = { Q E C I Q A Q r = A }  ~ =  {Q eo~' lQBQr = B} 

Ii ( i= 1, p) trE,  tr E2/2, tr E3/3 trAE, tr AE 2 tr BE, tr BE 2 

Gi=V~I i I, E, E 2 A, A E + E A  B, B E + E B  

V~G, ~ , I @ I , E @ I + I ~ E  ® , A ~ I + I @ A  0, B ~ I + I ~ B  

This table is hierarchical in the sense that, for transverse isotropy and orthotropy, only the additional invariants 
and generators with respect to isotropy and transverse isotropy respectively, are given. The zero tensors @ are 
included in the last line in order to keep the number of fourth order generators equal to the numbers of invariants 
and second-order generators, which is necessary for an effectual application of the summation convention in 
(2.17). 

must be added in the transversely isotropic column of Table 1, together with 
an t%+1(I 0 function in (2.16)-(2.17), and, with polynomial functions ~o i 
(instead of general ones), a generator Gp+ z = (BE z + EZB) and VEGp+ 2 must 
be added in the orthotropic column with an ogp÷z(IE) polynomial. 

(ii) In Table 1, the first and second gradients of the invariants are calculated 
with the help of the directional derivative and by insisting on the symmetry of 
E as shown in Appendix A. 

2.4. L inear  elastici ty 

In the hypothesis of small strains, a linear stress-strain law (of the Kirchhoff- 
St. Venant's type), deriving from a quadratic potential involving a constant 
elasticity tensor (Fig. 2) often proves satisfactory: 

W(E) = ½E: $E, (2.19) 

s(w) = ~E, (2.20) 

5 = constant, (2.21) 

Due to the symmetries (2.4) and (2.5), the tensor 5 is fully determined by 21 
independent constants. 

J 
E / 

/ 
E 

S 

E 

Fig. 2. (a) Quadratic potential, (b) linear stress-strain law, (c) constant elasticity modulus for a 
smooth elastic material in one dimension. 
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The complementary energy, inverse law and compliance tensor are given by 

W*(S) = ½S: nzs, (2.22) 

E(S) = IgS, (2.23) 

= 5-1  = constant, (2.24) 

2.5. Linear orthotropic elasticity 

Combining linearity with symmetries consists in retaining the complete quad- 
ratic combination of invariants in (2.15), linear combination of their gradients 
in (2.16) and constant combination of their Hesssians in (2.17), all three with 
constant "bulk" and "shear" Lamr-like coefficients 2ab and/~,: 

W(E) = ~ tr(AaE ) tr(AbE ) +/~a tr(AaE2), (a, b = 1, d), 

S(E) = 2~ tr(AaE)A b +/~o(AaE + EA~), 

S = 2,bAa ~)Ab + / ta [A,  _~ I + I _~ Ao], 2ab=2b~, 

(2.25) 

(2.26) 

(2.27) 

where d = 1 for isotropy (2 constants: the two usual Lam6 constants 2 and/~), 
d = 2 for transverse isotropy (5 constants) and d = 3 for orthotropy (9 constants). 
Hence, such combinations involve (d2+  d) terms and only [d(d+l)/2+d] 
constants. Explicit expressions are given in Appendix B. 

The inverse relationships can be written as 

1 +Va~ 
W*(S) = V"b tr(AaS ) tr(AbS ) + tr(AaS2), 

- 25-2 W 
1 + Vaa 

E(S) = -- V"--Abs, tr(A,S)Ab + ~ (AaS + SA 3, 

~_ = Vab Aa(~)A b + 1 + v~ 5~ - - - - ~  [Aa ~ I + I ~ A~]' 

(a,b= 1,d), (2.28) 

(2.29) 

(2.30) 

Va-"~b = Vba, (a, b = 1, d); (2.31) 
/~a 5b 

where 5 a are Young's like elastic moduli, Vab Poisson's like ratios with diagonal 
elements v .  related to the more usual shear moduli Gab by 

1 + v ,  1 + Vbb 1 2 
- - +  . . . .  , (a, b = 1, d). 

~a eb Gab ~a + /tb 
(2.32) 
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Here W (respectively W*) are strictly convex, S strictly monotone and 
positive definite if and only if the bulk coefficient matrix l-2ab ] ( I - - v J e j )  is 
positive definite and the shear coefficients Pa (Gab) are positive. In the isotropic 
case, for instance, the conditions are 

3 2 + 2 p > 0 a n d p > 0  or ~ > 0 a n d - l < v < l / 2 ,  

where e is Young's modulus and v Poisson's ratio. 

3. Nonsmooth elasticity framework 

Among the four basic properties discussed in the previous summary, smooth- 
ness and linearity restrict the nonlinearity of the material law whereas convex- 
ity and symmetry ensure its invertibility and anisotropy respectively. In this 
section, the smoothness or linearity assumption is renounced in order to 
accommodate bimodular materials, whereas convexity and symmetry are 
maintained and exploited to restrict the possible forms of the resulting laws. 

3.1. Piecewise smooth hyperelasticity 

For modeling a hyperelastic material which behaves differently in tension and 
compression, it is natural to consider an elastic potential energy density which 
is (wholewise) continuously differentiable but only piecewise twice continuously 
differentiable. Indeed, the stress-strain law deriving from such a potential is 
(wholewise) continuous and piecewise continuously differentiable with a piece- 
wise continuous elasticity tensor (discontinuous across the origin) and thus 
able to produce in a simple traction experiment a different response in tension 
and compression, with a kink at the origin as shown in Fig. 1. 

3.1.1. Strain space division into a compression subdomain and a tension 
subdomain 
To begin, let the strain space g be divided into a compression subdomain 8_ 
and a tension subdomain 8+ by means of a hypersurface I characterized by a 
continuously differentiable scalar valued function 9(E) as follows (Fig. 3): 

J : - -  { E ~ l g ( E )  = 0}, g~c~(~,~) ;  (3.1a) 

8_ :=  { E ~ I g ( E )  < 0}, ~_:= { E ~ I g ( E )  ~< 0}; (3.1b) 

d'+ := {E~flg(E) > 0}, ~+ := {E~81g(E) /> 0}; (3.1c) 

8 = g _ u g + u Y ,  ~ _ n S + = ~ ,  d~ c ~ + = J .  (3.1d) 
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I 

L 
W _ ( E )  = c o n s t .  

+ ( E )  = c o n s t .  

E 1 

g ( E )  = 0 

Fig. 3. Schematic partition of strain space d' into a compression subdomain dr_ and a tension 
subdomain 8+ and typical equipotential lines of the two restrictions W_ and W÷ in 2D principal 
strain plane. 

This subdivision of g being motivated by a different behavior in tension and 
compression, the interface must contain the strain space origin 

0 E 3" ¢:, 9(0) = O. (3.2)  

For instance, the simplest subdivision of the strain space into two half-spaces 
is provided by a hyperplane characterized by its unit normal N~8(IIN[I = 1): 

J : =  {WEglgcW) = N:v~  = 0}, 

g _ : =  { E ~ g l N : E  < 0}, 8+ := { E e S I N : E  > 0}. 

(3 .3a)  

(3.3b) 

More complicated subdivisions of g into several nonsmooth subdomains can 
be obtained by using several interfaces. For  example, subdivisions into poly- 
hedral convex cones (i.e. pyramids) will be discussed in Section 4.5 and an 
explicit subdivision into eight octants will be studied in Section 4.6. 

REMARK. For the subdivision of g' to be valid, the interface J must fulfill 
other properties than (3.2). For  instance, J must be such that 8_ and g+ are 
simply connected. In the sequel, J is assumed to possess all the properties 
necessary for the purpose of the study. 

3.1.2. Piecewise smooth law 
Next, assume that the material response can be separately described in 
compression and in tension by two elastic energy functions W_(E) and W÷(E) 
with first and second derivatives. By using the above subdivision, these two 
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functions can be restricted to their relevant subdomains dr_ and g+ and then 
juxtaposed to give a single energy function W(E) defined over g. Provided 
proper continuity conditions are enforced across the interface, the first deriva- 
tive S(E) = VEW(E) will exist everywhere and even be continuous across the 
interface. In this respect, it is important to understand that, if the elasticity 
tensor can be discontinuous across the interface, the stress-strain law must be 
continuous across it, for the material model to make sense. 

More specifically, let W_(E) and W÷(E) be two twice continuously differen- 
tiable energy functions defined over g. A (piecewise twice, wholewise once) 
continuously differentiable energy function W(E) is defined over 8, together 
with its first derivative S(E) and its piecewise second derivative S(E) where it 
exists, by the two restrictions W_(E) and W÷(E) to the two subdomains ~_ and 
~+ respectively, as follows: 

~'W_(E) if 0(E) ~<0, W_~Cg2(8,~), 
W(E) := [ W+(E) if 0(E) >/0, W+ ~ cg2(8, ~), We(g'(~" ~); (3.5) 

S(E) = VzW(E ) = ~'S_(E) = VzW_(E ) if 0(E) ~< 0, 
[S+(E) VzW+(E ) if 0(E) I> 0; 

(3.6) 

5(E) = ~'5_(E) = V2W_(E) if 0(E) < 0, (3.7) 
[S+(E)  V2W+(E) if 0(E) > 0. 

As in the smooth case, it is assumed that the energy and the stress are zero in 
the reference configuration, which in view of the continuity assumption imply 

w ( o )  = w _ ( o )  = w + ( o )  = o ,  

s ( o )  = s _ ( o )  = s + (o)  = o.  

(3.8) 

(3.9) 

On the interface J ,  the Hessian elasticity tensor ~ = V2W does not exist in a 
classical sense but, provided S is Lipschitz continuous (hereby excluding 
inextensible and incompressible materials), 5 can be replaced by a set t3ES of 
elasticity tensors called the generalized Hessian [Clarke (1983)] and defined as 
the convex hull of the compression and tension Hessians 5_  and 5 + , i.e. 

if 3k > 0[ IIS(H) - S(E)It ~< kllH - Ell, VE, H e 8  then V E ~ J ,  

dES(E) = D2WtE):= {~E)  15(E) = (1 - 2)5_(E) + ),~+(E), V2~ [0, 13}. 

(3.10) 
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3.1.3. Continuity conditions 
Continuity of the elastic energy function and its gradient, the stress-strain law, 
across the interface, implies 

W(E) = W+(E) = W_(E), VEIg(E) = O, 

S(E) = S+(E) = S_(E), ¥EIg(E) = O, 

n5(E)]] := 5+(E) - S_(E) = s(E)Vg(E) ® Vg(E), VE Ig(E) - O; 

(3.11) 

(3.12) 

(3.13) 

where s(E) is a continuous scalar valued function. The first two continuity 
conditions are obvious but the third discontinuity condition deserves an 
explanation. It expresses that the jump in the elasticity tensor across the 
interface is normal to the interface. There is no tangential discontinuity. 

In fact, the normal jump condition (3.13) is a characterization of the 
stress-strain law continuity (3.12). This assertion is the purpose of the next 
prgposition. 

PROPOSITION 3.1. The energy function W defined in (3.5) is continuously 
differentiable on g, or (equivalently) the stress-strain law S = VEW given by (3.6) 
is continuous on 8, if and on ly / f  S = VEW is continuous at the strain origin as 
specified by (3.9) and the elasticity tensor normal jump condition (3.13) holds 
on J .  

Proof. The demonstration is divided in two lemmas, the former being a 
preliminary. 

~ E _  E+ 

Fig. 4. Differentiation and integration on a hypersurface J in & 
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LEMMA 3.1. The energy function W defined by (3.5) is continuous across J if 
and only if it satisfies (3.8) and 

[VW(E)]] := VW+(E) - VW_(E) = w(E)Vg(E), V E ~ J ;  (3.14) 

where w(E) is a continuous scalar valued function. 

Proof. Let E and H be two neighboring points on J (Fig. 4). Suppose W is 
continuous, then (3.8) is trivially verified and there simultaneously hold 

W + ( E )  - W_(E) = 0, W+(H) - W_(H) = 0, 

g(E) = 0, g(H) = 0. 

Since W_, W+ ~ ~2(~, ~ )  and g ~ ~l(~, ~),  the following expansions arc valid: 

W_(H) = W_(E) + VW_(E):(H - E) + t~(llH - Ell2), 

W+(H) = W+(E) + VW+(E):(H - E) + t~(lIH - Ell2), 

g(H) = g(E) + Vg(E):(H - E) + •([[H - EH2). 

Subtracting the former from the second and using the above continuity 
conditions yields 

VW+(E) :(H - E) - VW_(E):(H - E) = ¢(IIH - ELI2), 

Vg(E) :(H - E) = ¢(HH - Ell2). 

Dividing throughout by IIH - Ell and letting H --, E, the unit vector 

( H  - E ) / l I H  - Ell --" T(E) ,  

and it follows that 

[VW+(E) - VW_(E)] :T(E) = 0}  
Vg(E):T(E) = 0 , V E e J ,  VT(E), IIT(E)ll = 1. 

This implies (3.14) with w ~ ° ( 8 ,  ~).  
Conversely, assume (3.8) and (3.14) hold. Then, (3.14) can be integrated from 

the strain origin 0 up to any strain E on J ,  along it: 

~ [VW+(H) - VW_(H)] = foe w(n)Vg(H):dH, VE, H ~ J .  : d l  

Since Vg(H) : dH = 0 on J ,  W_, W+ e c~2(~, .~) and w e ~o(~, ~),  the result is, 
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in view of (3.8), 

W+(E) - W+(0) - W_(E) + W_(0) = W+(E) - W_(E) = 0, V E ~ J .  [] 

REMARK. Geometrically, condition (3.14) expresses that the gradient of a 
scalar valued function, continuous across a smooth interface, can only suffer a 
jump in the normal direction to that interface. By introducing the unit normal 
N(E) = Vg(E)/IlVg(E)II to the surface J at E, Eq. (3.14) can be equivalently 
written as 

[I ~ I - N(E) ® N(E)] ~VEW(E)~ ---- 0, VE6J,  

which expresses that the tangential jump is zero. 

LEMMA 3.2. The stress-strain law S = V~W defined by (3.6) is continuous 
across J if and only if it satisfies (3.9) and 

[[VS(E)I] := VS+(E) - VS_(E) = s(E)VÙ(E) ® Vg(E), V E ~ J ,  (3.15) 

where s(E) is a continuous scalar valued function. 

Proof. Suppose S is continuous, then (3.9) is trivially verified and applying 
the reasoning used in Lemma 3.1 to S(E) instead of W(E) leads at once to 

[VS+(E) - VS_(E)]T(E) = 0 
V0(E):TCE) = 0 j~' V E ~ J ,  VT(E), IIT(E)II : 1. 

On introducing the (five-dimensional) hyperplane ~ := {T e 81Vg(E) : T = 0} 
tangent to ~ at E, there are, according to linear algebra, only two possibilities 
for the above system to hold at a given E: 

either VS+ =VS_ with KerI[VS]=8 and ImIFVS1] = {0}, 

or VS+=~VS_ with Ker[VVS]=o~¢ and I m ~ V S ~ = { S e 6 a l S = s M ,  s ~ l } ;  

where Ker(T) and Im(~-) denote the kernel and image of ~- respectively, and 
M ef t '  is a nonzero second-order tensor. The first possibility corresponds to 
the continuous case ~VS(E)]] = @ (choice of smooth elasticity). Therefore, the 
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only nontrivial solution is the second one which expresses that for any fixed E 
on J ,  the linear operator [[VS(E)]] must be singular and in fact of rank one in 
the form 

VS+(E) - VS_(E) = s(E)M(E) ® Vg(E). 

The result (3.15) follows from the major symmetries of VS_(E) and VS+(E) 
with s e ego(g, ~). 

Conversely, assume (3.9) and (3.15) hold. Then, (3.15) can be integrated from 
the strain origin 0 up to any strain E on J ,  along it: 

e [VS+(H) - VS_(H)] :dH = foe s(H)[Vg(H) ® Vg(H)] dH, VE, H e Y. 

Since Vg(H):dH = 0 on Y, S_, S+ ~c~1($,, S~) and s~C~°(~, Yt), it follows, in 
view of (3.9) that, 

S + ( E )  - S + ( 0 )  - S _ ( E )  + S _ ( 0 )  = S + ( E )  - S _ ( E )  

= s(H)(Vg(H) :dH)Vg(H) = 0, V E e J .  
0 

[] 

REMARK. Note that the major symmetry of S_ and 5+ (or equivalently the 
existence of I4/_ and I4/+ Ec~2(~, ~)) plays a crucial role in arriving at a 
symmetric jump. 

3.1.4. Hyperelasticity conditions 
A stress-strain law (3.6) being the (continuous) gradient of an energy function 
(3.5) is hyperelastic by definition. The work it produces around any closed 
strain cycle is zero or, equivalently, the work it produces between any two 
given strains (say 0 and E) is independent of the path 

S(H):dH = V~W(H):dH= W(E) - W(0) = W(E), YEe#.  

Conversely, if the work produced by a continuous elastic stress-strain law such 
as (3.6) (without S = VvW) between any two given strains is independent of 
the path, then this law must be the gradient of a continuously ditferentiable 
energy function such as (3.5) (thus S = VEW), just as in the smooth case. 
Indeed, taking a step orthogonal to e I ® el followed by another parallel to it 
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yields 

W(E) = f~  S(H):dH= f f  S(H):dH + I~ 

= W(P) + S1x(HI1)dHll, 

S(H) : dH 

where P = E - E 1 ~el ® el denotes the projection of E on the basis hyperplane 
orthogonal to el ® el. Taking the derivative of W with respect to E 11, it is 
found out that $11 = aW/OE11 since P and thus W(P) are independent of El 1. 
The conclusion is reached by scanning the five other components. 

Now, if a stress-strain law (3.6) is given without its elastic potential (3.5), 
the following hyperelasticity criteria will guarantee the latter existence. 

PROPOSITION 3.2. A continuous piecewise differentiable stress-strain law S, 
as defined in (3.6) (without S = V~W), derives from an eneroy function W (thus 
S = VE W) if and only if each elasticity tensor has the major symmetry 

5r__(E) - $_(E), VE~g, (3.16) 

5r+(E) = 5+(E), VEES. (3.17) 

Moreover W is in the form (3.5), provided it satisfies (3.8). 

Proof If the law (3.6) derives from an energy function (3.5), then S_(E) and 
$+(E) satisfy the major symmetry conditions (3.16) and (3.17) by application 
of (2.5)to W_ and W+. 

Conversely, if (3.16) and (3.17) hold, then the potentials W_ and W+ exist. 
Moreover, since the law (3.6) is continuous, by the argument preceding 
Proposition 3.2, there exists then a (wholewise) continuously differentiable 
energy function W. This function can only be the juxtaposition of IV_ and W+ 
as defined in (3.5), in view of (3.8). [] 

In other words, a continuous piecewise hyperelastic stress-strain law is 
hyperelastic. The key condition is the continuity of the stress-strain law across 
the interface, as expressed by (3.12) and ensured by the jump condition (3.13) 
on the elasticity tensors. 

3.2. Convexity. Monotony. Positiveness 

As in smooth elasticity, strict convexity (2.6) of the elastic potential W or, 
equivalently, strict monotony (2.7) of the stress-strain law S are needed at 
small strains and in particular at the strain origin E = 0. Positive definiteness 
(2.8) of the elasticity tensor S breaks down however, since 5 is not defined on 
the interface J (including at E = 0). It is thus natural to look for sufficient 



conditions on the restrictions which will ensure convexity and monotony on 

the whole and for an alternative characterization of positive definiteness at the 

elasticity tensor level. 

3.2.1. Half-spacewise convexity 
One way to arrive at a function W which is convex over.6", when starting from 
its definition (3.5), is to require that W_ be convex over 6'_ and W÷ be convex 
over 6"+. Bearing in mind that a convex function is (at least in the classical 
sense) necessarily defined on a convex domain (because such a domain is 
closed under convex combinations), it can be further assumed that 6'_ and 6'+ 
are convex subsets of 6' (although this assumption is over restrictive). But, in 
view of their definitions (3.1), dr_ and 6"+ will both be convex if and only if they 
are half-spaces and their interface 3" is a hyperplane passing through the origin 
as defined in (3.3): 

J : =  {E~6"If(E) = N : E  = 0}, (IIN[I = 1), 

8_ := {E¢6" IN:E  < 0}, 6"+ := { E e 6 " I N : E  > 0}. 

(3.3a)' 

(3.3b)' 

This is a direct consequence of the separation theorem of convex sets 
[-Rockafellar (1970)]. It follows that 9 is linear with a constant gradient 
Vo(E) = N. Accordingly the jump condition (3.13) simplifies into 

[[~(E)]] = ~+(E) - ~_(E) = s(E)N ® N, V E I N : E  = 0. (3.18) 

WfE), 

Now, even if the restrictions IV  ~(~2(~v, ~)  and W+ ~ (~2(6', ~ )  are convex 

over convex half-spaces g_ and ¢+, the function W resulting from (3.5) can be 
nonconvex over g if it is only continuous across J ,  as illustrated in Fig. 5. The 
smoothness condition (3.12) across N : E - - 0  or its corollary (3.18) turns out 
to be sufficient for global convexity. 

E 

E1 
Fig. 5. Nonconvex piecewise convex functions. 
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PROPOSITION 3.3. The continuously differentiable energy function W defined 
in (3.5), with an hyperplane J = { E ~ g l N : E  =0} for interface, is strictly 
convex over 8 if the two restrictions W_ and W+ are strictly convex. 

Proof. To show that W is strictly convex, it is enough to show that it satisfies 
(2.6b) (since W is differentiable), i.e. 

W(H) > W(E) + VEW(E) :(H - E), VE, H ~ 8 ,  E :~ H. (2.6b)' 

Only the situation where E ~ g_,  H ~ d? + and the segment I-E, H] intersects the 
hyperplane J at a single point J needs to be considered, since the two 
situations where E , H ~ _  (thus W = IV_) or E, HE~÷ (thus W = I4/+) are 
trivial and the situation where H ~ _ ,  E ~8+ merely is a permutation of the 
former. Thus, let 

J = ( 1 - ~ ) E + i ,  H I  N : J = 0  =~ ~ , = - ( N : E ) / I - N : ( H - E ) ] .  

Then, given the definition (3.5) of W and the hypothesis that W_ and I4/+ are 
strictly convex, 

W ( J )  = W_(J) > W_(E) + VEW_(E ) :(J - E) = W(E) + VEW(E ) :(J - E), 

W(H) = I41+(1-1)/> W+(J) + VEW+(J ) :(H - J) = W(J) + VEW(J ) :(H - J). 

Substituting the former in the latter yields 

W(H) > W(E) + V E W(E) : (J - E) + V E W(J) : (H - J). 

A direct calculation gives 

J - E = H - E + J - H ;  J -  H = (1 - TXE - H) 

1 - ~ ,  N : H  
- ( E  - J )  = - - - -  ( E  - J ) .  

y N : E  

Substituting these expressions in the above inequality gives 

N : H  
W(H) > W(E) + VEW(E ) : ( a  - E) - ~---:-:-:~ [VEW(E) - VEW(J)'I :(E -- J). 

But - ( N  :H)/(N:E)/> 0 by assumption and 

[VEW(E ) - g r E W ( J ) ]  :(E - J) > 0 
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J "  
H 

1 

Fig. 6. Genetic locations of E, H and J. 

since V,~W = V~W_ is monotone on dr_ (because it derives from W = W_ 
convex). Consequently, 

W(H) > W(E) + V EW(E) :(H - E). [] 

REMARKS. (i) The preceding proof seems to remain valid if the subdomains 
dr_, dr+ are not convex, upon replacing N by VO(J) wherever it occurs. Indeed, 
even if the subdomains are separated by a curved or wavy ~gl interface (Fig. 6), 
all possible situations for E and H are combinations of the ones considered in 
the proposition. 

(ii) More complicated subdivisions of dr into several convex subdomains are 
possible. The correct generalization of the two above half-spaces appears to be 
polyhedral convex cones, i.e. pyramids centered at the origin. This assertion is 
further discussed in Sections 4.5 and 4.6, where its relevance is more important. 

It follows from Proposition 3.3 and Assumptions (3.8) and (3.9) that 

W(E) > W(J) + VEW(J):(E - J), VEedr, V J e J ,  E :~ J, 

W(E) > O, r E , d r ,  E # O, (W(O) = 0). (3.19) 

3.2.2. Half-spacewise invertibility 
If the potential W exists but is unknown or even if it does not exist as with an 
unsymmetric elasticity tensor, it is still possible to give an invertibility condition 
for the stress-strain law (3.6), provided it is Lipschitz continuous. 

PROPOSITION 3.4. A Lipschitz continuous half-spacewise differentiable 
stress-strain law S(E) is locally invertible at E ~ J if both det[5_(E)] > 0 and 
det[5+(E)] > 0. 

Proof Consider the generalized Hessian c3S(E) defined in (3.10). A theorem 
due to Kojima and Saigal (1980) and extended by Alart (1992) asserts, in 
essence, that if any element ~(E) of the generalized Hessian OS(E) is invertible, 
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then the operator S(E) is locally invertible at E. In the half-spacewise case at 
hand, this condition simply requires 

det[(1 - 2)$ _(E) + 2~+(E)] > 0, V2e [0, 11 V E e J  => 3S-1 (3.20) 

Now, due to continuity, 5_ and 5+ differ by a rank-one tensor, in general 
non-symmetric in this case, 

S + (E) - S_ (E) = s(E)M ® N. (3.21) 

But 

det[(1-2)5_ +25+]  = det[$_ +2sM ® N] = det 5_[1 +2sN :(521M)] 

/> min{det 5_, det 5+}. [] 

REMARK. Proposition 3.4 is applicable to the polyhedral conewise linear case 
(cf. §4.5-4.6), provided a tensor T can be exhibited such that any convex 
combination of this tensor with each elasticity tensor has a positive deter- 
minant. 

In summary, a continuous piecewise monotone stress-strain law is mono- 
tone. 

Once the stress-strain law is invertible, the complementary energy density is 
still given by the Legendre transformation (2.9) and its gradient by (2.10). 

In stress space, the interface J *  is given by the composite function 

J * : =  { S e ~ l h ( S )  = 0}, h(S) = g[E_(S)] or g[E+(S)], heCg'(5 a, ~).  

(3.22) 

The inverse relationships of (3.5), (3.6) and (3.7) take the forms 

~'W-*(S) if h(S) ~<0,  W*~Cg2(6e,~) 
W*(S) := (W*(S) if h(S) /> 0, W*~Cg2(6 f, ~ ) '  

E(S) = VsW*(S ) = ~E_(S) = VsW*(S) if h(S) ~< 0 
(E+(S) VsW*(S) if h(S) 1> 0; 

W*~Cgl(Se, ~); (3.23) 

(3.24) 

= ~'[F_(S) = V2W_*(S) if h(S) < 0 (3.25) 
IF(S) = S-~(S) [[F+(S) Vzw*(S) if h(S) > 0" 

The continuity conditions for the inverse relationships are similar to (3.11)- 
(3.13), with VEg(E ) replaced by Vsh(S ) and s(E) by 

e(S) = -s(E)/[1 + s(E)Vsh(S ) :VEg(E)]. 
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3.2.3. Half-spacewise positiveness 
Finally a more convenient test for convexity and monotony is available in 
terms of the elasticity tensors. 

COROLLARY 3.3. A set of sufficient conditions for the convexity of W or 
monotony of S is 

(H - E): $ _ ( E ) ( H  - E) > 0, VE, H ~ 8 ,  H # E, 

(H - E): 5 + (E)(H - E) > 0, V E, H ~ 8 ,  H # E ,  

~+ (E) - S_ (E) = s(E)N ® N, VEIN:E = 0. 

(3.26) 

(3.27) 

(3.18)' 

Proof. Obvious from Proposition 3.3 and the equivalences (2.6a)<:~ (2.6b)¢:- 
(2.7) ~= (2.8) for W+, W_ ~ ~2(8, ~). [] 

If 5_  is taken for reference and 5+ regarded as a byproduct, then (3.27) can 
be replaced by 

(H - E ) : $ _ ( E ) ( H  - E) 
s(E) > - ((H - E):N) 2 , VE, H ~ tf, H # E. (3.28) 

3.3. Material symmetries 

In the piecewise smooth case, it is important to distinguish between piecewise 
and wholewise symmetries. For instance, a compression-isotropic-tension- 
orthotropic piecewise smooth material is conceivable and should not be 
mistaken for an isotropic or orthotropic piecewise smooth material. In this 
article, only wholewise symmetries are considered. 

3.3.1. Representations 
With this provision in mind, for W-S-$ defined in (3.5), (3.6) and (3.7) to be 
compatible with the material symmetries, conditions (2.12), (2.13) and (2.14) 
must be satisfied. This will in particular be the case if, in addition to the 
restrictions W_ and IV+ defining W, the function g defining the interface is 
invariant under (¢, 

g(QEQ r) = 9(E), VE~8, VQeC~. (3.29) 

Therefore, W (and thus S-5) will remain invariant if g, W_ and IV+ (and thus 
S_,S+, 5_,  5+) have representations analogous to the smooth ones (2.15), 



22 A. Curnier et al. 

(2.16) and (2.17), i.e. 

g(E) = )'(IF); (3.30) 

fto_(IF) if )'(IF) ~< 0 
W(E) = A / F ) : =  ~l.to+(iF) if )'(IF)/> 0'  COec~,(jt,~); (3.31) 

S(E) = CO, G,, G~:= VEIl(E), (i = 1,p), (3.32) 

ato ~to_t(IF) = ato_/al~ if )'(IF) ~< 0 
to,:= . ~  (IF) = [CO+t(lz ) oog+/al t if )'(IF)/> o; (3.33) 

5 (E)=COqGt®Gj+to iVzGt ,  VEG,=V2It(E), ( i , j = l , p ) ,  (3.34) 

{to_~j(IF) = t~2Oj_/~lidlj if ?(IE) < 0 
too = c°~t:= i to+tj(IF ) d2CO+/Olidlj if ),(IF) > 0; (3.35) 

where IE, Gt = Vzlt, Gi ® Gi and VEG t are specified in Table 1 for isotropic, 
transversely isotropic and orthotropic materials. The generators are the same 
in the tension and compression subdomains because the material is assumed 
to have the same symmetries in tension and compression. 

3.3.2. Continuity conditions 
Since the generators G t are independent, the continuity conditions (3.11) for 
the elastic energy function, (3.12) for the stress-strain law and the jump 
condition (3.13) for the elasticity tensor take the special forms 

to(IE) = CO_(IF) = CO+(I~), VIEI)'(Iz) = 0, (3.36) 

to,(IF) = CO-t(IF) = CO+,(IF), (i = 1,p), ¥IEI)'(IF) = 0, (3.37) 

~totj(IF)~ = to+t~(IF) -- to_O(IF) = tr(IF))',(IF))'j(lz), (i,j = 1,p), (3.38) 

6)' 
a(IF) := s(E); )'t := ~ (IF), VI E I)'(IF) = 0. 

Again, the first two continuity conditions are easy to interpret. The third 
discontinuity condition expresses that only the bulk part 5(E) = tooGt ® Gj of 
the elasticity tensor can suffer a jump across the interface; the shear part 
~'(E) = totVE Gt remains continuous. The link between the three conditions can 
be specified as follows. 

PROPOSITION 3.5. The energy function to defined in (3.31) is continuously 
differentiable on 8, or (equivalently), the stress-strain law S = totGi given by 
(3.32) and (3.33) is continuous on ~ i f  and only i f  the first derivatives tot = t~to/tgIi 
are continuous at the strain invariant origin I o = le(0) and the jump condition 
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(3.38) on the second derivatives ~o +~ i and ~o_~j holds on J .  
Proof. The first part of the proposition (the equivalence) is a direct corollary 

of Proposition 3.1. Its proof is straightforward, upon observing that the 
generators G~ in (3.32) are linearly independent and continuous in E. Thus, only 
(3.38) is proved. On the one hand, observing that the interface gradient is given 
by 

d? 
Vg(E) = ~ (IE)VEI,(E) = y,(IE)G,(E), (3.39) 

the jump (3.13) in the elasticity tensor simplifies into 

[[5(E)~ = s(E)[T,(IE)yj(Iv)]G,(E ) ® Gj(E), (i, j = 1, p), ¥EIg(E) = 0. (3.40) 

On the other hand, a direct calculation based on (3.34) and the continuity 
condition (3.37) yields 

~(E)~ = [to+ O(IE) -- (.o_ij(lE)]Gi(E) ® Gj(E), (i, j = 1, p), VEI g(E) = 0. 

(3.41) 

Comparison of (3.40) and (3.41) establishes the jump condition (3.38), since the 
G~ and thus the G i ® Gj are linearly independent. [] 

4. Conewise linear elasticity 

In the hypothesis of small strains, it makes sense to specialize the previous 
piecewise smooth formulation into a piecewise linear one. 

4.1. Half-spacew&e linear elasticity 

A piecewise linear stress-strain law S(E) deriving from a piecewise quadratic 
potential W(E) and involving a piecewise constant elasticity tensor 5(E) can be 
defined on two subdomains ~'_ and ~+ by two quadratic restrictions 

W_=½E:S_E and W+=½E:~+E,  

together with their linear gradients S_(E) = 5_E and S+(E) = 5+E and their 
constant Hessians 5_ and S+. Note that (3.8) and (3.9) are automatically 
satisfied. 

At this stage, the pieces ¢_ and 8+ defined in (3.1) can again be taken of 
arbitrary shape. However, this freedom ceases as soon as continuous differen- 
tiability of W~c¢1($ ', ~') is enforced. Indeed, if the continuity condition (3.12) 
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E,, W ( E )  = cons t .  

[ 

j J  

g ( E )  = tr E = 0 

Fig. 7. Unique partition of strain space ~f into a compression hall-space ~_ and a tension 
half-space 8+ and typical equipotential ellipses for a piecewise linear law in 2D principal strain 
plane. 

is requested, its Corollary (3.13) imposes 

~S~ = S+ - S_  = s(E)Vg(E) @ Vg(E), VE 10(E) = 0. (4.1) 

Since $_  and 5+ are constant, the interface normal must also be constant as 
well as the jump coefficient, 

Vo(E) = N, s(E) = s. (4.2) 

It follows that 9 must be an affine function and in fact a linear one since 
g(0) = 0. Therefore, the interface J is a hyperplane characterized by its unit 
normal N and the two pieces g_ and g+ are two half-spaces as defined in (3.3) 
and illustrated in Fig. 7. Hence, continuity of a piecewise linear law across the 
interface imposes the same planarity restriction on the interface shape than the 
convexity of the potential restrictions W_ and IV+. 

E 

8 
C 

E + 

E 

Fig. 8. (a) Piecewise quadratic potential, (b) piecewise linear stress-strain law, (c) piecewise 
constant elasticity modulus, for a non-smooth elastic material in one dimension. 
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In summary, a piecewise linear continuous elastic law, limited to two pieces 
(one for tension and one for compression) is necessarily a half-spacewise linear 
law deriving from a half-spacewise quadratic potential and involing a half- 
spacewise constant elasticity tensor (Fig. 8): 

W(E) = ½E: $(E)E = ~'W_(E) = ½E: 5 _ E  if N:  E ~< 0 
( W + ( E ) = ½ E : 5 + E  if N : E ~ > 0 ;  

S(E) = $ (E)E  = VEW(E) = ~'S_(E) = 5 _ E  if N : E  ~< 0 
[S+(E) 5 + E  if N ' E  >i0 '  

(4.3) 

(4.4) 

5 (E) :=  f~5- i f N : E < 0  5 + - 5 _ = s N ® N .  (4.5) 
5+ i f N : E > 0 '  ( 

REMARKS.  (i) Equivalent expressions of the law can be obtained in terms of 
5_ or 5+ and s (instead of 5 _  and 5+)  by using the jump condition and the 
point to set distance function 

d,(x) = dist(x, c~):= min (IlY - xll); I-d.a+(x) = m a x ( - x ,  0) in 1D1; 
yE~ 

s s d2 ~- (N : E), W(E) = ½E:5_E + ~ d2+(N:E) = ½ E : S + E -  

S(E) = 5 _ E  + sd~t÷(N :E)N = 5 + E  - sdat_(N : E)N. 

(ii) The generalized Hessian reduces on the hyperplane interface, i.e. VE ~ J ,  
to 

dES(E) = {5 = 25_  + (1 - 2)5+ = 5 _  + (1 - 2 ) sN@ N 

= 5+ - 2sN @ N, V2~ ro, 11}. 

The hyperelasticity condition (3.16) or (3.17) holds with constant 5+ or 5_ .  

4.2. Convexity-monotony criterion and inverse law 

It follows from Corollary 3.1 that the convexity of W and monotony of S are 
ensured by the positive definiteness of both elasticity tensors, i.e. V H ~ ,  
H # 0 ,  H : N # 0  

H : 5 _ H  
H : 5 _ H > 0  and H : 5 + H > 0  or s>-'H:"~'------Y'tI"~) (4.6) 
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In stress space, the interface J *  is given by 

h ( S ) = M : S = 0 ,  M : = E _ N  or ~:+N. (4.7) 

The complementary energy, inverse law and compliance tensor are given by 

W*(S) = ½S: IF(S)S, (4.8) 

E(S) = ~:(S)S, (4.9) 

~ - l ( S ) = { n : -  i f M : S < 0  
~:(S) IF+ i f M : S > 0 '  n : + - ~ : _ = e M ® M ;  (4.10) 

where 

e = - s / ( 1  + sM:N).  (4.11) 

4.3. Orthotropic half-spacewise linear elasticity 

The interface function g being linear, its invariant form ~, must be a linear 
combination of the linear invariants Io = tr A°E and its constant gradient V~g, 
the hyperplane normal, must be a linear combination of the corresponding 
texture tensors Ao: 

g(E) = Y(IE) = yatrA, E = tr[(YoA~)E] = N : E  = 0, (a = 1, d), (4.12) 

N = VEg = ~-~-~ V~I° = yaA,, (IINII = 1 ~  ~,~/~,T~ = I). (4.13) 

Similarly, the half-spacewise quadratic energy function (4.3), linear stress- 
strain law (4.4) and constant elasticity tensor (4.5) take, in analogy with (2.25), 
(2.26) and (2.27), the following forms: 

W(E) = 2°bIN:El tr(A°E)tr(AbE ) +/Jatr(AaE2), (a, b = 1,d), (4.14) 
2 

S(E) = 2ob[N:E ] tr(A,E)A b +/zo(A~E + EA~), (4.15) 

S(E) = 2ob[N:E]A a ® A b q- pa[Ao • I + I ~ A~], (4.16) 

f2-~b i f N : E < 0  
2ob[N:E] 2b°: = [./~+ab if N : E  > 0'  2+ab--2-ab = ayoyb, N = yoAo. 

(4.17) 

Therefore the anisotropic half-spacewise smooth relationships (4.14), (4.15) 
and (4.16) differ from the smooth ones (2.25), (2.26) and (2.27) only by 
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half-spacewise constant "bulk'functions 2ab[N: E] defined in (4.17), instead of 
the usual constants 2,b. The shear coefficients li~ are the same in tension and 
compression. 

Solving Eq. (4.17b) for the unit normal direction cosines ~a (with ~ = 1) 
leads to the compatibility conditions 

~=x/(2+a,-2_aa) /a ,  a=A+bb--2_bb, ( a , b = l , d ; s u m o n b ) ,  (4.18) 

2 +ab - 2_~b = ~/(2 +,a - 2_ a~X2 + bb -- 2_ bb), (a, b = 1, d; no sum). (4.19) 

This proves the following fact. 

PROPOSITION 4.1. For an orthotropic half-spacewise linear stress-strain law, 
the orientation of the hyperplane interface is determined by the jumps [2aa ~ in the 
diagonal "bulk" constants as defined in (4.18), which must be consistent with the 
off-diagonal ones ~2~b ~ (a ~ b) as specified in (4.19). 

It follows that the half-spacewise relationships (4.14), (4.15) and (4.16) involve 
[(d + 5)d/2] constants: [(d + 1)d/2] "2_" + (d) "[[2~" + (d) "li". 

The inverse relationships are given by (2.28)-(2.31), provided the constant 
elastic moduli e~ and contraction ratios rob are replaced by half-spacewise 
constant functions 

~a[M:S] := {~_a if M : S < 0  e+a i f M : S > 0 '  vab[M:S]:= v_~ i f M : S < 0  iv+, b if M:S > 0 ;  (4.20) 

where M := ~:_N or IF+N. Symmetries of the bulk Lam6 constants 2ab require 

•-ab = V-ba V+a b = V+b. (4.21) 
~-a I~-b ' g'+a g'+b 

The shear Lam6 constants lia being the same in tension and compression due 
to continuity, the following restrictions must hold 

1 "~ "9+b b 1 2 l + v _ a ,  l+V_bb l+V+a . +  (a,b 1, d). 
Gab lia q- lib ~-a ~-b  I~+a e+b 

(4.22) 

These constraints keep the number of independent constants down to 
[(d + 5)d/2]. 
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The isotropic case is studied in more details in the next paragraph. 

4.4. Isotropic half-spacewise linear elasticity 

In the isotropic case, Eqs. (4.14)-(4.17) explicitly reduce to (Fig. 9) 

W(E) := ½2[tr E] tr2(E) +/~ tr(E2), (4.23) 

S(E) = 2[tr E](tr E)I + 2/rE, (4.24) 

5(E) = 2[tr E]I ® I + 2/tI ~ I, (4.25) 

2_ i f t r E < 0  
2[ t rE] :=  2+ i f t r E > 0 '  (4.26) 

which involve 3 constants: 2_, 2+ and/~. Equation (4.24) shows that the bulk 
(or volumic) part of the stress-strain relationship becomes half-spacewise 
linear whereas the shear (or deviatoric) part remains linear. Equation (4.26) 
shows that the interface J is the hyperplane defined by the trace normal N = I 
or by the trace invariant I t = tr E = 0. The hyperplane normal is a common 
eigentensor of $ + and 5_ since they commute (see Appendix C) 

=~ ~S+I = (32+ + 2/~)I 
$÷5_  = 5_5+  ( 5 _ I  = (32_ + 2p)I" (4.27) 

Characterizing the tension-compression dissymmetry by means of the sign of 
I~ was already proposed in Shapiro (1966), but his argument was quite 
different. 

E÷ 

E2 
! 

W ( E )  = const. 

E 1 

g(E)  = tr E = 0 

Fig. 9. Unique partition of strain space d" into a compression half-space ~_ and a tension 
half-space 8+ and typical equipotential ellipses for a piecewise linear isotropic law in 2D principal 
strain plane. 
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The inverse relationships are in accordance with (2.28), (2.29) and (2.30): 

1 + v[trS] v[tr S] tr2(S) -~ tr(S2) ' (4.28) 
W*(S) = 2e[tr S] 2e[tr S] 

v[tr S] (tr S)I + 1 + v[tr S] ,, 
E(S)= e[tr S------j ~-[t-~ ~' (4.29) 

_ _  1 + v[tr S] E(S) = v[tr S] I ® I -~ I ~ I, (4.30) 
e[tr S] e[tr S] - 

{~_ i f t r S < 0  e[tr S] := 0' v[tr S] := "Iv- if tr S < 0 (4.31) 
~+ i f t r S >  v+ i f t r S > 0 "  

Continuity of the shear Lam6 constant requires 

5 _  = e +  . ( 4 . 3 2 )  
2/~= 1 +v_  l + v +  

The constraint (4.32) maintains the number of independent constants down to 
3. The bulk Lam6 constants are deduced from the familiar formulas 

v_ 2+ = 2# v+ (4.33) 
2_ = 2/~ 1 - 2v_' 1 - 2v------~" 

Substituting (4.32) in (4.28), (4.29) and (4.30) shows that the shear part of the 
strain-stress law remains continuous. For instance (4.29) can be rewritten as 

E(S) = - v[tr S] 1 
t[tr S--------~ (tr S)I + ~ S. 

Usually, the constants which are measured in experiments are e_, 5+, v_ and 
v+ rather than 2_, 2+ and/~. A violation of the continuity condition (4.32) by 
measurements would mean that the present model is inappropriate. In particu- 
lar, the hypothesis that the material is isotropic in compression and in tension 
should be reexamined. 

4.5. Conewise linear elasticity 

More complicated subdivisions of 8 can be obtained by using several hyper- 
planes. The correct generalization of the two above half-spaces are then 
polyhedral convex cones, i.e. pyramids centered at the origin (Fig. lOa). This 
assertion can be supported from two different perspectives: closedness of the 
pieces under positive linear combinations and continuity across the interfaces 
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as in Section 3.1.3. A polyhedral convex cone is defined by a system of linear 
inequalities, 

K := {E e ~f I AE ~< 0}. (4.34) 

Its neflative and polar (Fig. 10b) are also polyhedral convex cones defined by 

- K : =  { E E S I - - E ~ K } ,  

K° :=  {HE~fIH:E ~< 0, VE~K} = {H = / ~ r G l G  >f 0}. 

They are sometimes useful for simplifying the subdivision definition. 

Fig. 10. (a) Polyhedral convex cone, (b) convex cone and its polar in .~2. 

For instance a simple possibility is studied in Section 4.6. Note however that 
the interface function #(E) = / ~ E  must respect the material symmetries which 
rules out certain combinations. An isotropic material, for example, is neces- 
sarily limited to two pieces: the two half-spaces already studied. 

4.6. Orthotropic octantwise linear elasticity 

For an orthotropic material, a subdivision of the strain space into eioht octants 
delimited by the three orthogonal hyperplanes normal to the three texture 
tensors A a = aa ® a, (a = 1, 3) is natural: 

J = { E ~ f  191(E) = A 1 :E = 0 or 92(E) = A2:E = 0 or 93(E) = A3:E = 0}, 

= {E E g I(A~ : EXA 2 : E)(A3 : E) = 0} 

go = { E ~ g i A  l :E  ~< 0, A2:E ~< 0, A3:E ~< 0}, 

~1 = { E ~ S I A t :  E >/0, A2:E ~< 0, A3:E ~< 0}, 

g2_ = { E ~ , I A I :  E <~ 0, A2:E/> 0, A3:E <~0}', 

83 = { E ~ 8 1 A I : E  ~<0, A2:E <~ 0, A3:E >~0}, 

(4.36a) 

go = _~fo = ~fo o, (4.36b) 

g+~ = --g~ = gL °, (4.36c) 

g2+ = _g2_ = g2_ o, (4.36d) 

g3 = _g3_ = #3_ o. (4.36e) 
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The strain origin is a singular point in this case. 
The energy function, stress-strain law and elasticity tensor are defined by 

means of eight constant elasticity tensors as 

W(E) = ½E: 5(E)E, (4.37) 

S(E) = 5(E)E, (4.38) 

5(E) := 5~ if E ~ g~, (i = 0, 3; X = ( - ,  + }). (4.39) 

A set of seven necessary and sufficient conditions for the stress-strain law to 
be continuous across the interface (4.36a) is 

5L = 5 ° + s~A~®A a, 

5~_ = 5 ° - s~ Aa ® A~, 

5 ° = 5  ° +s~A a®Aa,  

(a = 1, 3; no sum), ; (4.40a) 

(a = 1, 3; no sum), (4.40b) 

(a = 1, 3; sum). (4.40c) 

These conditions are direct extensions of the single interface condition (4.5b). 
They show that an orthotropic octantwise linear stress-strain law involves 
twelve independent constants: 9 for 5 ° and 3 s~. There are only three jump 
magnitudes sa (a = 1, 3) because there are just three hyperplanes A~: E = 0. 

Enforcing orthotropy, the octantwise quadratic energy function (4.37), linear 
stress-strain law (4.38) and constant elasticity tensor (4.39) take the forms 
(4.14) to (4.16), respectively, with d = 3 and 

2~b[N:E] = 2~b[E] := 2~s if E~g~ ,  (i = 0,3; E = { - ,  +}). (4.41) 

Therefore the model is defined by six octantwise constant "bulk" functions 
2abl-E ] and three usual "shear" constants/G. The continuity conditions (4.46) 
become, in analogy with (4.17b), 

2¢-ab = 2Oab + acfacJbc, (a, b, c = 1, 3; no sum), 

2~+,b = 20~b -- ac6~fb~, (a, b, c = 1, 3; no sum), 

20ab = 20~b + traf,b, (a, b = 1, 3; no sum). 

(4.42a) 

(4.42b) 

(4.42c) 

These conditions show that only the diagonal bulk constants suffer a jump across 
the interface. The off-diagonal bulk constants (and the shear constants) are the 
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same over the eight octants. Hence, an octantwise linear orthotropic model can 
be effectively expressed as follows. For (a, b = 1, 3; b ~a). 

2oo[Ao :E l 
W(E) = tr2(A,E) + :-~ tr(AbE ) tr(AbE ) +/~o tr(A,E2), 

2 
(4.43) 

S(E) = 2, ,[A,:E] tr(A,E)A, + 2ob tr(AoE)A b +/ t , (A,E + EAa) , (4.44) 

S(E) = 2, ,[A,:EIA, ® A, + 2obAo ® A b + p,[A, ~_ I + I ~ A.], (4.45) 

2~ [A,: El := 2~(,~,, Y(a) := sign(A,: E). (4.46) 

It involves only 12 constants: 6 "2_" + 3 "a" + 3 "/~". 
The inverse relationships are still given by (2.28)-(2.31), provided the 

constant elastic moduli 2, and contraction ratios V,b are replaced by the 
octantwise constant functions 

galA'S] :---/~:(a)a, Vab[Aa:SI := V~(,)ob, X(a) := sign(A,:S), 

Symmetry of the bulk Lam6 constants requires 

(a, b = 1, 3). 

(4.47) 

VZ(,~b = Vzt')b", (a, b = 1, 3). (4.48) 
8~(a)a 8F.(a)b 

Continuity of the shear Lam6 constants requires 

1 2 1 + v~(,),~ 1 "q- •'f(aJbb 
. . . .  -t , (a, b = 1, 3). (4.49) 
Gab Pa "~ ['~b F'~.(a)a I~'r(a)b 

Since Ambartsumyan's initiating work in 1969, several orthotropic models 
have been developed for predicting the elastic behavior of fibrous composite 
materials with different elastic moduli in tension and compression [Tabaddor 
(1969); Bert (1977); Jones (1977) and Vijayakumar and Rao (1987)l. However 
these models were not formulated in invariant form like here. 

4. 7. Principle of  similarity for  small displacement conewise linear elasticity 

To close this section, a fundamental property of conewise linear materials is 
stated together with its consequence on the solutions of boundary value 
problems in conewise linear elasticity. 
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4. 7.1. Positive homogeneity 
The stress-strain law (4.4) is neither additive nor homogeneous. It is only 
half-spacewise so. However it remains wholewise positively homogeneous of 
degree one. Accordingly, the energy function and the elasticity tensor are 
positively homogeneous functions of degrees two and zero, respectively 

W(2E) = •2 W(E), V2 f> 0; (4.50) 

S(2E) = 2S(E), V2 i> 0; (4.51) 

.~(2E) = 5(E), V2/> 0. (4.52) 

This comes from the fact that a half-space in particular and a convex cone in 
general are closed under positive multiplication. Positive homogeneity is a 
basic characteristic of conewise linear elastic stress-strain laws and has an 
important consequence on the solution of the corresponding boundary value 
problems. 

4. 7.2. Boundary value problem 
Using a standard notation and assuming small displacements Ilull << 1 (and 
thus small strains IIEII << 1), the boundary value problem can be stated as 
follows: 

Data f ~ R  3, 0 ~ =  r ,  u r p ,  f(x), ii(x), ~(x). 

Find u(x) such that: 

Div S[Vu(x)] + f(x) = 0, Vx E ~; 

S[Vu] = S[E], E(Vu) = ~(Vu + Vur); 

u(x) = ~(x), Vu~r~; S(x)n(x) = ~(x), VxE rp. 

(4.53a) 

(4.53b) 

(4.530 

4. 7.3. Principle of  similarity 
In the small displacement case, positive homogeneity is the root of a weakened 
form of the classical principle of superposition in linear elasticity, which can be 
called and stated as follows. 

PRINCIPLE OF SIMILARITY. I f  u(x) is the (unique) small displacement 
solution to a conewise linear elastic problem with external body force f(x), 
boundary conditions fi(x) on Off u and g(x) on Ot~p, then 2u(x) is the homothetic 
(similar) solution to the homothetic problem with body force 2f(x), boundary 
conditions 2fi(x) and 2~(x), for any positive scalar 2. 
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Proof. It is straightforward upon substituting property (4.51) into the 
governing equilibrium equation (4.53a) and invoking uniqueness of the sol- 
ution in the small displacement case. [] 

5. Conclusions 

In this study, conewise linear materials have been found out to be the proper 
generalization to two and three dimensions of one-dimensional bimodular 
materials. Continuity of the stress-strain law has turned out to be the key 
property for globalizing a piecewise property. Schematically, 

piecewise property + continuity = (wholewise) property. 

Indeed, it has been successively shown that 

(1) a continuous piecewise hyperelastic stress-strain law is hyperelastic; 
(2) a continuous piecewise monotone stress-strain law is monotone. 

Another important conclusion is that a twicewise linear law (i.e. a law linear 
over two pieces) is a half-spacewise linear law with a hyperplane interface. If 
moreover the material has the same symmetry in tension and in compression, 
then the hyperplane orientation is uniquely determined by the tension and 
compression bulk constants. In particular, if the material is wholewise isotropic, 
then the tension-compression interface must be the traceless hyperplane with 
the identity as unit normal. 

Finally, positive homoyeneity of the stress-strain law has been identified as 
the most fundamental property of conewise linear materials since it leads to the 
principle of similarity of small displacement solutions to boundary value 
problems of conewise linear elasticity. 

To close with a perspective, note that classical unimodular elastic materials 
which behave similarly in tension and compression are characterized by a very 
smooth elastic energy density w ~ Z ( g ,  ~)  and thus belong to the realm of 
smooth elasticity. Bimodular elastic materials which behave differently in 
tension and compression are characterized by a less smooth density 
We ~l(dr, .~) and can be said to belong to piecewise smooth elasticity. Similarly, 
amodular elastic materials which cavitate in tension and are incompressible in 
compression or are inextensible in tension and oppose no resistance in 
compression are characterized by a continuous density W ~ ~°(8, ~)  and could 
be said to belong to nonsmooth elasticity. Their study could proceed along the 
lines sketched in this article. 
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Appendix A: First and second gradients of symmetric strain tensor invariants 

In Table  1, the invariant  (e.g. 15) and genera tor  (e.g. Gs)  gradients are 

calculated with the help of  the directional derivative and by insisting on the 

symmet ry  of  E as follows. 

6I-I~](E, rE) = VJi(E) : 6E = lim IDa(s)) := li(E + 86E) - li(E)'l/s. 
~0 

Ds(~ ) = trl 'A(E + ~ E )  2] - trl 'AE 2] = tr{Al'E 2 + ~(ErE + gEE) + 6(~2)] - AE 2 } 

= s t r I ' rE(AE + EA)]  + 6(8 2 ) = ~trl'(AE + E A ) r r E  r ]  + 6(~ 2 ) 

= ~ I'A(E + E T) + (E + ET)A]T: 6E + 6(s  2) = ~(AE + EA):  6E + 6(s2). 
2 

V E tr(AE2)(E) = AE + EA. (A.1) 

6[G~I(E, 6E) = V E G~(E)rE = lim l-D~(s) := G~(E + srE)- G ~(E)]/~. 
~"*0 

Ds(e ) = [A(E + ~rE) + (E + ~rE)A] - [AE + EA-] = z(A6E + 6EA) + 6(s 2) 

= ~- ['A(rE + 6E T) + (rE + 6ET)A] + d)(~ 2) 
2 

=-~ [ A r E I  + A r E r I  + I r E A  + I rETA]  + (~(~2) 
2 

=-~ [-A ® I+A ~ l+I ® A + I ~ A']rE + {~(s 2) 
2 -- 

= d-A ~ I + I ~ A-IrE + 6(~2). 

VE(AE+EA ) = A~I+I~A. (A.2) 
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Appendix B: Linear elasticity: explicit representations for usual symmetries 

For an orthotropic material, d = 3 and, using C = I - A - B instead of I in the 
isotropy column of Table 1, the following explicit expressions which involve 9 
constants are obtained: 

W(E) =-~4 tr2(AE) + - ~  tr2(BE) + - ~  tr2(CE) 

+ 2An tr(AE) tr(BE) + 2sc tr(BE) tr(CE) + 2ca tr(CE) tr(AE) 

+/~A tr(AE2) + #a tr( BE2 ) +/~c tr(CE2); (B. 1) 

S(E) = 2a, t tr(AE)A +).Ba tr(BE)B + 2cc tr(CE)C 

+ 2AB[tr(AE)B + tr(BE)A] + 2ac [tr(BE)C + tr(CE)B] 

+ 2CA [tr(CE)A + tr(AE)C] +/~A [AE + EA] 

+/a B [BE + EB] +/~c ICE + EC]; (B.2) 

5=2AAA ® A +).nnB ® B +2ccC ® C 

+ 2An [A ® B+B ® A] + 2nc[B ® C + C  ® B] + 2CA [C ® A+A ® C] 

+ AtA A1 I+I  B1+ AtC _ I+I q.  (B.3) 

For a transotropic (i.e. transverse isotropic) material, d = 2 and the formulas 
involve 5 constants 

W(E) = ~ tr2(E) + tr2(AE) + 2A tr(E) tr(AE) +/~ tr(E 2) + #A tr(AE2); 

(B.4) 

S(E) = 2 tr(E)I + ).Aa tr(AE)A + 2A [tr(E)A + tr(AE)l] + 2/aE +/~A [AE + EA]; 

(B.5) 

5=).1 ® I+).AaA ® A+2a[A ® 1+1 ® A] +2/d _~ l+#a [A  _~ 1+1 _~ A]. 

(B.6) 

For an isotropic material, d = 1 and formulas (2.19) to (2.24) further simplify into 

2 
W(E) = ~ tr2(E) +/~ tr(E2), 

S(E) = 2 tr(E)I + 2/~E, 

5 = 21@1+ 2pI__~I, 

- v  l + v  
W*(S) = ~ tr2(S) + ~ tr(S2); (B.7) 

- v  l + v  
E(S) = tr(S)I + S; (B.8) 

_ _  l + v  IF = - v  I ® I  + - -  I ~ I .  (B.9) 
/~ /~ - 
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where 2 and/z are the 2 Lam6 constants, e is Young's modulus and v Poisson's 

ratio. 

REMARKS. (i) In (B.9), the elasticity tensor can also be written as 

5 = x [I ® I] + 2p[I ~ I - ½I ® I], x = (34 + 2#)/3; 

where x is the bulk modulus. 
(ii) If (full rank) convexity is relaxed into rank-one convexity and, equival- 

ently, positive definiteness into ellipticity, i.e. if H - E is replaced by h ® e in 
(2.6), (2.7) and (2.8), then the requirement 34 + 2/~ > 0 relaxes into 2 + 2/t > 0. 

Appendix C: Half-spacewise linear elasticity: commutative symmetries 

It can be shown that, for isotropic, transotropic and orthotropic materials, the 
two elasticity tensors commute if and only if the bulk coefficient matrices 
A+ = [ 2 + j  and A_ = [ 2 _ j  commute: 

5 + 5 _  = 5 _ 5 +  =~A+A_ = A_A+ =~'2+ac2_cb = 2_ac2+c b. (C.1) 

In this case, 5+ and 5_ have the same eigentensors. Moreover the following 

holds. 

LEMMA. I fS+ and 5_  commute and if they differ by a rank one tensor N ® N, 
then N is a common eigentensor of 5 + and 5_.  

Proof Assume that 5 + and 5_  satisfy the jump condition (4.5) and that they 

commute 

S+ - 5_  = sN ® N, (C.2) 

5 + 5 _  = 5_S+.  (C.3) 

The jump condition (C.2) and the commutativity condition (C.3) yield 

5 + N  ® N = N ® NS+,  (C.4) 

5 _ N  ® N = N ® NS+.  (C.5) 

This implies in turn that 

$ + N  = (N: 5+N)N, (C.6) 

5 _ N  = (N:5_N)N.  (C.7) 

It follows that N is an eigentensor of both 5+ and 5_.  
Due to their symmetry, the 5 other eigentensors are orthogonal to N and 

therefore they span the interface hyperplane N : E  = 0. 


