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1. Introduction 

The equilibrium of a planar, rigid body is one of the first problems to be 
discussed in any book on statics. However, we are not aware that the simple 
facts described in this note are generally known and we hope that we can offer 
some new aspects to the understanding of this old and fundamental topic. 

We consider a planar, rigid body in the presence of a uniform, vertical 
gravity field, supported by rolling contact with a straight horizontal surface. 
We consider two types of bodies: (1) a slab-like body with constant density 
(weight per unit area) and (2) a wire-like body with constant boundary density 
(weight per unit of boundary arc length). 

Typically such a rigid body will have at least one stable equilibrium position 
since the potential energy is a periodic function which is bound to have at least 
one minimum. (By "typically" we mean that constant and non-smooth poten- 
tials are excluded.) We claim, however, that if the body is convex then there 
exists a second stable equilibrium position. We will show that the homogeneity 
and convexity requirements are essential, since in their absence examples with 
only one stable equilibrium can be constructed. 

In Section 2 we formulate our claims more precisely, Section 3 deals with 
the proof for the planar body, Section 4 with the proof for the wire, in Section 
5 we discuss non-convex bodies and in Section 6 we mention possible 
generalizations. 

2. Notations and claims 

Let us consider a planar, rigid, strictly convex (curvature bounded away from 
zero) and homogeneous body ~ with center of gravity at point G, lying on a 
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60 G. Domokos et al. 

B 

I I l l l l l l l l l l l l l l l l l l l l l [ l l l l l l l  I I I l l l l l l l l l l l ] l l l  

Fig. 1. The body ~, center of gravity G with height h(~t) and radius at contact point r(~t). 

horizontal plane. The circumference of & will be described as a function r(0t), 
~ [0, 2n) in a polar coordinate system fixed to ~ ,  with origin at G. (see Fig. 1.) 
The function r(~) will be assumed to have isolated stationary points. 

PROPOSITION 1. ~ has always at least two stable equilibria. 

Let us now consider a homogeneous wire ~g on the circumference of 9~. 

PROPOSITION 2. ~ r  has always at least two stable equilibria. 

The function h(~t) will be interpreted as the height of the center of gravity G at 
the value of ~t when the point of contact is marked by r(~t). (see Fig. 1.) 

3. Proof of Proposition 1 

First of all we would like to show that Proposition 1 is equivalent to 

COROLLARY 1. The function r(ct) has at least two local minima. 

In order to show this equivalence we will rely on 

LEMMA 1. ~ is in a stable equilibrium configuration if and only if r(~) has a 
local minimum at the contact point. 

Proof of  Lemma 1. We take as understood that a stable equilibrium implies 
a local minimum of h(ct), (and vice versa). Thus we have to show that all local 
minima of h(~t) and r(0t) coincide. From the kinematics of monotonic rolling 
(monotonicity is a consequence of the convexity of ~ )  we learn that those and 
only those points of 9~ move locally in horizontal direction which lie above the 
point of contact, since the rolling motion is locally equivalent to a rotation 
around the point of contact (see Fig. 2.). 
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Fig. 2. Kinematics of monotonic rolling (velocity field) 
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From this we conclude that if G has a stationary height h(ct) it has to lie 
above the point of contact, i.e. 

h(~t) = r(~) if and only if h(~) is stationary. (1) 

On the other hand we observe that the perimeter of M is tangent to the circle 
with center G and radius r(~) if and only if r(ct) is stationary. In this case the 
normal of the perimeter passes through G. (see Fig. 3). 

From this fact we conclude that 

r(ct) = h(ct) if and only if r(~) is stationary. (2) 

From (1) and (2) we learn that the functions r(~) and h(~) (both having period 
2~) have stationary points at the same values of ~t, moreover, at all stationary 
points the function values coincide. Thus far we did not claim that the 
corresponding stationary points of h(~) and r(~t) are of the same type, i.e. the 
second derivative has the same sign. However, we observe that if any of the 
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Fig. 3. Stationary value of the radius r(~t). 
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corresponding stationary points would be of a different type (for example h(ct) 
had a maximum at the same value of ot when r(~t) had a minimum or horizontal 
inflexion) at least one of the neighbour stationary points the function values 
could not coincide, thus we would contradict either (1) or (2). Therefore we 
conclude that the type of the stationary points is identical, i.e. h(ct) has a local 
minimum if and only if r(ct) has one, thus ~ has a stable equilibrium if and 
only if r(a) has a local minimum. [] 

Now we can proceed to deliver 

Proof  o f  Corollary 1 
Assume that the statement is false. In this case r(a) has exactly one minimum, 
and consequently, one maximum in • E [0, 2~r). Let us denote the corresponding 
values of ~ by ~mi, and am=x, respectively. Now let fl = ~ - 0~min; the function 
r(fl) is depicted in Figure 4. 

Let us draw a horizontal tangent to r(fl) at fl = 0~ma x - -  0~ml n and lower this 
horizontal (r = constant) line continuously. The segment of the horizontal line 
lying below r(fl) will grow monotonically from O to 2x, thus it has to pass the 
value of 7r. Denote the corresponding value of r by ro, the corresponding values 
of fl by fll and f12. From this definition of fll and f12 it follows that 

r(fl) < r o < r(fl + n) if fiE(ill, f12). (3) 

Since f 1 2  - -  f l l  = ~, (3) implies that there exists a straight cut c of ~ passing 
through G such that any radius in one part is greater than any radius in the 
other part. Since G is the center of gravity of 

~f *+ 2, sin(fl - [3")r3([3) dfl = 0 
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Fig. 4. The function r(fl) and the horizontal cut. 
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for all E*. To balance moments about the line c is expressed by setting E* = Ex 
yielding 

f l  ~2 sin(E f l l)(r3(fl)  --  r3(fl 4- ~Z)) dE = O, (4) 
1 

which contradicts (3). Thus we have proved Corollary 1. [] 

Since Lemma 1 tells us that Corollary 1 is equivalent to Proposition 1, we 
proved Proposition 1 as well: A uniform, convex solid has at least 2 stable 
balance points. [] 

4. Proof of Proposition 2 

This proof coincides with the previous one up to (3), i.e. we have again a 
straight cut c passing through G, dividing ~ into two parts ~ and ~2 in such 
a way that any radius in ~ r  is smaller than any radius in ~F 2. However, this 
fact does not provide direct evidence for contradiction, since the balance of 
moments about c depends now not only on r(E) but on the derivative ~(E) of 
the arclength, as well (the operator d/dE( ) is denoted by (')). The analogous 
equation to (4) can be formulated as 

fa ~ sin(E - E,) (r (E)g(E)  - r(E + n)~(E + ~)) dE = O, 
1 

( 5 )  

and nothing guarantees that ~(fl) < ~(E + ~)- In order to eliminate this ditfi- 
culty we define a mutually one-to-one mapping M between points of ~ and 
~2 in such a way that both the corresponding values of r(E) and the 
corresponding values of s(E) are related in the same way. 

Let us reflect the segment ~2 around c to obtain ~2. Now we have two line 
segments on the same side of c, ~ lying inside ~2 (See Figure 5.) 

We introduce the arclengths on the inner ~ and outer ~2 segment 
respectively by 

s , ( E )  = s (E)  - s ( E , ) ,  

s 2 ( ~ )  = s ( f l l )  - s ( 2 f l l  - fl) ,  

(6) 

and the mapping M:Sl ( f l )~"~s2( f l )  is defined by projecting the inner line 
segment along its normal onto the outer line segment (Cao, personal communi- 
cation). Since the inner line segment is convex, the (local) triangle inequality 
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Fig. 5. Mapping between the segments of the wire. 

~2 

always implies (dsz/dsl) > 1 from which 

S2(fl) > Sl(fl) (fl E(fll,  f12)) (7) 

follows by the chain rule. The distance between the inner and outer line along 
the normal will be denoted by }(fl), the angle between ~(fl) and c by ft. Using 
these notations the level arms (distances from c) l~(fl) and/2(fl) of correspond- 
ing points on the inner ~ and outer ~2 line can be expressed as 

/l(fl) = r(fl) sin(fl  - i l l ) ,  

/2(fl) = 11 + ~(fl) s in(f l) .  
(8) 

Since 0 < fl < ~ we have always 

l~(fl) < l~(fl) (fl E(fl, ,  fie)). (9) 

The expression (5) for the balance of linear momentum can be re-formulated 
now as 

f 2 (l l ( f l )g,( f l )  _ 12(fl)g2(fl)) dfl = 0, 
t 

(10) 
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which is a contradiction because of (7) and (9). Thus we proved Proposition 2: 
A homogeneous convex wire has at least 2 stable balance points. 

5. Non-convex bodies 

Our results thus far relied on convexity. We will now investigate what 
statements are possible for non-convex bodies. 

The rolling of non-convex rigid bodies can be interpreted in two different ways. 
The physical (and more realistic) interpretation assumes that non-convex bodies are 
rolling on their convex hull. Based on this interpretation it is easy to construct a 
non-convex body for which our propositions fail, i.e. which has only one stable 
equilibrium. Figure 6 depicts one example for the homogeneous slab and one for the 
homogeneous wire. (G is the center of gravity, C is the center of the bounding circle). 

However, there exists an (at least mathematically) plausible interpretation of 
rolling for non-convex bodies. In this interpretation the body rolls strictly on 
it's circumference, which implies that material overlap with the supporting 
plane has to be admitted. Moreover the contact force may change sign, as well. 
This type of "rolling" is depicted in Figure 7. 

If we accept this interpretation then we claim that the body has to have at least 
two stable equilibria. In order to show this we observe that in this type of rolling 
the minimum of r(0t) is still sufficient but not necessary condition for stable 
equilibrium, since at the inflexion points of the circumference the direction of 
rolling changes sign, and therefore every inflexion point means a (non-smooth) 
extremal position for the center of gravity G. Since inflexion points always 
appear in pairs, moreover there exist always two smooth extrema for r(~) (and, as 
a consequence, for h(~t)) there will be always four extremal positions for the 
center of gravity G, which implies necessarily two local minima. We remark that 
at the mentioned non-smooth extrema G is generally not above the point of 
contact, hence a moment at the contact point is needed as well to maintain 
equilibrium. 

a) b) 
Fig. 6. Non-convex bodies with only one stable equilibrium; (a) slab, (b) wire. 
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Fig. 7. An alternative interpretation for non-convex rolling. 

6. Concluding remarks 

We have shown that planar, rigid, homogeneous bodies with strictly convex 
boundary having isolated critical points always have two stable equilibria. This 
statement still holds if: (1) the body is non-homogeneous but the mass 
distribution depends only on r(~) (2) the boundary is convex but not strictly 
convex, i.e. we admit straight segments. Both generalizations can be proven by 
using the same line of thought, though more technical details are needed. This 
was the reason why we showed the proof only of the homogeneous, smooth 
case. Generalization (2) is valid for the planar wire, as well. 

In the case of non-convex bodies we showed that by adopting the "tradi- 
tional" interpretation of rolling there are cases when the body has only one 
stable equilibrium. However, if we accept the "alternative" interpretation for 
rolling then the body still has at least two stable equilibria but for different 
reasons as the convex body. 
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