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ABSTRACT 

In this paper the connection is developed between the direct and indirect boundary-integral equation 
methods of linear elastostatics from both a physical and a mathematical viewpoint. It is shown that the 
indirect method in its various forms, like the direct method, can be derived from Somigliana's identity, 
and one particular indirect formulation is presented which reduces the mixed problem of elastostatics to a 
system of Cauchy singular integral equations. 

RgSUM~ 

Dans ce texte la relation est developpe entre la direct et l'indirect m6thode d'6quations int~grales de la 
fronti6re de l'elasticite linear des deux points de vue mathematique et physique. 

I1 est demonstre que la methode indirecte dans ses differents aspects resemble a la methode direct 
pouvant etre tire de l'identite de Somigliana. Et une formulation particuliere indirecte a ete presente. Elle 
reduit le problemes mixte de l'elasticite a un systeme d'equation d'integration singulier de Cauchy. 

1. Introduct ion  

In recent years increasing attention has been given to boundary-integral equation 
methods in mathematical physics, primarily because of the computational advantages 
which they enjoy over finite-difference and finite-element methods for linear 
boundary-value problems. Rizzo [1] based his formulation of the so-called direct 
BIE method for linear elasticity on the classical method of Somigliana. To solve the 
traction problem, for example, Rizzo obtains a system of singular integral equations 
for the unknown boundary values of the displacements in terms of the known 
boundary tractions. Once the boundary displacements have been determined, the 
interior elastic fields are computed in terms of both the boundary tractions and 
displacements by means of integrations. A seemingly different approach, the so- 
called indirect method, has been put forth by Massonnet [2] and more recently by 
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Altiero and Sikarskie [3], in which the region of interest is imbedded in another 
region of the same material for which the Green's function or point force solution is 
known. Typically the matrix, or region in which the imbedding is done, is taken to be 
infinite, but this need not be so. A layer of body force, or "fictitious tractions", is 
then applied to the imbedded boundary, and this layer is adjusted to produce the 
desired solution in the imbedded region. This method also involves the solution of a 
system of singular integral equations, but the unknown quantity is now the "fictiti- 
ous" distribution of body force as opposed to the "real" boundary displacements in 
the direct formulation. 

The direct and indirect formulations will be summarized in the next section, and 
the main differences between them will be made clear. A common feature of these 
formulations, however, is that each may encounter difficulty when applied to certain 
displacement or mixed problems of elastostatics. The source of this difficulty is not 
entirely clear. A possible remedy might be a formulation which yields singular 
integral equations of the Cauchy type, such as that presented in section 3. 

Another type of indirect method, suggested first by Louat [4] and developed 
primarily by Lardner [5], utilizes distributions of dislocations on the imbedded 
boundary to produce the required solution within. This method is also best suited for 
the traction problem, although certain displacement and mixed problems can be 
solved as well. Recently Maiti, Das, and Palit [6] have shown that Lardner's method 
may be derived from Somigliana's method, and implicit in their work is the fact that 
the indirect method of Altiero and Sikarskie can also be derived from Somigliana's 
method. 

Although Somigliana's method can be used to arrive at both the indirect and 
direct BIE methods, significant differences in the two approaches remain, primarily 
the distinction between solving for the "real" versus "fictitious" quantities. 
Moreover, these differences may be important, for the existence of the two indirect 
methods described above suggests the possibility of numerous indirect methods in 
which combinations of fictitious tractions, dislocation distributions, and related 
quantities are sought. In particular, one such formulation for the mixed problem, 
which utilizes fictitious tractions and infinitesimal dislocation loops (dipoles in 
two-dimensions), will be presented here. Proper choice of these parameters always 
leads to singular integral equations. This formulation is an extension of the method 
of Maiti, Das, and Palit. 

The authors hasten to point out that the various results which are used to obtain 
the extended version of the BIE method are not new. In fact, Eshelby [7] attributes 
some of these ideas to Gebbia. Consequently, much of the discussion leading up to 
the new formulation presented in section 3 is expository in nature, but necessary for 
complete understanding of the method. 

Numerical implementation of any boundary-integral scheme is a somewhat in- 
volved process, and it seems best to defer a discussion of the method presented here 
until such time as sufficient comparisons among the various methods can be made. 
Such work is in fact the subject of an ongoing investigation and will be reported 
elsewhere. 
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2. Basic equations and existing formulations 

In this section we list the equation and boundary conditions associated with the 
standard boundary-value problems of elastostatics and discuss briefly the boundary 
integral equation method as formulated by Rizzo [1] and by Altiero and Sikarskie 
[3]. We wish to point out some of the similarities and differences between the two 
formulations and also to have them written out explicitly for reference in the 
following sections. 

In the absence of body force the equations of equilibrium are 

C, jk~uk,~j ---- 0 (2.1) 

where uk denotes the displacement vector, the comma notation denotes partial 
differentiation with respect to the coordinate variable whose subscript follows the 
comma, and summation is implied over the values 1 to 3 when an index is repeated. 
C~jkl denotes the elastic constants of the material which is anisotropic in general. We 
are concerned with the standard boundary-value problems of elastostatics. That is, 
we wish to solve (2.1) in a domain D subject to one of the following conditions on 
the boundary B of D: 

i) u~ a prescribed function on B. 
ii) t, = C,~,uk,~n~ a prescribed function on B. 

iii) u, a prescribed function on Bu, t~ a prescribed function on B,, B = B~ + B~. 

Here t~ represents the surface tractions on B and n~ is the unit outward normal to B. 
The BIE method of Rizzo is based on Somigliana's identity: 

(~) = ~ {t~ (x)U}(x, ~ ) -  ui(x)T}(x, £)} ds ~ ~ D, (2.2) u~ 

where U}(x, ~) denotes the ]th component of displacement at x due to a unit force in 
the ith direction at ~ in an infinite medium, and T}(x, ~) are the surface tractions 
which correspond to the displacements U}(x, ~). In three dimensions ds denotes an 
element of area of B, in two dimensions, an element of arc length. 

If ~ approaches a point x' on B from the inside, then (2.2) becomes 

, ,  ~u,(x)+ u~(x)T~(x,x) ds t~(x) ~ = U~(x, x') ds, (2.3) 

where the integral on the left-hand side is to be interpreted in the Cauchy 
principal-value sense. For a boundary condition of type (ii), i.e. traction prescribed 
everywhere, the right side of (2.3) is known, and one solves a system of singular 
integral equations for the boundary displacements uv The displacements within B 
can then be found by integration using (2.2). On the other hand, if the boundary 
condition is of type (i), i.e. displacement prescribed everywhere, then the left side of 
(2.3) is known, but the resulting integral equations for t~ are not singular. This arises 
because U~(x) is O(ln [x[) in two dimensions and is O(]x[ -1) in three dimensions, and 
these singularites are integrable. It follows that for boundary conditions of type (iii), 
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i.e. for the mixed ,boundary-value problem, not all of the integral equations are 
singular equations of the Cauchy type. 

If a layer of body force fi is distributed over a surface B in an infinite medium, the 
stresses and displacements throughout the medium are determined according to the 
principle of superposition by 

o'ij(~) = IB y~(~' x)fk(x) ds (2.4a) 

IB U{(~, x)f~(x) ds, (2.4b) lli(~) 

where N~(~,x) are the stresses associated with U~(~,x). Note that T{(~,x)= 
£{k(~,x)n~(~) for ~ on B. As before, let ~ in (2.4) approach x' on B. Then, upon 
multiplying (2.4a) by n~(x') we obtain 

1 t ~ .  j t t ~[~(X ) + T~(X, X)~(X) dS = t~(x ), (2.5a) 

u{(x', x)~(x) = u~(x'). (2.5b) ds 

The integral in (2.5a) is to be interpreted in the Cauchy principal value sense. These 
equations embody the ~ormulation o~ Altiero and Sikarskie. For boundary condi- 
tions o~ type (it), the right side o~ (2.5a) is known ~or all x' on B, and one solves a 
system o~ singular integral equations ~or the body ~orce distribution o~ "fictitious 
traction" [~. The elastic fields within B are then computed ~rom equation (2.4). For 
boundary conditions o~ type (i), the right side o~ (2.5b) is known ~or all x' on B and, 
as with Rizzo's method, the resulting integral equations are not singular. Similarly, 
with t~(x') known ~or x' on B, and u~(x') known ~or x' on 8, ,  not all o~ the integral 
equations in (2.5) are Cauchy singular. Singular integral equations o~ the Cauchy 
type may be desirable because they lead to a diagonally dominant system o~ linear 
algebraic equations which can be solved by iteration techniques as opposed to direct 
elimination schemes. This might provide a computational savings. 

3. The unified tormulation 

We begin our discussion of the extended BIE method by recalling what is meant by 
a Somigliana dislocation or elastic inclusion. In an elastic continuum make a cut over 
a surface S (not necessarily closed), and give the two faces of the cut, S ÷ and S-, a 
relative displacement 

b~(x) = u ? ( x ) -  u/ (x) ,  (3.a) 

where u[ and u[  are the displacements of points on S- and S +, respectively. Note 
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that bi(x) may vary from point to point on S. Any gaps which are created are to be 
filled in with material, and interpenetration of the faces of the cut is prevented by 

removal of material where appropriate. The faces of the cut are then welded 
together, the result being that S is now a surface across which the displacement 
vector suffers the discontinuity given in (3.1). In addition, the continuum is internally 
stressed, and the tractions across S are continuous. When S is a closed surface, the 
material within is often called an elastic inclusion. 

Following Volterra [8], we may write the displacements due to the dislocation S in 
an infinite medium as 

u~(~) = - i s  bj(x)T}(x, ~) ds (3.2) 

If (2.4b) is added to (3.2) with $ = B, we obtain 

u,(~) = IB {f/(x)UI(~, x ) -  bj(x)7}(x, ~)} ds. (3.3) 

Comparing (3.3) and (2.2), noting that UI(~, x) = U}(x, ~), we obtain immediately the 
result that the elastic fields in a region D generated by boundary displacements u~ 
and corresponding boundary tractions t~ are identical to the elastic fields within an 
elastic inclusion occupying the same region D in an infinite medium, if the displace- 
ment discontinuity b~ is equal to u~ and if the inclusion is acted upon by a layer of 
body force f~ equal to t~. Depending upon the boundary conditions, some combina- 
tion of f~ and b~ (i.e. t~ and u~) must be determined, and this leads directly to the 
singular integral equation (2.3) of R~zo. The elastic fields outside the inclusion are 
zero. This can be seen physically as follows. Cut out the region D from the 
undeformed infinite medium and apply to B-  the surface tractions t~, causing 
displacements u~, and generating the desired solution in D. Remove or add material 
to B + (i.e. the surface of the cavity created by removal of D) until this surface 
matches the deformed surface B- .  This causes no deformation outside B +. Insert the 
removed material back into the cavity and weld the surfaces together. The elastic 
fields inside B are given by (2.2) and outside B they are clearly zero. Eshelby [7] 
attributes this result, which provides a physical interpretation of Somgliana's iden- 
tity, to Gebbia. A mathematical treatment of this result is given in the discussion 
leading to equation (3.11). 

It is also possible to generate the solution associated with (2.2) by taking one or 
the other of f~ or b~ equal to zero in (3.3). As before, make a cut over B and apply 
the surface tractions t~ to B- .  Now apply to B + whatever surface tractions t'~ are 
required to match the deformed shape of B + to that of B- ,  and then weld the faces 
of the cut back together. The surface B is now subjected to a body force layer t~ - t'~ 
since the "outward" normal on B + opposes that on B- ,  and the final displacements 
associated with these operations are given by 

f , ~ u~(~) = j~ (t~(~)- t~(x))u,(~, x) as (3.4) 
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The displacements given by (3.4) are continuous throughout the medium and are 
identical to those of (2.2) within B. The tractions across B are discontinuous since 
ti ~ t}, and if (3.4) is compared to (2.4b), it is clear that the quantities t~ - t'~ are simply 
the fictitious tractions of Altiero and Sikarskie. 

Alternatively make a cut over B in the infinite undeformed medium and apply the 
tractions t~ to both B-  and B ÷. This causes the points on B ÷ to displace by some 
amount u'i, but in general this will not close the gap between B-  and B +. Fill in or 
remove material as needed and reweld the faces of the cut, creating a Somigliana 
dislocation with discontinuity u~- u'~ along B. Taking into account once again the 
difference in normals on B-  and B +, the final displacements associated with these 
operations, according to (3.1), are given by 

u , ( ~ ) = - ' j .  (u~(x)- ' ' u~(x))T}(x, ~) ds (3.5) 

These displacements are identical to those of (2.2) within B, and the tractions 
associated with them are continuous across B. The quantity u~ - u'i may be thought of 
as a "fictitious dislocation distribution" bi analogous to the fictitious tractions fl of 
Altiero and Sikarskie. It is now apparent that while the notion of a fictitious traction 
is useful for solving the traction problem of elastostatics, because it leads to the 
singular integral equation (2.5a), the notion of a fictitious dislocation distribution is 
equally useful for solving the displacement problem of elastostatics, because it leads 
to the singular integral equation 

½b~ (x') - | i , , bj(x) T~(x, x ) as = u,(x ), (3.6) 
~1~ 

which is similar to (2.5a). 
It is now clear how one may generalize the foregoing in order to obtain singular 

integral equations regardless of the boundary conditions. Wherever tractions are 
specified on B, apply a body force layer to the same part of B in an infinite medium, 
and wherever displacements are specified on B, create a Somigliana dislocation over 
that part of B in an infinite medium. The displacements and stresses associated with 
these operations are: 

ui(~)= fB f~(x)U~(~, x ) d s - I B  ' bj(x)Zj(x, ~) ds, 
t u 

(3.7a) 

~r~(~) = £ ( x ) ~ (~ ,  x) ds - C,~tb~(x) ~ T~(x, ~) ds. 
~ ~ 

(3.7b) 

Recall that T~(x, ~)-- E,~p(x,k g)r~(x). To obtain the integral equations, let x' be a 
point on B, multiply (3.7b) by nj(x') and take the limit as g - ~  x' from the inside. The 
only integrals in equations (3.7) which are singular are the second of (3.7a), if x' ~ Bu, 
and the first of (3.7b), if x' ~ B~. The limiting procedure therefore yields the following 
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singular integral equations: 

u~(x') = I~ f~(x)U{(x',x) ds -  I~ ~ , b~(x)T~(x, x ) as 
t u 

+ ½b~(x'), x'~ B~, (3.8a) 

(x ' ) -  ~ ' f i ' t, - ~f~(x)+ f~(x)%(x, x) as 
a B  t 

- I s  C'~ktb"(x)n~(x') °" T~(x,x') ds, x ' eB ,  (3.8b) 
. O 'X~ l  

where the second integral of (3.8a) and the first integral of (3.8b) are Cauchy 
principal value integrals. 

Equations (3.8) obviously reduce to equations (2.5) if B,  is empty, and so we 
recover the formulation of Altiero and Sikarskie. On the other hand, if B~ is empty, 
they reduce to equations which are similar to (2.5), one of which is (3.6). Thus the 
various "fictitious" formulations are contained in (3.7). In a sense the "real"  
formulation of Rizzo is also contained in (3.8), if one notes that if f~ = t~ and b~ = u~ 
then (3.7a) cannot hold unless both B, and B,  are replaced by B. 

Equations (3.8) can also be obtained directly from Somigliana's identity rewritten 
in the form 

u~(~) = J._ {%k(x)U}(x, ~)-  u~(x)~,}~(x, ~)}nk(x) as (3.9) 

The use of B-  here reminds us that ui and o'~ are the interior elastic fields. An 
application of the divergence theorem to (3.9) gives 

u~(~) = [ ' ~ ' {% (x) U~,~(x, ~) - u~,~ ( x ) ~ ( x ,  ~) - u~( x )~ ,~ (x ,  ~)} dr, (3. ~0) 
JD 

where the differentiation is with respect to x and o-~k,~ = 0 for equilibrium under no 
body force. Let De denote the exterior of D + B. If ~ e De, then Z}k,k(x, ~) = 0 for all 
x ~ D by equilibrium. Moreover, for ~ ~ De, the quantities Ui, k(x, ~) and Z}~(x, ~) are 
regular in D, and so by the reciprocal theorem 

i i ~(x) u~Ax, ~)= u~,~(x)~(x, ~) 

for x e D. Accordingly, ui(~) given by (3.9) vanishes for ~ e De, i.e. 

Is - ds = ~u~([~), ~ ~ D {ti(,~) U~(x, ~) uj(x) T~(x, 6)} 
- [ 0 ,  ~ e D ,  

(3.11) 

Now consider the infinite region exterior to B + and subject to boundary displace- 
ments u'i and boundary tractions t' v If u~ - O(r -1) and ~r~i - O(r -2) as r ~ 0% then the 
same argument shows that 
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fB { u~ (~), ~ ~ De + {t~(x)U}(x, ~ ) -  u~(x)7~(x, ~)} ds = O, ~ e O  (3.12) 

Adding (3.11) to (3.12) we obtain 

I .  {(tj - - ds : u~(~) (3.13) t~)U~-(uj ~) ~} 

This result was obtained by Maiti and Makan [9] in their discussion of elastic 
inclusions. To obtain (3.8), we merely require that u~ = u'~ wherever tractions are 
prescribed, ~ = t'~ wherever displacements are prescribed, and take the limit as 
~ B - .  

4. Discussion 

The relationship between the direct and indirect boundary-integral equation 
methods has long been of interest to researchers in this field. In particular many 
have felt that while the direct formulation has a rigorous foundation, the indirect 
methods could only be justified on intuitive grounds. We have shown that this is not 
the case and that the indirect methods, like the direct method, can be derived from 
Somigliana's identity. This leaves aside the question of the numerical effectiveness of 
the various methods, and in this regard one notes that, while there is but a single 
form of the direct method, there are many possible versions of the indirect method, 
and a proper numerical study in which the various formulations are compared should 
be undertaken. 

We have presented, in Section 3, one of the many possible forms of the indirect 
method. This form was constructed so as to produce Cauchy singular integral 
equations for any mixed problem of elastostatics. This seems to be a reasonable 
approach for the solution of mixed problems, but it is not yet known whether there 
are other formulations which might be better. It is possible that no one formulation 
is best for all problems but that various classes of problems, based on geometry, etc., 
might be individually suited to distinct formulations of the method. These questions 
need to be answered. 
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