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Abstract. The simplest theory of spatial rods is presented in a variational setting and certain 
necessary conditions for minimizers of the potential energy are derived. These include the 
Weierstrass and Legendre inequalities, which require that the vector describing curvature and twist 
belong to a domain of convexity of the strain energy function. 

1. Introduction 

In this work we present a modern reformulation of the classical Kirchhoff- 
Clebsch theory for three-dimensional deformations of elastic rods. Our purpose 
is to elucidate the structure of the simplest purely mechanical theory of 
inextensible rods that models both flexural and torsional response. Specifically, 
we postulate a particular form of the potential energy for conservatively loaded 
rods and derive certain necessary conditions for energy-minimizing configur- 
ations. Thus we assume at the outset that at least one minimizer of the requisite 
smoothness exists. 

Our principal contribution is the derivation of the Weierstrass and Legendre 
necessary conditions for rods [l-l. These conditions require that the vector 
describing curvature and twist of the rod belong to a domain of convexity of 
the strain energy function at every material point in a minimizing configur- 
ation. If the strain energy is non-convex on some part of its domain, then 
energy-minimizers may contain discontinuities in the curvatures and twist. 
Fosdick and James I-2] and James 1-3] have studied configurations of this kind 
in the context of the theory of plane inextensible elasticae. The latter theory 
can be posed as a problem in the calculus of variations, and the appropriate 
Weierstrass and Legendre inequalities can be deduced by appealing to estab- 
lished results. The situation for three-dimensional deformations is much less 
clear-cut, however. Much of the motivation for the present paper derives from 
the search for the appropriate forms of these inequalities. 

The literature on rod theory is of course far too voluminous to recount here. 
We briefly mention only those works that we have found particularly illumi- 
nating. Love's treatise 1-4] should be consulted for historical references and for 
an extensive account of the basic dements of the theory. An accessible 
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discussion of the theory can also be found in the book by Landau and Lifshitz 

[52. 
Most modern developments are based on the notion of a one-dimensional 

continuum, endowed with sufficient kinematical and constitutive structure to 
represent the most important components of rod-like behaviour. Typically this 
structure is conferred by a set of directors (e.g. [6-12,]), which are required to 
satisfy balance laws deduced from appropriate statements of virtual work or 
conservation of energy, together with suitable constitutive hypotheses. Reissner 
[13] described an interesting alternative approach whereby the equilibrium 
equations, deduced from elementary considerations, are used with a postulated 
virtual work principle to obtain a general set of strain-displacement relations. 

Our treatment is based on a version of the Bernoulli-Euler hypothesis, which 
is modelled by assigning a triad of embedded orthonormal vectors and a 
position function to every material point. The rate of change of this triad with 
respect to arc length along the rod is described by a skew tensor that measures 
curvature and twist. The associated axial vector is analogous to the Darboux 
vector of the Serret-Frenet theory of spatial curves (e.g. Stoker El4]). Our triad 
cannot be identified in all configurations with the Serret-Frenet triad consisting 
of the unit tangent, principal normal and binormai vectors, however, as the 
latter vectors are determined solely by the shape of the centreline of the rod, 
and, with the exception of the tangent, are not embedded in the material. This 
distinction is rarely made explicit in formulations based on the use of the 
Serret-Frenet theory (E5,15,161). 

Our kinematical and constitutive descriptions are similar to those used by 
Kafadar El7], who also considered the thermoelastic theory. Green and Laws 
[18] demonstrated that Kafadar's theory can be obtained as a special case of 
their director theory. By introducing suitable kinematic constraints into a 
general director theory, Naghdi and Rubin El9] derived a systematic procedure 
for obtaining rod theories of various degrees of kinematical refinement. The 
most severely constrained of these corresponds to the theory considered here. 

Antman's many contributions (e.g. [11, 12, 20-22.]) together comprise the 
most penetrating and far-reaching investigation into the mathematical struc- 
ture of general rod theories. Among the most important of these is an existence 
theorem for energy-minimizers based, in part, on constitutive inequalities 
derived from the well known strong ellipticity condition of three-dimensional 
elasticity E21,22-1. This condition is the analogue of the strict Legendre 
inequality discussed in the present paper. Its adoption as a constitutive 
inequality rules out behaviour of the kind analysed by Fosdick and James 
I-2, 3.]. Similar inequalities were invoked by Maddocks [23] in a study of the 
stability of planar equilibria. 

The kinematical basis of the theory is described in Section 2. There we also 
introduce a constitutive framework by specifying the manner in which the 
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strain-energy function depends on the curvatures and twist, lnvariance u n d e r  
superposed rigid motions is used as a constitutive hypothesis to obtain a 
restriction on this function that is central to the further development of the 
theory. This is used in Section 3 to obtain the Euler-Lagrange equations for 
configurations with continuous curvatures and twist. These are simply the 
classical equilibrium equations. They are included here because our derivation 
is apparently not entirely standard. The equilibrium theory for configurations 
with a finite number of discontinuities in the curvatures and twist is developed 
in Section 4. There we derive the Weierstrass-Erdmann conditions that must 
be satisfied at the points of discontinuity. These generalize similar restrictions 
obtained by Fosdick and James I-2, 3] for planar elasticae. 

The Weierstrass inequality is obtained in Section 5 by considering a certain 
class of kinematically admissible variations with piecewise continuous curva- 
tures and twist and demanding that the associated potential energy be no less 
than the energy furnished by the minimizer. The Legendre condition for 
invariant strain energies is derived directly from the Weierstrass inequality. 
Our analysis is similar to Graves's [24] treatment of multiple integral varia- 
tional problems, which in turn has been adapted to a theory of elastic plates 
by Hilgers and Pipkin 125]. Finally, in Section 6 we interpret the Legendre 
condition for transversely isotropic strain energies. These energies furnish an 
idealization of actual thin rods with circular cross-sections formed from 
homogeneous and isotropic materials 15]. 

Certain operational considerations pertaining to the solution of problems, 
such as the use of Euler angles, have no bearing on the basic structure of the 
theory and are not discussed. Such matters are thoroughly treated elsewhere 
(e.g. I-4, 12, 26]). We also confine our attention to the simplest types of 
configuration-independent loading, as the precise nature of the loading is 
immaterial insofar as our main results are concerned. Potentials for various 
classes of configuration-dependent conservative loads are discussed in 127, 28]. 

We use standard Cartesian tensor notation throughout, with the usual 
summation convention in effect for Latin and Greek indices ranging over 
{1, 2, 3} and {2, 3}, respectively. 

2. Kinematical and constitutive hypotheses 

Consider a spatial rod of total arc length L. A configuration of the rod is 
defined by a mapping of the arc length parameter se [0 ,  L] onto {r(s),ei(s)}; 
i = 1, 2, 3, where r(.) is the position function of points on the rod relative to 
a fixed origin and ei(. ) are fields of embedded vectors which specify the 
orientations of the cross-sections s = const. We use a prime to denote differen- 
tiation with respect to s, and the notation {ei} = {t, e~}; ct = 2, 3, will sometimes 
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be used to emphasize the distinguished role played by e~ in the subsequent 
development. 

The material rod is identified with a particular configuration in which the 
functions r(s) and ei(s) take the values x(s) and Ei(s), respectively, for each 
s ~ [0, L]. This configuration will serve as reference for the measurement of all 
kinematical quantities. In particular, we choose {Ei(s)} to be an orthonormal 
basis with E l = x'(s) and E I "E2 ×E3 = 1. Then for every s~[0, L], {E2, E3} 
spans the planes normal to the space curve defined by x(s). 

We invoke the Bernoulli-Euler hypotheses: First we suppose that cross- 
sections remain plane, suffer no strain, and are normal to the space curves r(s) 
in every configuration. We further assume that deformations from {x, E~} to 
{r,e~} are inextensional and orientation-preserving. These hypotheses are 
equivalent to 

ei(s).ej(s) = 6o, et(s).ej(s ) x e~(s) = eij~, Ys6  [0, L], (2.1) 

where 6 u is the Kronecker delta and e~j k is the permutation symbol, together 
with the nonholonomic constraint 

r'(s) = t(s), s~ 1-0, L], (2.2) 

which further implies that s measures arc length in every configuration. 
Because {ei} and {E~} are right-handed orthonormal bases, it follows that 

e,(s) = R(s)E,(s), (2.3) 

where R = ej ® Ej is a rotation, i.e. det R = 1, R r = R-  l 

We postulate that rods furnish elastic resistance to changes in curvature and 
relative twist between sections s and s + ds. These quantities are measured by 
the functions e'~(s). The tensor 

G(s) = e; @ E,; e; = GEj (2.4) 

accounts for the part of the rate of change of any embedded vector that is due 
to curvature and twist of the rod in the configuration {r, et}. Thus we idealize 
the rod as a one-dimensional continuum with a strain energy W(G; G °, s) per 
unit arc length, where G O is the value of G in the configuration {x, Ei}: G O = 
E~ ® E~. In most of what follows we write the strain energy as W(G) and 
suppress reference to G O and to explicit s-dependence, if any. 

Differentiation of (2.1a) gives e~'- ej + e~.ej' = 0. If we set ~ j  = e~.e), then 
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f~o = -ll~/;  and it follows that 

e i = ~'~jiej = Wei, 

where 

W = f2ije i ® e j  (2.5) 

is skew, i.e. w T =  --W. From (2.3-5) we have GEi = WRE/, and therefore, 

since {Ei} is a basis for 3-space, we conclude that 

G = WR; W = GR r = e~ ® e/. (2.6) 

Evidently G O is the value of W in the configuration {x, E/}. Hence G O is skew. 
In particular, we note the easily derived relation 

W = R'R r + RG°R T. 

Following standard practice, we stipulate that 

(2.7) 

W(.)  be invariant with 
respect to rigid transformations ei --, e~ = Qei, where Q is an arbitrary constant 
rotation. For  these transformations we find that R--, R * =  (Qe/ )® E / =  QR 
and G - , G * =  ( Q e i ) ' ® E i  = QG. Thus we require that the strain energy 
satisfy the pointwise restriction 

W(G) = W(QG) (2.8) 

for all G. To solve this equation we note that the particular rotation Q = R r 
furnishes the necessary condition W(G) = W(f~), where 

= R T G  = R T W R  = F~/jE/® Ej = _ ~ T .  (2.9) 

Evidently the components of ~ relative to the basis {E; ® E~} are the same as 
those of W relative to {e/® e~}. For future reference we note in passing that 

RTR ' = ~ - G O (2.10) 

as a consequence of (2.7) and (2.9). For  arbitrary rigid transformations we have 
I'~ ~ ~ *  = (QR)rQG = ~ ,  and therefore 

W(G*) = W ( ~ * ) =  W ( ~ ) =  W(G). (2.11) 
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Thus  (2.8) is satisfied for arbi t rary  ro ta t ions  Q if and only if W(G) = W(~).  
T h e  skew tensors W and f~ are equivalent  to their axial vectors  w = w~e~ and 

K = ~:~E~ in the sense that  Wu = w x u and  f~u = K x u for every vector  u. Then 

f rom (2.5) it follows that  

e~ = w x ei. (2.12) 

We  also have the well known connect ions  

_ .t (2.13) gi --  2el jk~kj  and f~kj = lcleljk, 

f rom which it can be inferred that  w i = x~ and w = RK. Thus  we can write the 

strain energy in the form W =  w(K; K °, s), where  K ° =  x ° E i  and x ° = ½e~jkEk'E' i. 

As usual,  we suppress reference to K ° and  s and  write W = w(K). We assume 
tha t  w(.)  is twice differentiable on its domain  of definition. 

According  to (2.5) and (2.13), the c o m p o n e n t s  of  K are determined by the 

vectors  e~ and  e'~. Thus  the strain energy can be expressed as a function 

W = U(e~, e~), tacitly dependent  on E i, E~ and s. This  form is convenient  for the 

considera t ions  that  follow. When the strain energy is expressed in this way, the 

dependence  on e~ and e~ is not  arbi t rary,  but  mus t  be restricted in accordance  
with the invar iance rule 

U(ei, e~) = U ( Q %  Qe~) (2.14) 

for all cons tan t  rota t ions  Q. 

T o  derive a necessary condit ion for this consider  the one -pa ramete r  family 

of  cons tan t  rotat ions 

Q(e)  = exp(~V) = I + ~'  (g' /n!)V", (2.15) 
n = l  

where  V is a fixed skew tensor  and I is the unit  tensor. Let v be the axial 

vec tor  of  V. Then for small e we have 

Qei = ei + ~v x ei + o(e), Qe~ = e~ + ~v x e~ + o(~). (2.16) 

Fo r  a rb i t ra ry  vectors a , b  and  scalar-valued functions F(a,  b), we define 
aF/Sa  = (aF/dal)e  i and dF/db  = (dF/Obi)q,  where {ci} is an a rb i t ra ry  or- 
t h o n o r m a l  basis and a i = a-c~, b~ = b . c  i. Then  (2.14) and (2.16) give 

~(V × e i • OU/ae i -t- v x e~- aU/Oe~) -t- o(~) = O, (2.17) 
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where the derivatives are evaluated at e = 0. Now divide by e and pass to the 

limit to obtain 

v "(e i x aU/ae i + e; x ~U/ae~) = 0. (2.18) 

Because v is arbitrary, we conclude that U must satisfy the restriction 

e~ x dU/~ei + e~ x aU/ae~ = 0. (2.19) 

Of course, this equation is an identity when the strain energy is expressed as 
a function of K because it is just the differential form of the invariance statement 
(2.8). To  see this explicitly we write 

~U/c~e~ = (~w/d~j)~r.ffae~, (2.20) 

with a similar formula for ~U/de~. Then with xj = ½ejuel'e'k we derive 

----- 2 e j k i e k ,  ary/~e~ = 2 e j l k e k .  (2.21) 

The left hand side of (2.19) is the sum of three terms with coefficients of the 
form 

ej~iei x e~, + ejike ~ × e k = ejk~(e i x e~, + e~, x el); j = 1, 2, 3. (2.22) 

Each of these vanishes so that (2.19) is trivially satisfied. 
In the next section we will identify the vector-valued function 

M(s) = e i × aU/de~ (2.23) 

as the resultant moment exerted by the material in (s, L] on the material in 
[0, s]. The foregoing results can be used to show that 

M = ~t~w/~Kj)ejike ~ x e~ = ½(aw/8~cj)e~kje~ue t. (2.24) 

One of the well known e - 6 identities then furnishes the simple formula 

M = (aw/axi)e i. (2.25) 
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3. Potential energy and equilibrium 

Our treatment of rod theory is based on a potential energy functional El-r, e~] 
of the form 

Elr, ei-I = S[-ei] - P[r, e~], (3.1) 

where 

Sled = f ]  U(e~, e3 ds (3.2) 

is the total strain energy of the deformed rod and P[r,e~] is a potential 
associated with a system of conservative loads. 

For the sake of illustration we first consider a dead force f, applied at the 
end s = L, together with a dead distributed force b(s) per unit length of the rod. 
The associated potential is 

P[r, e i ] =  L[r]  = f ~  b . r d s  + f.r(L). (3.3) 

We assume that b(.) is at least piecewise continuous. We further assume that 
r(0) and ei(0 ) are assigned, and that no kinematical data are prescribed at 
s = L. This limited class of problems is chosen to avoid inessential detail in the 
ensuing manipulations. Certain generalizations are discussed at the end of this 
section. 

Stable equilibria are defined to be minimizers of E [ . , . ]  in some suitable 
class of competing configurations. In particular, if {r, ei} is stable then we 
require that 

E[r, ei] ~ E[r*, e*], (3.4) 

where 

r* = r(s) + .u(s)  + o(.),  e* = e,(s) + .v ,(s)  + o (~ ) ; .  --. 0. (3.5) 

Here we consider {u(.), vi(-)} ~C 1 for 0 ~< s ~< L with u(0)= v~(0)= 0. In the 
present section we also assume that {e~(.)} ~ C 2, piecewise. This restriction is 
relaxed in Section 4. 

We admit only those competitors {e* } that comply with the constraints (2.1). 
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From (2.13) and (3.5b) it follows that  

6ij = e* .e*  = 6ij + g(e i .v j  + e j . v i )  a t- O(/;). (3.6) 

If we divide by e and let ~ ~ 0, we find the restriction 

ei .v j + e j ' v  i = 0 (3.7) 

on admissible variat ions v i. The  general solution of this equat ion is obta ined 

by defining ~ji = e j- v i so tha t  v i = ctjie j = tee i, where 0t = % e  i ® ej. It follows 
from (3.7) tha t  0t is skew, and thus there is a vector  a(s) such that 

v i = a × e i. (3.8) 

Conversely, if there is a vector  a such that  (3.8) is valid, then (3.7) becomes 

e i -a  x e j  + e j ' a  x e  i = a ' (e i  x e j  + ej x ei), (3.9) 

which vanishes identically. Thus  for arbi t rary a, (3.8) furnishes the general 
solution of the variat ional constraint  (3.7). It is easily demonst ra ted  that  the v i 
automatical ly  satisfy the variat ional  form of the constraint  (2.1b). Moreover ,  
the result (3.8) can be used with (3.5) to establish the variational version of the 

constraint  (2.2): 

u' = a x t. (3.10) 

According to the multiplier rule of the calculus of variations [1, 29], an 
admissible configurat ion that  renders E l - ' , ' ]  s ta t ionary is also a s ta t ionary 

configuration for the functional  

el] = El-r, e~] + f ~  F .  ( r ' -  /~[r, t) ds, (3.11) 

where F(s) is a vector of Lagrange multipliers. For  fixed {r, ei} and {u, vi}, let 
F(~) = /~[ r* ,  e*],  where r* and e* are defined by (3.5). Then (3.4) is satisfied 

only if dF/d~[~= o = 0, where 

;o dF/dcl, = o = Iv;" 0U/0e; + v~" OU/Oei - b" u + F "(u' - a x t)] d s -  f" u(L), 

(3.12) 
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and the derivatives of U( . , . )  are evaluated at e = 0. 
After integrating by parts, invoking (3.8) and recalling the definition (2.23), 

we obtain 

dF/de]~=o = a(L)" M(L) + u(L). [F(L) - q 

-- f ~  a" {e i x [(dU/cOe~)' - dU/de,-I - F x t} ds 

I L u ' (F '  + b)ds. 1 

2 o  

(3.13) 

M(L) = o, F(L) = f 

and only if the Euler-Lagrange equations 

F x t = e~ x (dU/aeD' - ei x dU/dei ,  

F ' + b = 0  

(3.14) 

(3.15) 

(3.16) 

are satisfied for 0 < s < L. From definition (2.23), eq. (3.15) can be written as 

F x t = M '  - (ei x aU/de~ + e'i x dU/ae'i), (3.17) 

and for invariant strain energies (2.19) furnishes the result 

F x t = M'. (3.18) 

Equation (3.14b) identifies F(L) as the force supplied at the end s = L by an 
external agency. From (3.16) and (3.18) it is apparent that F(s) and M(s) are, 
respectively, the force and moment exerted by the segment (s, L] on the part 
I-0, s]. Equation (3.14a) then requires that the moment vanish at the unre- 
strained end, in accordance with our expectations. With these interpretations 
of F and M, eqs. (3.16) and (3.18) are the classical equilibrium equations of rod 
theory I4, 51. 

A generalization of the classical energy  integral  (1'4-1, arts. 260, 261) can be 
obtained by combining the foregoing results with 

U' = e~ 'dU/del  + eT" dU/de; + U s. (3.19) 

The derivative U s accounts for the s-dependence of the energy that is not 

Then {r, ei} is stable only if M(L) and F(L) satisfy the natural end conditions 
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attributable to e~ and el. For invariant strain energies U = w(•; K °, s), this extra 

dependence is due to the explicit appearance of s and to the presence of x°(s). 
In particular, U s vanishes identically if w is not explicitly dependent on s and 
if x ° = const., so that the rod is uniformly curved and twisted in the configur- 
ation {x, Ei}. In this case the rod is said to be homogeneous. 

For  homogeneous rods, differentiation of (2.12) and substitution into (3.19) 
yields 

U' = w.(ei x dU/de i + e~ x ~U/de~) + w" M, (3.20) 

where the definition (2.23) has been applied. The equilibrium equation (3.18) 
can be used to write the last term as (w-M)' + F -w × t. Now (2.12) and (3.16) 
give w × t = t' and F.  t' = (t. F)' + t .b.  Thus for invariant strain energies, (3.20) 
becomes 

( U -  w . M -  t .F) '  = t .b,  (3.21) 

and in the important case b(s) = const, this furnishes the integral 

U -  w - M -  t - F -  r ' b  = const. (3.22) 

In addition to the dead distributed and end forces treated thus far, we also 
consider fixed couples m~; i = 1, 2, 3 applied at the end s = L, with a potential 
of the form m~.e~(L). If ej(L) is prescribed for fixed j, then the j th  term is 
omitted from the sum. With this proviso, the total load potential is 

P[r,  ei] = L[r ]  + mi.ei(L ), (3.23) 

where L i t ]  is defined in (3.3). It is then a simple matter to verify that all of our 
previous results remain valid with the exception of (3.14a), which now reads 

a(L). [M(L) - ei(L) x mi] = 0. (3.24) 

If no member of {e~(L)} is prescribed, then the virtual rotation a(L) is 
arbitrary, and (3.24) requires that 

M(L) = ei(L ) x m i. (3.25) 

It is important  to realize that this does not furnish a prescription of a dead 
moment at s = L. Indeed, Ziegler [30] has shown that there is no load 
potential associated with a dead moment applied at an unrestrained end. Such 
loadings are non-conservative. Instead, (3.25) places a restriction on the values 
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of ei(L) delivered by solutions e~(s) of the equilibrium problem defined by 
(3.14b), (3.16), (3.18) and (2.25). 

Alternatively, if the tangent to the rod at s = L is prescribed, i.e. t(L) = e 
(say), then (3.8) implies that a ( L ) x e =  0. The general representation 
a = (a" e)e + e x (a x e) then requires that a(L) = ae for some scalar a. In this 
case (3.24) becomes 

ae" [M(L) - ei(L) x mi] = 0, (3.26) 

and therefore, since a is arbitrary, it follows that the axial end torque is 

e.M(L) = e. e~(L) x m~; ~ = 2, 3. (3.27) 

Again, this is not a prescription of the end torque, but rather a restriction on 
the values of e~(L) delivered by solutions of the equilibrium problem. We note 
that this restriction does not involve m~. This is to be expected because el(L) 
is prescribed. 

4. Discontinuit ies  and the Weierstrass-Erdmann conditions 

The analysis of the previous section was limited to energy-minimizing configur- 
ations for which the e~(') are piecewise twice-differentiable. Here we relax this 
smoothness assumption and assume that the e~(') may have discontinuous 
derivatives at a finite number of points in the interval (0, L ). Thus we assume 
that e~(" )E C 1, piecewise. We use the terminology of the calculus of variations 
and refer to points of discontinuity of the derivatives e~ as corners. This 
terminology is a bit misleading in the present context as the configurations 
considered have continuously turning tangents. The corners are points of 
discontinuity of the curvatures and twist. 

Our objective in the present section is to establish the jump conditions that 
minimizing configurations must satisfy at corners. To this end we reconsider 
the stationarity condition (3.12). Between corners, the el are continuous and 

' = a' ' Then with (3.8) gives vi x e~ + a x ei. 

vi. aU/ae ~ = a . e i  x aU/dei, 

v~. aU/de~ = a'. M + a. e~ x aU/ae~, 
(4.1) 
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and (2.19), we can express (3.12) in the form 

~ ( a " M  - a . t  ×V)ds + f~ (u"F-u'b)ds-u(L)'f-a(L)'e,(L)xmi=O, 

(4.2) 

where allowance has been made for the application of fixed couples m~ at 
s=L. 

The relations 

u ' b =  u" bdx -u'" bdx, (4.3) 

If ) a . t x F =  a. t x F d x  - a ' .  t x F d x  

can be used with the fixity conditions u(0) = a(0) = 0 to reduce (4.2) to 

a ' .  M(s) + t x F dx - ei(L) x m~ ds 
c (4.4) 

The fundamental lemma of the calculus of variations requires that both 
integrals vanish separately. For variations that satisfy the additional conditions 
u(L) = a(L) = 0, we can invoke the lemma of du Bois Reymond [31] to obtain 
the necessary conditions 

F(s)+ f~bdx=c, M(s)- f~Fxtdx=d, (4.5) 

where e and d are constant vectors. 
It is evident from (2.25) that M could conceivably be discontinuous at 

corners where the xi are discontinuous. The continuity of F follows from (4.5a) 
if b is at least piecewise continuous. Then since t is presumed to be continuous, 
(4.5b) implies that in energy-minimizing configurations M is in fact continuous 
at corners, i.e. 

AM = 0, (4.6) 
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where A is used to denote the difference of the limiting values on either side of 

a corner. 
We derive a second jump condition by considering variations in the variable 

used to parametrize a minimizing configuration {r(.), ei(')}. Here we follow the 
procedure that Bliss [1] used to obtain a similar result in the calculus of 
variations. Let the equations of an energy minimizer be written in the 

parametric form 

s = t, r = r(t), e i = ei(t); 0 ~< t ~< L. (4.7) 

Consider the re-parametrization of this configuration defined by 

s = ~(t) ,  r = p( t ) ,  e i = ~i(t);  t I ~< t < t 2, (4.8) 

with ~ > 0 for t~[t~,t2]. We use a superposed dot to denote differentiation 
with respect to t. Then the energy attributed to the configuration {r, e~} is the 
functional of ~ defined by 

~t t2 I[~] = H(~, ~; p, li; *i,/:~) ~ dt - f-p(t2) - m," ei(t2), 
I 

(4.9) 

where 

H = U ( t i ,  4 )  + - h )  - b ( ¢ ) - 0 .  (4.10) 

The third argument in the strain energy U accounts for the dependence on arc 
length that is not due to ei and el. 

We stipulate that the value of the total potential energy be invariant with 
respect to parameter transformations. To make this notion precise we consider 
variations of the form ~ ~ ~* = ~(t) + ~u(t), with u(.) piecewise continuously 
differentiable for t I ~< t ~< t 2 and u(t 0 = u ( t 2 )  = 0. The induced change in H is 

H ~ H* = H + e(udH/d~ +/~aH/8~) + o(e), (4.11) 

where the derivatives are evaluated at e = 0. From this we obtain 

(4.12) 

Then invariance requires that 

':2 [/~(H + ~8H/8~) + u(~OH/8~)] d t =  O. 
I 

(4.13) 
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Now 

and since u( t2 )  = 0, (4.13) becomes 

f t t j (H+~OH/O~-f t t~OH/O~dx)i~dt=O. (4.15) 

Because u(ti) also vanishes, we can appeal to the du Bois Reymond lemma to 
conclude that  

H + ~OH/O~ = ~OH/O~ dx + c, (4.16) 
1 

where c is a constant.  
According to (4.8) and (4.10), 

aH/~  = Us + F'(s) ' (r '  - t) - b'(s).r 

and 

aH/c~ = - ~- 2(~. ~U/ae~ + ib- F). (4.17) 

Then 

~aH/a~ = -(e~" aU/~e~ + r ' . F )  (4.18) 

so that  (4.16) is equivalent to 

U + F-(r '  - t) - b . r  - e~.aU/Se; - F . r '  

f~  [Us + F ' . ( r '  - t) - b ' . r ]  dx + c. (4.19) 

For  invariant strain energies U = w(K), (2.13) and (2.21) can be used to 

obtain 

e~" aU/~e~ = ~aw/a~j)ejike~" ek = ~¢jt~w/a~:j. (4.20) 

We also have b ' . r  = ( b - r ) ' - r ' - b .  Then for configurations that  satisfy the 
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constraint (2.2), (4.19) reduces to 

U - w ' M  - t -F  - f~ (Us + t-b)dx = const., (4.21) 

where w = xje i. Our continuity hypothesis ensures that the integral is a 
continuous function of s. The continuity of F(s) follows from (4.5a). Then from 
(4.6) we conclude that 

AU = M-Aw (4.22) 

at corners, where AU is the jump in strain energy, Aw = (Axi)e i is the jump in 
the curvatures and twist, and M is the common value of the limiting moments 
on either side of the point of discontinuity. Equations (4.6) and (4.22) together 
constitute the Weierstrass-Erdmann corner conditions of variational calculus. 
Between corners, eqs. (4.5a, b) can be differentiated to yield the Euler- 
Lagrange eqs. (3.16) and (3.18). For homogeneous rods, (3.21) follows from 
differentiation of (4.21). 

5. The Weierstrass and Legendre inequalities 

In this section we derive a version of the well known Weierstrass necessary 
condition for configurations {r, el} that minimize the energy with respect to 
strong variations, i.e. 

E[r, e,] ~< E[r*, e*] (5.1) 

for all r* and e~' such that r*(0)=r(0), e*(0)=ei(0) and I r* - r [  + 
Y~[e*- e~l < ~ for some 8 > 0 and for all se[0,L] .  Such configurations are 
called strong relative minimizers. 

Proofs of the Weierstrass condition for unconstrained variational problems 
can be found in the books by Bliss [1] and Ewing [31]. These proofs 
presuppose that the Euler-Lagrange equations are satisfied. For constrained 
problems, extensions of these proofs based on the multiplier rule have been 
given by Graves [32] and McShane [33]. Here we give a direct proof by 
considering only those perturbations that satisfy the constraints identically. 
Our derivation closely parallels Graves's proof [24] of the so-called rank-one 
convexity condition for unconstrained minimizers of functionals defined by 
multiple integrals. In particular, we do not invoke the Euler-Lagrange 
equations or the multiplier rule. 



Variational theory for  spatial rods 17 

Fo r  simplicity's sake, we first limit ourselves to the case in which the end 

s = L is free. We further suppose that  the distributed force b(s) vanishes. Fo r  

this case the potential  energy reduces to the strain energy S[ei] defined by (3.2), 
and (5.1) then becomes 

S[ei]  ~< S[e*] .  (5.2) 

The  per turbat ions  are not  arbi t rary,  but  must  be restricted in accordance with 

eqs. (2.1), i.e. 

e* -e* = 6,j, e.*" e.* , j x e~ = eij k. (5.3) 

T o  satisfy the first requirement  we set e*(s) = Q(s)ei(s) where Q is an arbi t rary  
or thogonal  tensor: Q r Q  = I. The  second of  (5.3) then gives 

eli k = (det Q)Qei" Q(ej x ek) = (det Q)elj k (5.4) 

and therefore det Q = 1. Thus  Q(s) is a rotat ion and (5.2) implies that  

Sl'ei] ~< S lQei ]  (5.5) 

for  all cont inuous  rotat ions Q(s). We note  that  these rotat ions are not  limited 
to rigid motions.  Such mot ions  are recovered by setting Q(s) = const. 

Consider  three points si; i = 1, 2, 3 with 0 < sl < s 2 < s 3 < L. Suppose the 
si do not  coincide with points of discontinui ty (corners) of the e~, if any. We 
take the e* to be continuous,  but  allow discontinuities in the (e*)' at st, s2 and 
s 3. In particular, let a and II be fixed skew tensors and set 

t 
I 

Q(s) = A(s) 

[ms) 

for s~ [0, L]  - (s t, $3) 

for s I < s < s2 

for s e < s < S3, 

(5.6) 

where A(s) and B(s) are the rota t ions  defined by 

A(s) = exp[(s -- s l ~  ], B(s) = exp[(s - s3)P ]. (5.7) 

No te  that  A(st) = I and B(s3) = I. Thus  Q is cont inuous at s = s t, s 3. To  ensure 
continui ty at s2 we take 

~ = (s2 - s t~a"  (5.8) 
kS2 - s3 /  
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Then the e*( . )  are cont inuous for all s 6 [ 0 , L ] .  It follows from the definition 
of  the exponential  function that  A' = 0tA and B' = liB, and therefore 

I e;, sE[0,  L ] - ( s l ,  s3) 

(e*)' = I=Ae~ + Ae;, st < s < s2 (5.9) 

(liBe~ + Be~, s2 < s < s3. 

F rom this it is evident that the (er) '  suller j ump  discontinuities at s = s~, s 2 

and s 3. 

We define 

A = s 3 - -  s t ,  A 1 = s 2 - -  s I = 0 •  A 2 = s 3 - s 2 = (1 - 0)A, 

where 

0 = (s 2 - st) /(s  3 - s t )s(0 ,  1). (5.10) 

Then (s 2 -- st)/(s2 -- s3) = - 0 / ( 1  - 0), so that  (5.8) can be written 

p = - 0 / ( 1  - 0K. (5.11) 

Now divide (5.5) by A and use (3.2), (5.6), (5.9) and (5.10) to obtain 

0 ['s2 U(Aei, aAei  + Ae~)ds 1 - 0 ['s3 0 ~< .]s, + ~ Js2 U(Be~, liBe~ + Be~)ds 

lfs~ A U(ei, e}) ds. (5.12) 
I 

The  definitions (5.7) imply that  A(s), B(s) ~ I as A l and A 2 --~ 0. Then if we let 
A --, 0 with 0 fixed and use the mean value theorem together  with (5.11), we get 

OU(e,,  e'i + atei) + (1 - O)U(ei, e~ - 0/(1 - 0)ae3 - U(e, ,  e'i)/> 0 (5.13) 

for all 0 ~ (0, 1) and for all skew tensors a. The  arbitrariness in the choice of  the 
points Sl, s2, s 3 implies that  inequality (5.13) must  be satisfied at each point  
s t ( 0 ,  L) of  the energy minimizer {ei(.)}. Moreover ,  (5.13) holds at corners of  
the minimizer provided that  the e; are interpreted as the appropr ia te  left or 
right limits [1]. 



Variational theory for spatial rods 19 

For small 0 we have 

( 0 )1 
1 - 0 U e i ,  e~ - - -  a t e i  = ( 5 . 1 4 )  0 1 - -  0 -0 U(e i '  e~) - U(e , ,  e~) 

-=e~" OU/cge~ + (1 - 0)o(0)/0, 

where the derivatives are evaluated at 0 = 0. We substitute this into (5.13) and 
let 0 --* 0 ÷ to arrive at the Weierstrass inequality: 

U(ei, e~ + atei) - U(ei, e~) - atei.c3U/Oe~ >>, 0, Vskew at. (5 .15)  

This inequality is also valid if e~ and e~ + ae~ are taken to be the left and right 
limits of e~(s) at a corner, and vice versa. The resulting inequalities can be used 
with moment-continuity (see (4.6)) to obtain the Weierstrass-Erdmann condi- 
tion (4.22) (see 1-31]). The latter condition is therefore necessary for configur- 
ations with corners that minimize the energy with respect to strong variations. 
This type of variation is implicit in the derivation of Section 4; the parameter 
transformations considered there induce translations of the functions p and c~ 
with respect to arc length s along the rod. This amounts to a strong variation 
for fixed values of the arc length. 

The condition (4.22) is not necessary if the minimum is weak in the sense that 
Ir* - rl + 2:ile* - e i l  + 2:~l(e*)' - e~[ < 6 for all s r [0 ,  L]. The moment conti- 
nuity condition (4.6) remains valid, however, as weak variations were used in 
the development leading to (4.5). Because the class of weak variations is smaller 
than the class of strong variations, it follows that strong minima are also weak 
minima, but the converse is not valid. 

To interpret the Weierstrass inequality (5.15) for invariant strain energies 
U = w(K), we use the definition g i = ½eijkek 'e~ (see (2.13)) to infer that 

U(ei, e' i + aei) = w(~), (5.16) 

where 

^ ± . 

fC = ~ i E i ;  Ic i = 1¢ i "k 2 c o k e  k ores. (5.17) 

Next we use (2.21) to write 

ae~" aU/ae~ = ½(c3w/Otcj)ejike k "aei. (5.18) 
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Since a is skew, it follows from (5.17) that ek'ae ~ = e~u(kt -- xt), and therefore 
the Weierstrass inequality (5.15) is equivalent to 

w(f~) -- W(K) -- (fCj -- tCj)t3W/C3Xj >1 O, Vs . (O,  L), (5.19) 

where the derivatives are evaluated at the function K(S) furnished by the 
minimizing configuration. Thus for every s ~ (0, L), K(S) belongs to a domain of 
convexity of the function w('). 

For small Ii - K[ we obtain 

_ ±,--or# _ x~Xfcj - x~) + o(l~ KI2), (5.20) w(~) = w(K) + (~j K~)aw/a,cj + ~ u , , ~ ,  

where C ° is the value of the stiffness 

C u = d2w/dx~dxj (5.21) 

furnished by the minimizer. Substituting (5.20) into (5.19), dividing by I& - KI 2 
and passing to the limit & ---, K, we find that the Weierstrass inequality implies 
the Legendre condition I-1]: 

C °  aia~ >>, O, Vat. (5.22) 

It can be shown by direct methods that this condition is also necessary for 
configurations that minimize the energy in the weak sense 1,31]. Thus a 
configuration is a strong or weak minimizer of the energy only if the associated 
stiffness is positive semi-definite. 

Our development so far has been based on the premise that minimizing 
configurations contain at most a finite number of points (corners) at which K(s) 
may be discontinuous. We show that if the domain D of w(.) is convex and if 
the strict Legendre condition is satisfied as a constitutive inequality, i.e. 

Co(K)aia J > O, Va i # O, (5.23) 

for all K~D, then K(s) is continuous and there are no corners. Let K+ and K_ 
be the limiting values of ~(s) on either side of a corner. Then the jump 
AK = K+ - K_ must satisfy the Weierstrass-Erdmann conditions (4.6), (4.22), 
which can be expressed in the forms 

(Ow/ax,)+ - (aw/Ox~)_ = 0 
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and 

w(K+) - w(K_) - Axi(aw/Ox~) + = 0, (5.24) 

respectively. The second of these restrictions need not be satisfied if the 
minimum is weak. Since D is convex, the line segment connecting K+ and K_ 
is contained in D, and each of eqs. (5.24) implies that 

AxiA~ciCij[K_ + 0(K+ - K_)] = 0 (5.25) 

for some 0~(0, 1). This contradicts (5.23) unless K(s) is continuous, i.e. AK = 0. 
Finally, we demonstrate that the Weierstrass and Legendre inequalities 

remain valid for the dead loading problem. To this end we show that with Q 
defined by (5.6) and A defined by (5.10a), we have 

A-  l(e[r*, e*] - P[r, el] ) ~ 0 as A --, 0 +, (5.26) 

and therefore the presence of the load potential does not affect the development 
leading to (5.13). For the potential given by (3.3) and (3.23), we find 

P[r*, e* ] - PI-r, ei] = ~ b. (r* - r) ds + f. [r* (L) - r(L)] + m i • [Q(L) - I]ei(L ). 

(5.27) 

The terms involving the end couples vanish because Q ( L ) =  I, according to 
(5.6). 

In view of (2.2), the displacement r* - r induced by the perturbation (5.6) is 

r*(s) - r(s) = f~ [ Q ( x ) -  I]t(x)dx. (5.28) 

This vanishes if 0 ~< s ~< s r Elsewhere, it reduces to 

Ill [Q(x)-l]t(x)dx, s,<s<s3 
r*(s) - r(s) = 3 (5.29) 

Ifs [Q(x)-I]t(x)dx's3<'s<~L', 
Then for all s ~ [0, L], 

r(s)[ ~< A [ max I(Q(s) - I)t(s)l]. (5.30) ]r*(s) 
LSE(S|,S3) d 
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According to (5.6) and (5.7), 

(s - s~)a  + o(Is - s~l), s~ < s < S 2 

Q(s) - I = (s $3)1~ + o(Is - s3l), s 2 < s < S 3 
(5.31) 

for small A. Thus I(Q(s) - I)t(s)l = 0(A) and it follows from (5.30) and (5.27) that 
P1,r*, e*] - PI-r, e i] = o(A), so that (5.26) is valid. 

6. The Legendre inequality for transversely isotropic rods 

To give a concrete interpretation of the Legendre necessary condition, we 
consider its implications for a rod that is transversely isotropic in a sense to be 
defined. The theory of transversely isotropic rods includes as a special case the 
classical theory for rods with equal principal flexural stiffnesses 1,5]. As in the 
classical theory (I-4], art. 259), we assume that the strain energy w(~:; K °, s) 
depends on K and K ° through the vector difference 

7 = ~ - K° = 7iE~; 7i = xi - x °. (6.1) 

This is simply the axial vector of the tensor RrR  ' (see (2.10)) that measures 
relative curvatures and twist. We denote the strain energy by w(Ti ) and suppress 
reference to explicit s-dependence due to non-uniformity of the material 
properties. 

Consider the basis transformation Ei --, E* = pTE~, where P = PoE~ ® Ej is 
orthogonal. For such transformations we have 7~ ---' 7* = P J i ,  and we define 
transverse isotropy by the requirement 

W(7i) = w(Pi . i~ j )  , P ~ SG, (6.2) 

for all 7, where SG is the symmetry group 

SG = {_+P,,-+P2} (6.3) 

consisting of all orthogonal transformations with axis E~: 

Pl = El ® El + S(0), P2 = El ® E~ - S(0); (6.4) 

S(0) = cos 0(E 2 ® E2 + E3 ® E3) + sin 0(E 3 ® E2 - E2 ® E3), 0e [-0, 27r]. 
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We use the notation ~b = ~ for the relative twist. Then 

Ill = 6il ~ "~- t~i~t]t~t, (6.5) 

where y,(~t = 2, 3) are the relative curvatures, and for P = PI or Pz we find that 
(6.2) reduces to 

w(~b, 3',) = w(4~, _+S,#~,#). (6.6) 

This is valid for all y, if and only if there is a function F such that 

w(~, y,) = F(~, ~); ~b = (~,)7,)  1/2. (6.7) 

The only additional restriction imposed by (6.2-4) is F(ck, ~b) = F ( -  ok, ~b). Thus 
the rod is transversely isotropic if and only if 

w(y,) = F(~b, ~O), (6.8) 

where F( ' ,  ~) is an even function. 
A straightforward calculation based on (6.1) and (6.7) yields 

Ow/Ox~ = F06 . + O-1Fq, JiaY~, (6.9) 

where subscripts ~ and ~, are used to denote partial derivatives. Then from 
(2.25) we derive the constitutive relation 

M = F~t + ~ - ~ F ~ , e , ,  (6.10) 

which implies that [F~[ and IF, I are the magnitudes of the torsional and 
flexural moments, respectively. 

The stiffness can be obtained from (5.21), (6.1) and (6.9): 

C~j = F4~4~6il 6jl + ~O - t Fq , (6 i ,  t~j, - ~ -  26i,6jt~]~]~p) 
(6.11) 

The associated quadratic form Cuaia j can be written 

Coa~a j = F~4,a 2 + ~O-I F ,  Ibm, b, - qJ-2(b,~,)(bpy~)] 
(6.12) 

+ ~O- 2F, q,(b,y,XbtjYt~) + 2aO- I F4,q,(b,~,), 



24 D.J. Steigmann and M.G. Faulkner 

where a = a~ and b~ = a~. We define unit vectors m~ and n~ by ~ = Sm~ and 
b~ = bn~. Then 

C~iaia i = F¢c,a 2 + [(1 - 02)$ - ~F~, + 02F**]b 2 + 2abOF¢~¢, (6.13) 

where 0 - m~n~e[-1 ,  1]. For fixed 0 this is a quadratic form in (a,b), and is 
non-negative if and only if 

FO¢ ~ >i O, 02F** + (1 - 02)$- 1F~,/> 0 

and 

FC, c,[O2F¢~, + (1 - -  0 2 ) $  - ~F~,-I t> 02(F$,) 2. (6.14) 

The necessary conditions 

$-  tF, >1 O, F** >1 0 (6.15) 

follow from the second of inequalities (6.14) by setting 0 = 0 and 0 = _+ 1, 
respectively. These are clearly sufficient also, since 02 ~ [0, 1]. The third inequal- 
ity in (6.14) is equivalent to 

(1 - 02)$ - tF,  F¢,  + 02[F¢(~F,¢ - (F¢,) 2] i> 0. (6.16) 

In view of (6.14a) and (6.15a), this is satisfied for fixed ($ ,$)  and for all 
02 e [0, 1] if and only if 

F~,c,F** - (F¢¢) 2 i> 0. (6.17) 

Thus the quadratic form C~ia~a ~ is positive semi-definite if and only if 

$ - ~ F ,  i> 0 (6.18) 

and F is jointly convex in its arguments: 

Fee >>. O, F , ,  >>. O, F,c,F** - -  (F¢~,) 2 >/0. (6.19) 

The classical theory [4] is based on quadratic strain energies of the form 

F(•, $) = ½At# 2 + ½B$ 2, (6.20) 

where A(s) and B(s) are the torsional and flexural rigidities, respectively. Our 
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results imply that the stiffness is positive semi-definite if and only if the 

rigidities are non-negative. This in turn implies that the strain energy is positive 

semi-definite. 
Returning to the general theory, it follows from the results of the previous 

section that a configuration minimizes the energy only if the associated values 
of tk(s) and ~,(s) satisfy inequalities (6.18) and (6.19) for every s~(0, r.). We note 
that (6.18) and (6.19) need not be interpreted as constitutive inequalities, 
however. Thus if they fail on some subdomain of the strain energy function, 
then values of ~b and ~k in that subdomain cannot be present at any point in a 
minimizing configuration. The objectionable values are excluded by allowing 
for the presence of jump discontinuities (corners) in tk(s) and ~b(s). This sort of 
behaviour has been investigated by Fosdick and James I-2, 3] for problems 
involving plane deformation without twist. 

It is evident from (6.10) and (6.18) that in energy-minimizing configurations 
the flexural part of the moment either vanishes or has the same sense as the 
relative curvature vector 3'~e~. It is interesting that the Legendre inequality 
implies nothing about the sense of the torsional moment. If we adopt the mild 
constitutive assumption that F4, >/0 when ~b >t 0, then the evenness and 
smoothness of the function F(',~b) imply that the torsional moment either 
vanishes or has the same sense as the twist. We do not know if this is necessary 
for stability, however. 
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