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SUMMARY 

The nonlinear partial differential equation of motion for an incompressible, non-Newtonian power-law fluid 
flowing over flat plate under the influence of a magnetic field and a pressure gradient, and with or without 
fluid injection or ejection, is transformed to a nonlinear third-order ordinary differential equation by using a 
stream function and a similarity transformation. 

The necessary boundary conditions are developed for flow with and without fluid injection (or ejection), 
and a solution for four different power-law fluids, including a Newtonian fluid, is presented. 

The controlling equation includes, as special cases, the Falkner-Skan equation and the Blasius equation. 

1. Introduction 

The current world energy shortage has served to stimulate interest in developing new methods 

to generate power. Magnetohydrodynamic power generation, for instance, has been underway 
since 1974 in Russia [1 ]. 

Interest in magnetohydrodynamic  flow began in 1918, when Hartmann invented the electro- 

magnetic pump [2]. The first papers treating the flow of  an electrically conducting fluid were 

by  Hartmann [3], and Hartmann and Lazarus [4] in 1937. Since then a large body of  literature 
has developed. 

With the exception of  finear problems, there are very few nonlinear magnetohydrodynamic 

problems solved in the literature. Cobble [5] determined a solution for a Newtonian fluid in 

1977 using similarity. Similarity problems in fluid flow have been extensively analyzed by  
Ames [6] and Hansen [7]. 

This paper develops a unique similarity differential equation for incompressible flow of  a 

non-Newtonian power-law fluid flowing over a semi-infinite plate, in the presence of  a magnetic 

field and a pressure gradient, with or without  injection or ejection through the plate wall. 

2. Theory 

The motion equation for an incompressible non-Newtonian fluid flowing over a semi-inf'mite 
flat plate, see Figure 1, under the influence of  a magnetic field and a pressure gradient is 
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Figure 1. 
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Magnetohydrodynamic boundary layer with fluid injection. 

0u O_U_U = _  g__ aP g 0 
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and the con t inu i ty  equa t ion  is 

au av 
ax + ~--y ; 0 

where, for a non-Newton ian  power  law fluid, 

n 

rxy = #o , n ~: O, 

and where 

u = velocity in the x-direct ion,  

v = velocity in the y-di rec t ion ,  

g = acceleration of  gravity, 

p = fluid densi ty,  

e = pressure, 

rxy  = shear stress, 

o = electrical conduct ivi ty ,  

By = magnet ic  field strength,  

/a o = viscosity coefficient .  

If we define a similarity variable, r/, as 

goB~(x)  

P 
( I )  

(2) 

(3) 
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r l=ay /x% (a>O, cx>O) 

and a stream function, q/, as 

= a ( x )  f(n) q/ 

where 

and 
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(4) 

(5) 

gPo 
Vo - (1 O) P 

and 

2 goB; (~) 
S(x) = - -  (11) 

P 

It can be shown that 

() a@ a ' ( x )  + f ' (rl)  (12) 
q/x= a-G f o y 

and 

q/y= (a..~) Gif(r/) (--~y) , 0 r / '  x (13) 

where 
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= = u ,  ( 7 )  

x 

then continuity is automatically satisfied, and the motion equation, using Equation (3), be- 
comes 

$y q/xy - q/x q/yy = H(x)  + nvo q/~-), I q/yyy _ S (x )  q/y (8) 

where 

H(x)= g a P  p ax (9) 

Y 
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and 

y - -  X 

_° 
x X n' 

Further substitution in Equation (8) gives 

x=,~+ , | G(x) [g ' ( '7) }=-~,o. r " (n) ] -  

[ ( ° ) '  [ (°)'r,.)] = H(x)  + nv o G(x) ~-g f"(r l  x G(x) 7g 

aG(x) 
- x" s(x)y(n) .  

Now, to permit a similarity solution, it must be that 

xC'(x) 
G(x) = a constant = t3, 

so that 

C(x ) = bx o. 

Further substitution in Equation (18) gives 

a2b2x ~(~-~)- ~ [O - ~ )  q~ (n ) }  2 - 0 f ( n ) f " ( , 7 ) ]  

= H(x)  + nvoa I +2. b" x - ~ + " ( 0 - 2 ~ )  {f'(•)}"- 1 f ' ( n )  - abx f j -"  S(x)ff(n). 

Now, it must be that 

H(x ) = Ho x7  

and 
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(15) 

(16) 

(17) 

(18 )  

(19) 

(20) 

(21) 

(22) 



MHD flow for a non-Newtonian power-law fluid 

S ( x  ) = S o x  ~ . 

Now, if for convenience we set 

7 = 2 m -  1 

then, to allow for a similarity solution, it must be that 

8 = m - 1  

and 

and 

and 

t~-,~=m 

= l + m ( n - 2 )  > 0  
l + n  

= l + m ( 2 n - 1 )  
l + n  

Additionally, if we require that 

ab= U o 

and 

a2 b2 ~ = nvoal +2n b n, 

then 

1 

t. nv o 3 

and 

b = 
Uo2n- lnuo] 

1 

n+ l  
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(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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Then Equation (21) can be written as 

Oa,(r/)}n - l f " ( r / )  + f(r/)/"(r/)  - ~-/da(r/)} 2 + H1 - N m f ( r l )  = 0 

where 

HI = Ho/[3U2o 

and 

M. H. Cobble 

(33) 

(34) 

m(1 + n) (35) 
"if= 1 +m(2n - 1) 

and where we define a dimensionless magnetic field strength number, Nm, as 

Nm = 7do" (36) 

It is necessary to determine three boundary conditions for Equation (33), and it is also 

desirable to put the equation into a more convenient form for computing. 

Using the condition that 

m 

lim u(x,y) = K(x)  = Uo xm = U** ( ~ ) = lim Uo xm f'01), (37) 

(38) 

so that 

m P lim u(9.,y) =K(£)= Uo £ra = U.. = lim Uo£ . f  (n), 

then it must be that 

lim f ( r / )  = 1. (39)  

Using Equation (39) it can be shown that 

H 1 = (3 + N m . (40) 

To fred the other two necessary boundary conditions, we assume that at the wall, y = 0, 
there is no slippage for u, so that 

u(x,O) = 0 = lim Uo xm f'(r/). (41) 
r/---~O 

Also, using Equations (12) and (20), we see that 
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v(x,O) = lira J - b x  ~-1 [3](,/) - an f'(r/)] ~ = F ( x ) =  Iio x~. 
~ --~ 0 I I 

Thus, it must be that 

Vo  
f ( o )  = - _ 

b3 

and 

f (O)  = 0 

and also 

m(2n- l ) -n  
F(x )  = Vox I + n 

where 

Vo = magnitude of velocity coefficient for injection 
(Vo > O) or ejection ( V  o < O) of fluid through wall. 

If Vo = O, then 

f ( 0 )  = o 

and there is no fluid passing through the wall. 
Additionally, the following must be hold: 
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(42) 

(43)- 

(44) 

(45) 

(46) 

p n o  X2m 
P(x)  = Po 2 mg , m q: 0 (47) 

where P o is a constant and 

~ 2  m - 1 

S(x)  = So xm - 1 _ g°lJY°X , (48) 
P 

so that 

By(x) = Byo x(m - 1)/2 (49) 

Lykoudis [8] developed an expression equivalent to Equation (49) for compressible Newtonian 
fluids. 

Using Equation (40) in Equation (33), we obtain 
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{f,,(r/)}n - 1 f " ( r / )  + f(r/) f"(r /)  + fl-[ 1 -- {f'(r/)} 2 ] + N m [ 1 - f'(r~)l = O. 

The boundary conditions for f 0 / )  are: 

1. f ( O ) = - V o / b f l ,  

2. if(O) = O, 

3. l imf ' ( r / )=  1. 

(50) 

Equation (50) is the general similarity differential equation controlling the effects of  mag- 
netic field, pressure gradient, and fluid injection or ejection through the wall, for a non- 
Newtonian power-law fluid. When n = 1, the equation reduces to one treated by Cobble [9]. 
When n 4= 1, and the magnetic field is zero, the equation reduces to that discussed by Schowal- 
ter [9]. If n = 1, and the magnetic field is zero, the equation reduces to the well-known 
Falkner-Skan equation. If  n = 1, and the magnetic field is zero, and the pressure gradient is zero 
(H o = 0), the equation reduces to the Blasius equation. 

3. Example 

Given: 
Equation (50) and the accompanying boundary conditions where Vo = 0, (no fluid injection 

or ejection). 

Assume: 

m = O . 1 ,  

1 1 3 n = ~ , ~ , ~  

N m = 0.01, 

(pseudoplastic fluids), 1 (Newtonian) 

u 
Figure 2 shows a plot o f f ' 07 )  -- ~ vs. 7/-- ay/x ~, for 0 ~ ~ < 20. It should be 

noted in Figure 2, that the ~'s are different for each n. 

4. Conclusion 

Using a stream function, ~b, which satisfies continuity,  and a similarity variable, ~7, the nonlinear 

partial differential equation of motion for an incompressible, non-Newtonian power-law fluid 
flowing over a flat plate under the influence of  a magnetic field and a pressure gradient, with or 
without fluid injection or ejection is transformed to a nonlinear third-order ordinary differen- 
tial equation. The necessary boundary conditions have been established from a physical basis. 
The derived differential equation includes the equation developed by Cobble [5], and by 
Schowalter [9], the Falkner-Skan equation and the Blasius equation as special cases. 

An example for a set of  four power-law fluids (including Newtonian) is solved numerically, 
andf ' ( r / )  is shown plotted against the similarity variable 77 in a common graph. 
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Figure 2. Magnetohydrodynamic flow with a pressure gradient. 
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