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Abstract. By making use of a convenient decomposition of the fundamental tractions, a new 
formula for the C-matrix in the Somigliana identity for a three- or two-dimensional elastic 
isotropic body is derived. This kind of formula is more advantageous for analytical and 
computational C-matrix evaluations than the currently well-known formula. A general closed 
analytical formula of the C-matrix for the case of any finite number of tangent planes to the 
boundary of the body at a non-smooth boundary point, presented in the final section of this paper, 
demonstrates the usefulness of the new formula. 

AMS(MOS) subject classification: 73C02, 73V10, 35E05, 45F15. 

I. Introduction 

One of the interesting classical approaches to deal with boundary value 
problems of elasticity is to solve the corresponding boundary integral equation 
(BIE) that represents a boundary limiting form of the Somigliana identity. The 
boundary element method (BEM), as an effective computational method for 
the solution of the BIE, is responsible for a somewhat renewed interest in this 
classical approach (cf. [1], [3]). 

Usually the boundary limiting form of the Somigliana identity, apart from 
other terms, includes, on the one hand an integral in the sense of Cauchy 
principal value (CPV) with the fundamental tractions as a strongly singular 
integral kernel, and on the other hand a free-term with the coefficient C-matrix 
depending on the local characteristic surface (or arc) of the boundary point 
with respect to the domain. The Somigliana identity for domains with 
piecewise smooth boundaries (forming edges and vertices) was proved by 
Hartmann [.8]. The closed formula for the C-matrix in the case of plane 
elastostatics was given by Ricardella earlier in [10]. The components of the 
C-matrix in this formula are simple functions of radius vector components of 
the end-points of the corresponding characteristic arc. The formula for the 
C-matrix in the case of three-dimensional elastostatics derived in [7], [-8] 
includes integrals of simple combinations of trigonometric functions over the 
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corresponding characteristic surface. Therefore, it is much more cumbersome 
to evaluate the C-matrix for three- than for two-dimensional elastostatics. It is, 
however, a common practice in BEM implementations to evaluate the sum of 
the corresponding C-matrix and the CPV integrals in an indirect manner using 
the rigid-body motions (e.g. [3]). 

Another approach based on subtraction of Somigliana's integral, with the 
fundamental tractions multiplied by the rigid-body displacements as integrand, 
from the Somigliana identity, leads to a regularized boundary limiting form of 
this identity free of CPV integrals and free of the C-matrix (e.g. [1] §2.3). The 
resulting BEM implementation, however, is in many respects similar to the 
more usual approach mentioned above. 

There are two obvious reasons why programmers prefer BEM implementa- 
tions circumventing direct evaluation of CPV integrals and the C-matrix. The 
first is the lack of general effective and accurate algorithms to compute CPV 
integrals on non-smooth curves and surfaces. Second, an implementation of the 
general procedure to evaluate the C-matrix in three-dimensional elastostatics 
using the formula presented in [7], [8], would be very involved. 

An accurate and simple algorithm for direct numerical evaluation of CPV 
integrals on curves in the BEM framework was first proposed in [5]. Recently 
a non-trivial extension of this algorithm in the case of CPV integrals on 
surfaces was presented in [6]; and somewhat later, independently by the 
present author (see [9]). 

Therefore, it is desirable to find a new formula suitable for direct evaluation 
of the C-matrix in the case of three-dimensional elastostatics. The main 
purpose of this paper is to derive that kind of formula. For completeness' sake 
the same procedure is carried out for plane elastostatics too, but the resultant 
formula is only a simpler representation of the well-known formula. 

In considering the same asymptotic behaviour of singular terms of the 
fundamental solutions in elastostatics and elastodynamics (e.g. [11], [1] §3.5), 
it is worth noting that these formulae are directly applicable to the time- 
harmonic elastodynamic problem, as well. 

The next introductory section collects the necessary definitions and known 
results. For brevity's sake references [7] and [8"] are heavily relied upon. The 
following section presents fundamental tractions of matrix decomposition into 
the sum of the normal derivative of the fundamental solution of the Laplace 
equation multiplied by the identity matrix and a term allowing the application 
of Stokes' theorem to transform corresponding integrals over characteristic 
surfaces (or arcs) to integrals over its boundary. The corresponding decompo- 
sition for the three-dimensional case has been introduced in [4]. The main 
results of this paper-sought C-matrix formulae-are derived in the fourth 
section. Finally, the analytical closed formula of the C-matrix for a non-smooth 
boundary point, with any number of tangent planes, is given. Until now, to the 
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author's knowledge, only the closed analytical C-matrix formula for the case 
of at most two tangent planes has been published (e.g. [1], [-6]). 

2. The Somigliana identity and related concepts 

Suppose we have a regular region B c R", m = 3 (or m = 2) as defined in [8], 
which is occupied by a homogeneous linear elastic and isotropic material. Let 
x be an arbitrary but hereinafter fixed point on the piecewise smooth boundary 
S of the body B. The surface (contour) S is oriented by the field of the unit 
outward normal vectors n(y), y ~ S. 

Consider the unit sphere (circle) Kl(x) centred at xeS.  The set of all 
half-tangents to boundary S at point x cuts out from Kt(x) a connected 
characteristic sulface f~(x) (characteristic arc ~o(x)) of the boundary point x 
relative to B, see [8]. The orientation of the characteristic surface (arc) is 
defined by the unit normal vectors n(y), y e~(x) (yse0(x)) pointing to the 
centre x. As usual, in the two-dimensional case, we can express the unit normal 
vector n(y) to vJ(x) by components of the unit tangent vector t(y) to co(x) as 

n(y) = (t2(y), -tl(y)),  y~o(x).  (2.1) 

We denote 7(x) as the boundary of the characteristic sulface (arc). 
In the three-dimensional case, the closed contour 7(x) is coherently oriented 

with f~(x) by unit tangential vectors tr(y), yeT(x) (Fig. 1). The unit outward 
normal vector nr(y), to the contour 7(x) in the smface f~(x), is determined by the 
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Fig. 1. The characteristic surface configuration at a non-smooth boundary point. 
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following vector product: 

nr(y) =tr(y)  x n(y) ysT(x). (2.2) 

The integral 

fn  ds r (2.3) O(x) = ix/ 
1 

represents the internal solid anole of the boundary point x relative to B. 
The boundary 7(x) for the two-dimensional case is formed by two end-points 

v I and v 2 of the open arc o9(x) (Fig. 2). We define unit outward normal vectors 
to the boundary 7(x) in the curve o9(x) obviously as 

n~ = -t(vx), n~ = t(v2). (2.4) 

The absolute value of the angle ~b(x) between vectors r 1 = r(vl) = v 1 - x and 
r 2 = r(v2) = v 2 - x, measured through the region B, is the length of the arc 
o~(x). 

We now state the boundary limiting form of the Somioliana identity, as it 
was proved in reference [8]. Let ueC2(B)uCI (B)  be a regular solution of 
Lame's differential equation system, with vector field f of body forces per unit 
volume in B. Application of the traction differential operator r on the 
displacement vector field u gives the corresponding traction vector field T(u) 

t(y) / W(x) / B 
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Fig. 2. The characteristic arc configuration at a non-smooth  boundary point. 
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C(x)u(x) = fs [U(y, x)~(u)(y)-T (y, x)u(y)] dsy+ fB U(y, x)f(y)dry, (2.5) 

where U(y, x) is the symmetric matrix of the well-known Kelvin fundamental 
displacements (e.g. [1], [3]) and the transposed matrix T(y, x) T of the funda- 
mental tractions is given by application of the operator ~ on columns of the 
matrix U(y, x). To be precise, we explicitly describe the elements of the 
fundamental tractions matrix 

T/j(y, x) = 

where 

1 E 4(m - 1)g(1 _ v ) r m _ l  { 1 - 2 v ) 6 i j + m r i r j } ,  ' OnO-rr 

- (1 - 2v)(n f , i -  nir,j)], 
J 

i , j =  1 . . . . .  m, r(y) = y - x ,  

r i Or Or 
r = Irl, r i = - , n i -- ni(y), = rknk, 

' r 0y i ~nn ' 

(2.6) 

6ij is the Kronecker symbol and v is Poisson's ratio. As immediately follows 
from the results presented in [8], the symmetric matrix C(x) can be defined by 
the integral 

(2.7) C(x) = fnlx) T(y, x) dsy resp. C(x) = f,,tx) T(y, x) dsy. 

3. The fundamental tractions decomposition 

Let f (y)  be an arbitrary smooth function defined in a neighbourhood U of 
D(x) or ~o(x) ( f ~  CI(U)). We define an antisymmetric differential operator Dij 
(i, j = 1 . . . . .  m) for y~D(x)  (or y~o)(x)) as follows: 

~ f  ~ f  Dij(f)(y ) = hi(y) ~yj (y) - n j (y )  ~ y / ( y ) .  (3.1) 
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It is apparent  from Stokes' theorem in three-dimensions that  

e, i jkf(y ) dy k = nl(Y)glhkQjk (y) dsy 
'(x) (x) ~Yh 

= I_ D,j(f)(y) ds,,, (3.2) 
(x) 

where eij k is the Levi-Civita unit antisymmetric tensor. According to (2.1), the 

opera tor  Dij in two-dimensions can be expressed as 

c~f 0 f  
Dij(f)(Y) = e'ij3tk(y) ~ (Y) = g'ij3 -~f (Y), yew(x ) .  (3.3) 

Thus, 

= = - f ( v l )  ). (3.4) Dij( f)(Y) ds~, gij3 [ f  ]v21 gij3( f (v 2) 
o(x) 

From now on we shall denote the function hm(r) defined for r > 0 as follows: 

I! , m = 3  

hm(r ) = (3.5) 

By employing nota t ion from (2.6), it is easy to verify that 

1 

Dij(hm(r)) = ~ (nJ r,i -- nir j), 

(rkrj~ 1 Or 
Dig \ r ' / =  ~ ( - 6 i j  + mrirj) - -  

' " On" 

(3.6) 

After some rearrangements  in the right side of (2.6) using relations (3.6), we can 
arrive at the following fundamental tractions decomposition: 

1 Ohm(r) 1 
Tij(y, x) - 2(m - 1)rr 6ij C~l~- + 4(m -- 1)Tr(1 -- v) Dik(PkJ)(Y' X), (3.7) 



where 

r k rj 
Pkj(Y, X )  = (1 - 2V)Dkjh~(r) rm 
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(3.8) 

4. C - M a t r i x  f o r m u l a e  

First, let us examine the three-dimensional case. Apparently the following 
integral over a closed con tour / (x )  vanishes: 

f dy~ = 0. (4.1) 
'Ix) 

Note that in the foregoing integral over ,,(x), we may replace dy~ by dr I. 
Further, for y e f~(x) 

O(h3(r)) 
On - rir-  3ni = 1. (4.2) 

Substituting (3.7) into (2.7), and considering relations (4.2), (2.3), (3.2) and 
(4.1), yields representations of the C-matrix components as follows: 

~b(x) 1 
Ci~(x) : ~'ikl r~ rj dr t 

bij 8~(1 - v) ~,.ix) 

= q~(X) 6i j 1 f riC'~kd'k drt, (4.3) 
4rr 87r(1 - v) .ix) 

where the symmetry of the C-matrix has been employed in the second 
equation. The tensor product of two vectors a and b, denoted by a ® b, 
represents a matrix with the components (a ® b)~j = aib j. Then, the sought 
formula for the C-matrix, convenient for analytical and computational evalu- 
ations, can be written, in matrix notation, as 

~b(x) 1 f: C(x) = r ® (r x dr), (4.4) 
~ -  1 8~(1  --  v) ,(x) 

with I the unit matrix. Making use dr = t~(y) dTy on 7(x), where dT~ denotes 
differential element of length, we get, in view of relations n(y) = - r ( y )  for 
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y ey(x) and (2.2), a most simple formula of  the C-matrix in three-dimensional 

case 

th(x) I 1 f C(x) = r ® n r dTy. (4.5) 
4re 8~(1 - v) J,,ix) 

Notice that the vectors r and n ~' are orthogonal. Consequently, the trace of their 
tensor product vanishes tr(r @ n r) = 0. Hence, 

¢(x) 
tr C(x) = 3 - -  (4.6) 

4~ 

Likewise we shall proceed in two-dimensions. It is clear that for y e to(x) 
h2(r ) = 0 and 

c3(h2(r)) 
On = - r i r -  Zni = 1. (4.7) 

Taking into account (3.4), and symmetry of the C-matrix, we get by substitu- 
tion of (3.7) into (2.7) the following representations: 

Ci j  ( x )  (]) (x) 1 
= ~ 6iJ - 4~z(1 - v) [eik3rkrj]rv~ 

4~(x) 6ij 1 
- 27r 4~z(1 - v) [riejk3rk]W~" (4.8) 

From relation (2.1) and from the fact that n ( y ) = - r ( y )  for y~o2(x), we 
immediately obtain 

tj = ejkar k. (4.9) 

Then the second relation of (4.8) in matrix notation takes the form 

C(x) 4~(x) 1 [r ® t]**~. (4.10) 
= ~ I -  4n(1 - v) 

Using (2.4) we arrive at the resultant formula of  the C-matrix in the two- 

dimensional case analogous to (4.5) 

C(x) ~b(x) 1 ~1 = - ~ - n  I 4re(1 - v ) i =  ri®n~'. (4.11) 
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5. Example 

We shall consider the case of n (n >/2) boundary tangent planes at x s S. The 
characteristic surface f~(x) takes the shape of a spherical polygon, with an 
ordered sequence of vertices vi (i = 1 . . . . .  n) (see Fig. 3). In addition, the 

following vertices are defined Vo = v, and v,+ 1 = v,. An edge of the spherical 
polygon f~(x) between vertices v~ and v~+l, is formed by an arc 7~.~+~ on the 

great circle; which is the intersection of the unit sphere Kl(X ) and a plane n~,i+ 1 
tangent to the boundary S at the point x e S. Thus 

7(X) = 6 ~i,i+l" (5.1) 
i=1 

Making the transition from ¥i to v~+, along the edge 7~,i+ 1, we go in the sense 
of the orientation of the contour 7(x). We indicate n;.;+ 1 as the outward normal 

to the boundary S at the point x defining the plane n~,i+ ,, thus n~.~+l ± ~.i+ 1. 
It is worthwhile to note that for y e 7~.~+1 is 

nr(y) = hi,i+,. (5.2) 

The angle ~i of the spherical polygon ~(x) at the vertex vl is equal to the 

corresponding angle included between two tangent planes gi- 1.i and rci,i + 1 (see 

Fig. 3. Geometry of a three boundary tangent planes case. 
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e.g. [2]). F r o m  simple geometrical  considerations,  we can deduce its following 

representat ion 

ct i = ~ + sgn((ni_ 1.i X hi,i+ 1)' ri) arccos(ni_ 1,i.ni,i+ 1), (5.3) 

where r i = r(vi) and the signum function is defined as follows: sgn(x) = - 1 for 

x < O, sgn(x) = 0 for x = 0 and sgn(x) = 1 for x > O. Let us be reminded of 

one of the basic relations in spherical geomet ry  (e.g. [2]): 

qS(x) = ~ ~i - (n - 2)ft. (5.4) 
i = l  

In consequence of (5.1) and (5.2) we have 

'(x) i= 1 '~.~+ ~ 

To simplify the calculat ion of an integral in the right side of  (5.5) we can 
consider the following coordinate  system with the origin x. It is oriented in 

such a way that  one axis is o r thogona l  to the plane n~,~+ 1 and another  being 

the axis of  symmet ry  of the edge 7~,i+ x. Then  we can derive 

r d7 ,. (ri+l r i) × ni.i+l. (5.6) 
'Li  + I 

Taking  into account  (4.5), (5.3), (5.4), (5.5) and (5.6), we directly get a 

9eneral closed analytical formula for the C-matrix in the case of n boundary 
tangent planes 

C(x) = ~  2~ + sgn((ni 1,i x nl, i+l).rl)  arccos(ni-l.i.ni,i+l) | 
i=1 

1 
( ( r i +  1 - -  rl) x hi.i+ 1 ) Q  ni.i+ 1. (5 .7 )  

8rt(1 - v) i= 1 

In special cases of two or three bounda ry  tangent  planes, this formula  can be 

rewrit ten and simplified by the reader  (cf. [1], [6]). 
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