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ABSTRACT 

Sufficient conditions are obtained for continuous dependence of solutions of boundary value problems of 
linear elasticity on internal constraints. Arbitrary hyperelastic materials with arbitrary (linear) internal 
constraints are included. In particular the results of Bramble and Payne, Kobelkov, Mikhlin for 
homogeneous, isotropic, incompressible materials are obtained as a special case. In the case of boundary 
value problem of place, a compatibility condition is obtained between the internal constraints and the 
boundary data which is necessary for the existence of solutions. With a further coercivity assumption on 
the compliance tensor, it is shown that the compatibility condition is also sufficient for existence. An 
orthogonal decomposition theorem for second order tensor fields modeled after Weyl's decomposition of 
solenoidal and gradient fields leads to the variational formulation of the problem and existence theorems. 

Almost all the results here apply to materials both with or without internal constraints. For internally 
constrained materials however, the verification of certain hypothesis is surprisingly non-trivial as indicated 
by the computation in the appendix. 

In a previous paper [17] we have obtained some results concerning the dependence 
of the minimizers of quadratic functions on the linear operator defining the quadratic 
function. Here we apply these results to the mixed boundary value problem of linear 
elastostatics for internally constrained materials. Our aim is to find conditions under 
which the solutions of the boundary value problem are continuous functions of 
the elastic properties of the material. For this, we develop a unified formulation of 
the equations of elasticity which includes both the internally constrained (e.g. 
incompressible) and unconstrained (i.e. standard) linearly elastic materials. The usual 
condition of the coercivity of the elasticity tensor is replaced with a positive-semi- 
definiteness condition on the compliance tensor (Section 1). We show in the 
Appendix that the homogeneous and isotropic materials with Poisson ratio v in the 

1 interval (-1, ½] and positive shear modulus satisfy our condition. In particular, v =7 
corresponds to an incompressible material. This unified theory allows direct com- 
parison between the solutions of the boundary value problems corresponding to 
internally constrained and unconstrained materials. 

To illustrate, consider the following standard formulation of the mixed boundary 
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12 R. Rostamian 

value problem where S and u are the stress and displacement fields respectively. 

div S = [ in f /  

C ( E u ) = S  in f~ 

u =  fi on 01f~ (E-l)  

Sn = g on 02f~ 

Here  f is the body force field and fi and g are the prescribed surface displacement 
and traction on disjoint subsets 01f~ and 02f~ of the boundary. We have written Eu 

for the strain field corresponding to the displacement u, and C is the elasticity 

tensor. 
The equations (E-l)  apply when there are no internal constraints present and 

should be modified for internally constrained materials. For example, for incompres- 

sible materials (E- l )  should be replaced by 

div S = f in f l  

C ( E u ) = S + p I  in f l  

div u = 0 in ~ 

u = fi o n  Ol f~  

Sn = ~ on 02f~ 

(E-2) 

where an extra unkown (p) and an extra equation (div u = 0) are introduced. See 

Gurtin [7], Section 58 for derivation and Pipkin [15] for further discussion. For a 

general treatment of internal constraints in continuum mechanics see Truesdell and 

Noll [21]. 

The equations (E- l )  and (E-2), being of different types, complicate the procedure 
of comparison between their respective solutions. Specifically, they do not explicitely 
exhibit the intuitional notion of the "closeness" of the solutions of (E- l )  to those of 
(E-2) when the material satisfying (E- l )  is only slightly compressible. This problem 
is eliminated when we express the constitutive equation of the material as strain as a 

[unction o[ stress, so that we obtain 

div S = f in 1) 

E u = K ( S )  in ~ 
(E-3) 

u = 5 on 0111 

S n =  g on 02f~ 

The compliance tensor K may or may not be invertible. When K -1 exists, (E-3) is 
equivalent to (E-l) ,  but when K has a non-trivial null space the stress fields that fall 
within the null space of K do not contribute to the strain, so the material exhibits an 
internal constraint. For example, if K is such that 

N ( K )  = {pI :p  an arbitrary scalar field on [1} 
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then the material is incompressible, because clearly arbitrary pressure fields do not 
affect the strain. In fact, for an isotropic and incompressible material with shear 
modulus /x, we have 

K(S) = ~ [S -½(tr S)I] 

whence the null space given above. 
The constitutive equation in (E-3), having the same form for both constrained and 

unconstrained materials, is best suited for our purposes. We will always assume that 
the internal constraints are specified via prescribing the null space of K. In this 
regard, we remark that Pipkin [15] has shown that the a priori prescription of a 
constraint of the type 

~ ai~(x) °--u~(x)=O, x~a 
~,i Oxj 

with a given tensor field A = (a~j), is equivalent to the statement 

A ~ N(K). 

To study the dependence of the solutions of the problem (E-3) on the material 

constants, we proceed as follows. Let  {K~}~_~0 be a family of compliance tensors such 
that K~ --> K0 as e ---> 0. In general, solutions (u~, S~) of (E-3) corresponding to K~ do 
not converge as e -~ 0. (The non-uniqueness of the solutions due to non-invertibility 
of K~ or some special boundary conditions is not the issue as we shall see.) The 

result stated in Theorem 5.1 establishes conditions on the family {K~}~_~ 0 which 
imply the convergence u~ --~ u0. There w,e also obtain a bound on the rate at which 
S~ might blow up as e--> 0. For the special case of homogeneous and isotropic 

materials approaching incompressibility, our results coincide with the ones obtained 
by Bramble and Payne [1], Kobelkov [11] and Mikhlin [13]. 

The paper is organized as follows. In Section 1 we introduce the basic notation 
and definitions and state the hypothesis on positive-semi-definiteness of K. In 

Section 2 we obtain some necessary conditions on the data of the problem for the 
existence of solutions. In particular, we make precise the conditions to be satisfied by 
the prescribed displacement fi on part 0 ~  of the boundary such that it is compatible 
with the given internal constraints. In Section 3 we prove an orthogonal decomposi- 
tion theorem for the Hilbert  space of second order tensor fields defined on domain 
~.  This result is used in Section 4 to reformulate the boundary value problem as a 
variational problem, then the existence of solutions is established. In Section 5 we 
study the problem of the dependence of solutions on the compliance tensor and in 
Section 6 we examine the implications of the general theory. 

1. Definitions and assumptions 

Let f~ be an open, bounded domain in ~m with locally Lipschitz boundary 0~.  Let 
011) and 02~ be open (relative to 01)) subsets of 01~ such that 01~ f102f~ = ~ and 
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- -  
01~ A 02f~ = Off. Also assume that the boundaries of 01f~ as submanifolds of Ofl are 
smooth (locally Lipschitz will be sufficient). With H s (~), s ~ N, we denote the space 
of restriction to f~ of the distributions u in R'* such that (l+l~l)sfi(~)~L2(N"*), 
where fi is the Fourier transform of u. For u ~ (Hl(fl)]  r~, we let y(u) denote the trace 
of u on O~. y is a bounded, linear map of [Hl(f l)]  "* onto [H1/2(Of~)] m and 

~(u) = uloa whenever u is continuous up to the boundary. 
Let  ~ ,  be the space of m x m symmetric matrices. Let  

H =  {S :f~-~ ~ S~L2(F t ) ,  i , j = l , 2 , . . . , m } .  

Define the divergence operator 

div : H--> [@'(Ft)] m 

by 

"~ 0 
(div S)i-- .=~ ~xTx ~ S~, i =  1 , . . . ,  m. 

! 1 

We also set 

°V = {S e H : d i v  S e [ L 2 ( ~ ) ] m } .  

H is a Hilbert space with the inner product 

Io i,j= 1 

and the corresponding norm denoted by I1. r is a Hilbert space with the norm 

IISII 2 = IS[  2 -~ Idiv SI[, 

For S e ~F one can give a meaning to the normal component  Sn[aa, n = unit normal 

to the boundary, in the sense of the distributions. In fact, it can be shown, see 
H~nlich and Naumann [10] for example, that there exists a bounded, linear map 
"rr:~'---> [H-I/2(O~)] m such that ~r(S)= Snloa if S is continuous in ft. Moreover,  the 

following version of Green's  formula holds: 

(S, Eu )=  (~r(S), , / (u)}-(div  S, u )~  (1.1) 

for all S e ~F, u e [Hl ( l ) ) ]  = where Eu =½(Vu +(Vu) r)  is the symmetric part of the 

gradient of u and where (., .} denotes the duality pairing of H-s(OY~) and H~(Of~) as 
an extension of the inner product of L 2. 

Now we state the mixed boundary value problem of linear elasticity as follows: 

Problem 1. Let  f~ [L2(~) ]% fie[H~/2(O~f~)] ~, ge[H-~/2(O~fl)] '~. Let  K be a 
bounded linear operator  on H. Find S e °V and u e [HI([)~)] m such that 

div S = f in f~ (1.2) 

E u = K S  in f~ (1.3) 

' ) / (R)  = /~ o n  ~1 f l  (1.4) 

w(S)= g on O2fZ (1.5) 
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Remark. The last equality has of course to be interpreted in the sense of the 
distributions. 

Remark. The spaces Hol/2(01~) and H-I/2(O2Ft) are understood in the sense of 
H6rmander  [9]. fi ~H~/Z(01f~) means that fi is a function in H1/z(o~) and has its 

support in 01YL ~H-~/2(0~11) means that g is a distribution defined on 02f~ and has 
an extension to 0f~ which is in H-~/2(O~). With these definitions, H-1/2(01~)) and 

H~/2(Oz~)) are duals of each other. These spaces are different from the spaces 
denoted by the same symbols in Lions and Magenes [12] for example. I am indebted 
to Professor M. S. Baouendi for bringing this point to my attention. 

In Section 4, we reformulate Problem 1 as a minimization problem. To obtain the 
existence of minimizers, we will assume that the operator K satisfies some additional 
properties. We list these properties here after the following definitions. 

Let  

V = {S ¢ °V : div S = 0 in ~ ,  ~'(S) = 0 on a2fl} 0.6) 

It is easily verified that this is a closed subspace of H. Let  N(K) denote the 

null-space of the operator  K and let W be the orthogonal complement of V(3 N(K) 
in H:  

[Vf3 N(K)]  ~ W -- H (1.7) 

Let  P : H - *  W be the orthogonal projection onto W. We will assume throughout 
this paper that the compliance operators K satisfy the following hypothesis: 

(K1). K is a bounded, linear, self-adjoint operator  on H. 
(K2). K is non-negative, i.e. 

(S, KS) >- 0 '¢S • H. 

(K3). K is semi-definite in the following sense; there exists a o ->0  such that 

(s, KN)>_- o- IPSl 2 vs v 

Remarks. 
(i) The hypothesis K3 is equivalent to 

(K3'). There exists a cr > 0 such that 

(s, Ks)>=, lsl 2 w 

(ii) The semi-definiteness hypothesis K3 is consistent with the possibility of the 
null-space of K being non-trivial, for if S ~ V fl W as in K3' and if simultaneously 
S ~ N(K),  then S = 0 by (1.7), so this does not contradict K3'. 

(iii) The condition K3 is in particular satisfied in the case of homogeneous,  
isotropic elastic materials for which the elasticity tensor is positive-definite. To see 
this, we note that for such materials the compliance tensor K has the form 

1 [ v.iV S)I] K(S) = ~--~ L S - - - - 7 7  (tr (1.8) 
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where ~x is the shear modulus and v is the Poisson's ratio. The positive-definiteness 
of elasticities is equivalent to ix>0  and - 1 <  v<½ (see Gurtin [7], Section 24). 
Clearly N(K)--{0}, so we obtain from (1.7) that W =  H. It is easily verified that 

1 s l ~ 2 ] e ~ ( v )  Isl 2 (S, gS ) - - -~  [ lS[2- v-Y~ ]tr (1.9) 

where ~(v)= min [1, (1-2v) / (1  + ~)], hence the condition K3' is satisfied. 
(iv) Notice that coefficient o- = (1 - 2v)/2/x(1 + v) approaches zero as v -~  ½ i.e., 

when the material becomes almost incompressible. The positive-definiteness of K is 
lost in the limiting case of v=½. The semi-definiteness property K3, however, 
persists. The proof is given in the Appendix. Here we remark only that when v = ½, 
we have 

N(K)={S~H:S  =pI, p ~ L2(a)}. 

Hence 

V fq N(K) = {S ~ H: S = cI, c ~ ~} 

when 02~~ = ~ ,  and 

V C~ N(~:)  = {0} 

when 02~ ~ ~ .  
Thus 

Vf-I W =  tS  ~ H:d iv  S 0 

when 02f~ = ~ ,  and 

in f~, fatrS(x) dx=O} (1.10) 

Vf ' IW=V={S~H:d ivS=O,  ~-(S)=0 on 02~} (1.11) 

when 02~'] @ Q~, 

2. Necessary conditions for the existence ot solutions 

Problem 1 will not have a solution in general without further qualifications. In this 
section we obtain a set of necessary conditions to be satisfied by the data of the 
problem if a solution is to exist. 

(i) The compatibility of displacement boundary conditions with internal constraints 
In the classical boundary-value problems of elasticity the boundary displacement 

data are only limited by their smoothness. In the presence of internal constraints 
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however, additional compatibility conditions should be satisfied. To illustrate, con- 
sider a boundary value problem corresponding to an incompressible material and 
where the displacement is to be specified on the entire boundary. (In our notation 

01~ = Of~, 02f~ = ~3). Since the only admissible deformations are the volume preserv- 
ing ones and since the volume of the deformed configuration is determined com- 
pletely by the prescribed boundary data, this limits the class of the admissible 
boundary data to those which map the boundary 0fl of ~ onto surfaces which 

enclose a volume equal to the volume of ~ .  The class of admissible boundary 
data in the case of an arbitrary internal constraint and when the displacement is 
prescribed only on part of the boundary is no more intuitively obvious. For a 
complete characterization of this class we recall the definition of the subspace V in 

Section 1: 

V = { S ~ ' : d i v S = O  in ~,  

~r(S) = 0 on 0al-I in the sense of the distributions}. (2.1) 

and we prove 

THEOREM 2.1. A necessary condition for the existence of solutions of the Problem 1 
is the following: 

(w(S'), f i )=0  VS'~ Vf3N(K) (2.2) 

Proof. Let  (S, u) be a solution of the Problem 1. Then for any S'~ V n N(K) it 

follows from Green 's  formula (1.1) that 

o = (KS ' ,  S) = (S ' ,  KS)  -- (S', ~u) 
= (vr(S'), 3~(u)) - (div S', u )~  

= (~(s'),  a )+(~(s ' ) ,  ~ , (u) -a)  

The last term is zero because 7 ( u ) -  fi ~ H~/2(32~) and ~r(S') = 0 on 3aYL This proves 

the Theorem. 

Remark. In the absence of internal constraints, N(K)={0},  so (2.2) is trivially 

satisfied. 

Remark. If K corresponds to an incompressible elastic material, then K(I)= 0 
where I is the identity stress field (i.e. the homogeneous stress field which can be 
represented by the identity matrix everywhere), so I~ N(K). When 32f~ = ~ we also 

have I ~  V, so in this case (2.2) implies that 

( w ( I ) , f i ) = f  f i . nda=O,  
Jo 

that is, the mapping fi does not change the enclosed volume, as expected. 

(ii) The compatibility of the boundary tractions with the body forces 
This condition is necessary only when 011)= ~ .  We state it here in a somewhat 
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general form so that our result applies to domains, of any dimension. In particular 
f o r  three dimensional domains the familiar formula in terms of the cross-product 
emerges after a straightforward manipulation. For this, let 

~ ={o :~ t~  ~" I 0(x)= b+ Wx, 
b a constant m-vector, W a constant skew-symmetric matrix}. 

This is the class of the (infinitesimal) rigid rotations of ~ .  Then we have: 

Tr~zORZ~a 2.2. Let O~f~= ~ in Problem 1. Then a necessary condition for the 
existence of solutions is the following,: 

(f, O)c 2 = (g, V(O)), VO e ~ (2.3) 

Proof. Multiply (1.2) by O, use the fact that C~(fi) is dense in ~V, approximate S, 
apply the divergence theorem and pass to the limit. 

In the rest of this paper we will always assume that Olf~ ~ ~ .  The development 
corresponding to the case O~f~ = ~ follows in parallel lines with standard procedures 
established in the literature. See for example any of the following: [3], [4], [8]. 

3. An orthogonal decomposition theorem 

In this section we prove some propositions which are needed in later sections. The 
Korn inequality (3.1) for mixed boundary value problems is well known, however we 
have included its derivation here for the sake of completeness. The main result of this 
section is the orthogonal decomposition formula (3.5). We start with: 

PROPOSITION 3.1. Suppose 0 1 ~  ~ .  Let u e [Hl (~ ) ]  m, u = 0 on c3~, Eu = 0 in ~.  

Then u=O in ~.  

Pro@ It is easy to see that Eu = 0 implies that u e ~ (see the footnote on page 
442 of [5]), so u= b+ Wx for some b and W. Let 

13 = { x  e ~  m : u ( x )  = 0} 

Thus 01~2 ~ B. Since W is skew-symmetric, its range is an even-dimensional subspace 
of N '~ regardless of the parity of rn, so B is a manifold of dimension m - 2 k  for some 
integer k. If k > 0, we have dim B < m -  1 so B cannot contain the m -  1 dimen- 
sional manifold 01fL If k = 0 ,  we have B = N  '~, hence u(x)-~O, thus proving the 
proposition. 

PROPOSITION 3.2. Let O~f~ ~ f~. Then there exists an c~ > 0 such that 

IEulu >-_ a lulr~,(a) Vu e [ H l ( a ) ]  m with u = 0 on alO. (3.1) 

Pro@ (3.1) follows from the general Korn inequality 

2 > 2 IEu l~ -÷  lul ,~ = c lul,-,~(.~ V u  e [ n ~ ( a ) ]  '~ (3.2) 

(see [3], [5], [8], [14] for proof). 
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Indeed ,  if (3.1) is false, there  exists a sequence  {Un}~ 1 in [ H l ( i ) ) ]  m with un = 0 on 

01i) such that  [u,]n,(n~= 1 while IEuln--~O.  Passing to a subsequence ,  there  is a 

u ~ [Ha(l ) ) ]  " such that  

u,  ~ u weakly  in H i ( i ) )  (3.3) 

so 3'(u,) --" , /(u) weakly  in Ha/2(Oi)) and E u ,  ~ E u  weakly  in H.  Thus  E u  = 0 in i )  

and u = 0 on 0~i). Thus  by the Propos i t ion  3.1 u = 0 in i) .  Thus  (3.3) and Rell ich 's  

L e m m a  imply tha t  u~ --~ 0 in L~(fl).  T h e n  f rom (3.2) we get  u,  --~ 0 in H~(f t )  which is 

a contradict ion.  This  comple tes  the proof .  

Now let 's  define 

U = { F ~ H : F = E u ,  u ~ [ H l ( a ) ]  m , u --- 0 o n  0 a i ) }  (3.4) 

This  is a closed subspace  of H as it follows immedia te ly  f rom (3.1). Now we state 

T n ~ o g ~  3.1 (The o r thogona l  decompos i t ion  of H).  The closed subspaces V and 

U of H defined in (2.1) and (3.4) are mutual ly  orthogonal and 

uq~  v = H. (3.5) 

Proof. First we p rove  that  U l c V. Le t  S ~ H be  such that  S_I_ U. so 

(S, Eu)  = 0 V u  ~ [Hl ( i ) ) ]  m, u = 0 on 0~i). 

Thus  in par t icular  for  any 4~ ~ C~0(i)) we have  (S, E4~)= 0, hence  (div S, 4))= 0 so 
div S = 0 in the  sense of distr ibutions.  H e n c e  S ~ °V. and ~r(S) is defined. F r o m  

G r e e n ' s  fo rmula  (1.1) we get 

(~'(S), u) = 0 ~'u ~ [H~(i))]  "~, u = 0 on 01i) 

Since u is arbi t rary  on 02f~, this implies that  ~-(S) = 0 on 02i), so S ~ V. The  inclusion 
U x ~ V is verified in a similar way, and since U is closed, it comple tes  the proof .  

R emark .  T h e  o r thogona l  decompos i t ion  (3.5) is ana logous  to the famil iar  p r o b l e m  
in fluid mechanics  of decompos ing  a vec tor  field into two mutual ly  o r thogona l  

solenoidal  and i r ro ta t ional  vec tor  fields, cf. T e m a m  [19]. 

COROLLAR'~ 3.1. Let fi ~[H~/2(Oxi))] TM and let F ~ H be such that 

(S, F) = (~r(S), fi) VS ~ V (3.6) 

Then there exists a u ~ [Hl(f~)]  '~ such that u = fi on Oa~ and F = Eu.  

Remark .  Recal l  that  fi 6 [H~/2(Olf~)] '~ means  that  fi = 0 on 02ft. 

Proof. Le t  u'  ~ [HI(Ft)]  ~ be  an extension of fi to ft .  Thus  for  any S e V we obta in  

f rom (1.1): 

(s, ~u ' )  = (~-(s), a) 

Subtrac t  this f rom (3.6) to get 

(S, F -  Eu ' )  = 0 V S  ~ V 
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So F - E u ' ~  U by (3.5). Hence there exists a u"e[H~(f~)] '~ with u "=  0 on 0~ft such 
that F - E u ' = E u " .  Let u =  u'+u".  Then u =  fi on 0af~ and F = E u  as required. 

Remark. The idea behind Theorem 3.1 and the corollary is old and goes back to 
the nineteenth century. (See the footnote on page 117 of [7].) The formulation and 
proof as given here however seems to be new. Even up to relatively recently the 
proofs available for the theorem were more or less heuristic arguments, cf. [2], [18]. 
The first rigorous proof seems to have been given by Gurtin [6] under the additional 
assumptions of the convexity of 01f~ and simple connectedness of fk For the case 
01~= ~ ,  Ting [20] has recently extended the orthogonal decomposition (3.5) to 
tensor fields defined on compact Riemannian manifolds. 

4. The variational formulation 

The orthogonal decomposition theorem of the previous section allows us to reformu- 
late Problem 1 as an equivalent variational problem. The formulation is standard 
and is known as the minimum principle for the complementary energy function (see 
Gurtin [7], Sections 34 and 36). We state the principle formally after the following 
definitions. 

Let f ie [H~/2(01~)] m, g e [H-1/2(c32~'~)]  m and f e [L2(~-~)] m be as in the statement of 
Problem 1. Define I :°V-+ N by 

x(s) = ½(s, K S ) -  ( ~(S), c,) 

and let 

V¢,~ = {S e ! div S = f in fl, 

(4.1) 

vr(S) = g on 02f~}. (4.2) 

I is the complementary energy function for Problem 1. Also notice that Vf,~ is a 
parallel translation of the subspace V defined in (1.6). Now consider: 

Problem 2. For fi, g, and f given as above find a minimizer of the restriction of I to 
V~,~. 

The next two propositions show that Problem 1 and Problem 2 are "equivalent". 

PRoeosmo~q 4.1. Let (S, u) be a solution of Problem 1. Then S is a solution of 
Problem 2. 

Proof. For an arbitrary S ' e  Vf,~ we have 

~ ( s ' ) -  ~ ( s )  1 , ~ 5(S - S, K ( S ' -  S)) 

+ ( s ' -  s, K S ) -  (~ (S ' -  S), a) (4.3) 

The last two terms are equal by Green's Theorem (1.1) because KS = Eu, so 

~ ( S ' ) - ~ ( S ) = '  ' ~(S - S, K ( S ' -  S)) VS 'e  V~,~. 

This is non-negative by the hypothesis K2, hence S is a minimizer. 



Internal constraints in linear elasticity 21 

PROPOSITION 4.2. Let S be a solution of Problem 2. Then there exists a function 
. u 6 [H~(f~)] ~ such that the pair (S, u) is a solution of Problem 1. 

Proof. For an arbitrary S '~  Vt, ~ we have from (4.3) that: 

½(S - S, K ( S ' -  S)) + ( S ' -  S, KS)  - ( ¢r( S ' -  S), fi) >= O. 

Hence the linear part is zero: 

( S ' -  S, KS) = ( ~ ( S ' -  S), C,) VS'  ~ V~,~ 

Now S ' -  S is an arbitrary element of the subspace V, so by the Corollary 3.1, there 
exists a function u ~ [H~(12)] '~ with u = fi on 31~, such that KS = Eu. Thus the pair 
(S, u) is a solution of Problem 1. 

Propositions (4.1) and (4.2) show the equivalence of Problems 1 and 2. Thus in 
the following we will limit our discussion to the variational problem only. 

The minimization in Problem 2 is carried out over the set V¢,~ which is not a 

subspace. By a change of variables, we can have a problem of minimization over the 
subspace V which is more convenient for our purposes. For this we let S* be the 
point in Vf,~ with the smallest H-norm.  Then any point S ~ VI,~ can be written as 

S = S* + S', S' ~ V. 

Thus yielding: 

I(S) = I(S*)+½(S', KS ' ) - (vr (S ' ) ,  a)+(S ' ,  KS*), 

(4.4) 

S ~ V~,~, S'  ~ V 

The linear functional S' ~-~ (~r(S'), 0) is continuous when restricted to the subspace V 
of H as it follows from the con.tinuity of the trace operator:  

I (~(s ' ) ,  ~)1--< [~(s ' ) l . - , ,2 ,o . )I  ~1H1,2,o.) 
N cElS'[~+ Idiv S'l~]l/~ I ol.X,=<o~.) 
= c I~l .~,~(o, . ) ls ' l~ 

We have let div S' = 0 because S' ~ V. Now by Riecz's representation Theorem, there 
exists an ~ ~ V such that 

(~(S'),  0) = (S', ~), S '~  V. 

Let  

~ = ~ - K S *  

to get 

~(S) = ~(S*)+ ½(S', K S ' ) -  (S', ~). 

Define J :  V--~ R by 

J(S') = ½(S', KS') - (S', ¢), 

Hence 

t ( s )  = ~(s*)  + J ( s ' ) .  

(4.5) 

(4.6) 

S' 6 V (4.7) 

(4.8) 
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Hence the problem of the minimization of I on V~,~ reduces to the problem of the 
minimization of J on V. Thus we introduce: 

Problem 3. Let J :  V-~  R be defined as above. Find the minimizers of J on V. 

Obviously S' ~ V is a minimizer of J in V if and only if S = S* + S' is a minimizer 
of I in V~,~. Now we can state: 

THEOREM 4.1. Let the operator K satisfy the properties K1, K2, K3 and suppose that 
fi satisfies the compatibility condition (2.2). Then there exists a unique u ~[Ht(f l)]  ~ 
and a unique So ~ Vr,~ ~ W such that {u, So} is a solution of Problem 1. Moreover the 
general solution of Problem 1 is given by {u, So+ ~} where ~ ~ V t3 N(K)  is arbitrary. 

Proof. Since we have established the equivalence of the Problems 1, 2, and 3, it 
will suffice to demonstrate the existence of solutions of Problem 3. Theorem (3.1) of 
[17] is directly applicable to this case. The only hypothesis to verify is that ~ in (4.6) 
lies in the subspace W, that is, it has to be shown that 

(S, ~) = 0 VS ~ V r3 N(K).  (4.9) 

But from (2.2) we have 

(w(S), t~) = 0 ~¢S~VV1N(K).  

Hence by (4.5), 

(S, -q)= 0 ' ¢S~VV~N(K) .  

Then by the self-adjointness of K and that S ~ N(K): 

( S, n - KS*) -- 0 

Substitute ~ from (4.6) to obtain (4.9). Thus by Theorem 3.1 of [17] there exists a 
unique S' ~ V t3 W which minimizes J on V 7/W. All other minimizers of J in V are 
of the form S'+~, '~ ~ VV~N(K).  Let So = S'+S*.  Since S*± V ~ N ( K ) ,  then S O is the 
unique minimizer of I on Vf,~ C~ W. Hence all minimizers of I in Vf,~ are of the form 
S = So + g. By Proposition 4.2, corresponding to each minimizer S of I there exists a 
function u such that the pair {u, S} is a solution of Problem 1. The function u is 
always determined uniquely regardless of the non-uniqueness of S (recall that we are 
considering the case 01f~ :fi ~ ) .  To see this, let {u, $1} and {ua, Sa} be two solutions of 
Problem 1. Then S~ = So + ~ and $2 = So + ~a with ~t and ~2 ~ V f~ N(K)  as proved 
above. Hence $1 - Sa = ~ - '~ ~ V VI N(K) .  Now by (1.3), E(ul  - ua) = K ( SI - $2) = 0 
and since u t - u a  on 0~f~, Proposition 3.1 implies that u~= u2. 

Remark. Let {u, So} be the particular solution defined above and let {u, S} be any 
other solution. Then it is easy to see that (S -So ,  So)= 0. Therefore So has the 
smallest norm among all solutions of the problem. We will refer to the solution 
{u, So} as the principal solution of Problem 1, and to So as the principal stress. In the 
next section we will investigate the dependence of the principal solution on the 
compliance operator K. 
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Remark. The theorem above and in fact most of the propositions in this paper are 
stated in somewhat a more general context than is actually required for problems of 
elasticity. The compliance tensor K in elasticity is a pointwise acting operator,  that 
is, in terms of components, K can be written as follows: 

(KS)~(x) = ~ K~k~(x)S~(x) (4.10) 
k,1 

K ~ ( x )  being fourth order tensors defined at each point x ~ fL Our treatment of K 
as a linear operator  on the Hilbert space H includes (4.10) as well as operators 
which are not defined through their pointwise action. 

The non-unique solutions for the stress field are characterized in Theorem 4.1. In 
particular, we have the immediate 

COROLLARY 4.1. The solutions of Problem 1 are unique if and only if V f ) N ( K ) =  
{0}. 

Next, observe that 

V C3 N(K) = {S ~ H :  div S = 0, ~r(S) = 0 on O2fl, KS = 0}. 

Consider the standard case of elasticity where the operator  K is defined pointwise as 
in (4.10). Let  A be a given second order symmetric tensor field on ~ and let 

A ~ L~(f~). Suppose that the internal constraint is specified as an a priori restriction 
of the admissible strain fields by 

~, A~j(x)(Eu)~j(x)= 0 a.e. in f l  
id 

Pipkin [15] has shown that in this case 

Y, Ki~kt(x)Ak~(x)= 0 a.e. in f l  
k,l 

hence A e N(K).  Thus 

N(K)={Se:H:S(x )=  ~(x)A(x) a.e. in fl} 

where ~ ~ L2(fl) is an arbitrary scalar field on fl. 

Hence we have 

(4.11) 

COROLLARY 4.2. When K is as (4.10) and (4.11), Problem 1 has a unique solution 
if and only if the system 

div(q~A)=0 in f~ 

"rr(q~A)=O on 02f~ 

has only the trivial solution rh =-O. 

Remark. A ( x ) - - I  defines an incompressible material. Corollary 4.2 in this case 
yields the expected conclusion that the solutions of Problem 1 are unique if and only 

if 02f~ ~ ~ .  



24 R. Rostamian 

5. Dependence of solutions on the compliance tensor 

The question of dependence of solutions of Problem 1 on the data f, g, fi and the 
compliance operator K is not well posed because of the non-uniqueness of the 
component S of the solution {u, S}. The question becomes meaningful however if we 
regard S as an element in the quotient space Vf.ff[V f~ N(K)]. By the construction of 
S in Theorem 4.1 it suffices to concentrate only on the uniquely defined principal 
solution of the problem. It is easy to show that the principal solution {u, So} depends 
continuously on the boundary conditions ~ and g and the body force f (see 
Proposition 5.1 below). The dependence of {u, So} on the compliance operator K is 
not so trivial and in fact is not continuous in general. We will apply some results 
from [17] to obtain the continuity results stated below. For the sake of completeness 
we also include the following proposition which is an immediate consequence of the 
Closed Graph Theorem. 

PROPOSITION 5.1. Consider the Hilbert spaces s~ = [H~/2(c31~)] m × 
[H-1/2(c32~)] ~ x [ L 2 ( ~ ) . ) ]  ~ and ~ = [sl(~')-)] m X H both with the corresponding product 
topologies. The set sl' of all {~, ~, f}e  sg such that Problem 1 has a solution for a fixed 
field K is a closed subspace of sg (because ~ has to satisfy the compatibility condition 
(2.2)). Define the linear map T:sg'---~N by T{~,g, f}={u,S} where {u,S} is the 
principal solution of Problem 1. Then T is continuous. 

To study the dependence of the principal solution on the operator K we follow the 
idea outlined in the introductory section of the paper. Thus let {K~}~_~0 be a family of 
compliance tensors, each K~ satisfying the conditions K1, K2, and K3 of Section 1. 
Suppose that K~--~ Ko as e--~ 0. Let {u~, S~} denote the principal solution of 
Problem 1 for each e. The main purpose in this section is to obtain sufficient 
conditions on the family {K~} which imply that u~--* u0. We first restate the 
conditions equivalent to K I - K 3  of Section 1 as they apply to each K~. Thus 
analogous to (1.7), for each e_->0 we let We be the orthogonal complement of 
VC3N(K~) in H and let P~ be the orthoprojection onto W. Also let Q~ = I - P , .  We 
assume that for each e _-> 0 there exists a cr~ > 0 such that 

(S, ~:~S)>-_~ fP~S] ~ VS ~ V (5.~) 

This, together with the compatibility condition: 

(~r(S), f i )=0,  VS~ Vr3N(K~), Ve _->0 (5.2) 

fulfills the requirements of Theorem (4.1) thus ensuring the existence of solutions. 
Next, we introduce additional hypothesis as they are required by Theorem 4.1 of 

[17]. 
The coefficients ~r~ in (5.1) are not bounded away from zero in general as e --~ 0. 

A better estimate on the order of magnitude of o-~ can possibly be obtained 
however, when S is restricted to Vf3 N(Ko). Thus let ~ > 0  be such that 

(S, g~s)>=~ Ie~s? VS~ V ~  N(Ko) (5.3) 
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(Of course ha might also approach zero as e--~ 0, but the rate of decay might 
possibly be slower than that of the o-~.) 

Also notice that KoQo = 0 by the definition of the projection Qo- So for any S 6 V 
we have 

IS', K~QoSI<--I[K~ -gol l  IS'I IOoSI (5.4) 

In particular, when S' is restricted to be S '=  PoS, this inequality might be sharpened 
by replacing the coefficient I[K~ - Ko[] by one of a faster decay. So let ~-~ be such that 

l(P0S, K~OoS)[-<_ ~ IPoSl IOoS[ VS e V (5.5) 

The notation and definitions of ~r~ and ~ are given exactly in such a way that the 
Theorem 4.1 of [17] applies. We state here the conclusion: 

THEOREM 5.1. Let {K~}~eo be the family of compliance tensor operators as defined 
above. Let u E[H~/2(O~Y~)] '~ satisfy (5.2) and let {u~, S~} be the principal solution of 
Problem 1 for each e >- O. Then if 

T~lh~ - ~  0 as  e --> 0 (5.6) 

the solutions of the mixed boundary value problem of elasticity converge in the 
following sense. 

us --~ Uo in H~(f~) (5.7) 

PoS~ --~So in H (5.8) 

h a/2QoS ~ is bounded independently of e. (5.9) 

Remark. (5.9) establishes an upper bound on the growth of the stress field. We 
can equivalently write 

IIo0s~ll<_-~ 1~2 

or 

IIs~11~:1< 

6. Applications 

Here we consider a few specific problems of elasticity and examine the implications 
of Theorem 5.1. 

(i) Elasticity in the absence of internal constraints 
In this case each member of the family {K~}~o of compliance operator is 

inventible, so K~--~ Ko implies that K~I---~ K~ 1. Since 

K > 1 (s, s ) = ~  Isl 2, VSE~ 
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in comparison with (5.3) we take 

h. = IIK;-lll 1 

Also in comparison with (5.4) and (5 .5 )we  take 

• -- II ;-K01[ 

Then obviously the condition ¢~/h~--~ 0 of Theorem 5.1 is satisfied, so the 
displacement field converges according to (5.7). Also observe that in this case 
N(K~)={0}, W~ = H and the projection P~ is the identity operator. Thus (5.8) 
implies that 

S~-~So in H 

i.e. the stress field also converges in the case. Of course these results are well known 
from the standard theory of the linear elasticity. 

(ii) Approximation of internally constrained materials with materials which are not 
internally constrained 

Suppose that Ko is the compliance tensor for an internally constrained material 
and let {K~}~>0 be a family of compliance tensor approximating Ko, i.e. K~ -~ K 0 as 
e -~ 0. Suppose that each K~ with e > 0 is invertible, so it corresponds to a material 
which is not internally constrained. (For an explicit construction of such a family see 
Rostamian [16].) Then the condition (5.6) of Theorem (5.1) is satisfied if 

IIs(;-'llll  - oll --+o as (6.1) 

That is, the solutions will converge in the sense of Theorem (5.1) provided that the 
convergence of the approximating operators is faster than the rate at which KI~/2 
becomes singular. 

(iii) Non-negative perturbations of a singular operator 
It has been established in [17] that if the family {K~}~>0 of the elasticity operators 

consists of non-negative perturbations of the operator K~, in the sense that 

(S,(K~-Ko)S)>-O VS~H,  (6.2) 

then the solutions of the problem of elasticity will converge in the sense of (5.7), 
(5.8), and (5.9). No invertibility conditions are required of the operators K, in this 
case. 

(iv) Isotropic and homogeneous materials 
The compliance operator for an isotropic and homogeneous material is given by 

1 S v K~(S)=~-~ [ -~-~--~(tr S)I], S ~ H  (6.3) 

where /x and v are the shear modulus and the Poisson ratio respectively (see Gurtin 
[7], Section 22). Suppose that /x > 0 .  Then K~ is non-negative if and only if 
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- 1  < v =<½. Actually K~ is positive-definite when - 1  < v <½. KI/2 is not invertible, as 
we have 

N(Ka/z) = {p/: p ~ LZ(f~)}. (6.4) 

__1 which expresses the fact that for the Poisson ratio v - ~ ,  the hydrostatic pressure 
does not produce a strain in the material. The internal constraint in this case is the 
constraint of incompressibility. The positive-semi-definiteness condition (K3) is 
satisfied for K,/; as it is shown in the Appendix. 

Suppose that we approximate an incompressible material (v = ½) with a family of 
compressible materials with v e ( -1 ,  ½). We see that 

K ~ K o  as v - + ½ - 0  (6.5) 

where the convergence is in the operator norm of the space H. The convergence of 
the corresponding solutions of the elasticity problem follows from the general results 
of either part (ii) or (iii) of this section. For example, the condition of part (iii) is 
satisfied because K, is a non-negative perturbation of Kv2. To see this, we write 

1 
K~/~(S) = ~ IS -½ tr (S)I] (6.6) 

which is obtained from (6.3) by letting v = ½. Thus we get 

1 - 2 v  
(tr S)L 

6/x(1 + v) 
(K~ - KI/~)(S) = 

Hence 

1 - 2 v  2 ~ 
(S, (K~ - K 1 / 2 ) S  ) = 6/x(1 + v) [tr S[L2(a)= O. 

Thus (6.2) is satisfied, so the conclusions of Theorem (5.1) follow. 
The conditions of part (ii) is also fulfilled in this case. Notice that from (6.6) we get 

1 - 2 v  
IIIK~ - K1/211 = 6/x(1 + v)" 

On the other hand, for v~½ we have 

K-~(S)= 21x[ S + l_-~u (tr S)I] 

SO 

2/x(1+ v) 
IIK;*[I- 1 - 2 v  

Hence 

1 - 2 v  
I lK: i l l  IIKv - K1/211; - 1 8 / . ( 1  + v )  ~ 0 as  v --> 2*-. 
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Thus the condition (6.1) is satisfied and the conclusions of Theorem 5.1 follow. We 
obtain 

u~ --~ ul/2 as v --~ ½ (6.7) 

P1/2S,, ~ S~/2 as v --~ ½ (6.8) 

When the traction is specified at least on part of the boundary, i.e. when 02Y~ ~ ~ ,  we 
see from (1.11) that P~/z is the identity map, hence (6.8) implies 

S~ -~ S~/2 as v --~ ½ 

that is, the stress fields S~ converge to the unique stress field corresponding to the 
incompressible material. In the case of the displacement boundary value problem, 
i.e. when 02f~= ~ ,  we see from (1.10) that 

1 dx] I P~/2(S)= S--~ [I~ tr(S) 

Hence (6.8) in this case becomes 

1 dx] S1/~ S~-~  [f~ tr (S~) I--~ 

where S1/a is the principal solution corresponding to the incompressible material. We 
remark that S~/2 being the principal solution, it satisfies P1/2(S~/2)= $1/:, hence 

I~ t r  S~/~(x) dx = O. 

The problem of the dependence of solutions of boundary value problems of 
elasticity on the Poisson ratio v with v near ½ has been studied with special methods 
in the papers of Bramble and Payne [1], Kobelkov [11], Mikhlin [13], Pipkin [15], 
and Rostamian [16]. The discussion in the first three papers is exclusively developed 
for the case of isotropic and homogeneous materials where the only possible internal 
constraint is the incompressibility. Because of the special nature of the constitutive 
equations, some of the results there are stronger than what we have obtained here 
from the general theory. In [1], in addition to the convergence in H~(Y~) of the 
displacement field, the pointwise convergence is also proved. In [11], it is shown that 
in unbounded domains, the displacement field converges in the sense of Wl'q(f~), 
1 -<_ q < 2. Moreover, when ~ is the square 0 _--< x~, x2 =< 7r, the convergence is actually 
in W~'q(f~), 1 < q <o~. In [13], the convergence in HI(~'~) of the solutions is obtained 
via the spectral analysis of the elasticity operator. Moreover it is explicitly demon- 
strated that the corresponding stress fields do not converge in general. 

Appendix 

Here we verify the positive-semi-definiteness condition (K3) of Section 1 for an 
isotropic, homogeneous, and incompressible material. The compliance operator is 
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obtained from (1.8) by letting v = ½: 

K(S) = ~ IS - ½(tr S)I]. (A. 1) 

In view of (1.10) and (1.11), to verify (K3) we have only to show that 

PROPOSITION. There exists a constant cr > 0 such that 
2 ~ [SI 2-½ Itr StL2 = o-ISI 2 (A.2) 

whenever 

S ~ { S ~ H : d i v S = O  in f~, f a t rS (x )  dx=O} (A.3) 

if 02Ft = ~ ,  or 

S e { S ~ H : d i v S = 0  in fl, zr(S)=O on 02[1} (A.4) 

if 02a :P ~ .  

Proof. We prove by contradiction. Suppose (A.2) does not hold. Then there exists 
a sequence {S~}~=1 in H such that 

(i) ]Sn[2-½ [tr S~12_-<-1 n IS"I 2 

(ii) div S" = 0 

(iii) ~-(Sn)=0 on 0212 if 0 z ~ @ ~  

or  

, trS'~(x) d x = 0  if 02 f~=~ .  

Without loss of generality we take IS"I = 1, and if necessary, pass to a subsequence 
to have S" ~ S °, where the convergence is weakly in H. From (ii) and (iii) we get 

div S O = 0 

and 

-n-(S°)=0 on 02f~ if 0 = ~  

or  

f ~ t r  S°(x) dx = 0  if ~ .  0zf~ 

Next, we observe that 

1 I f  t -- S22 ) + (S22 - S33 ) -~- dx (S3~-S~I) ] I s ~ l ~ - ½ l t r S ~ [ ~ ; N  [ ( S ? l  ~ 2 ~ " ~ " " ~ 

+ 2 f  [(Sia) 2 + (S~) 2 + (S~) 2] dx. 
3~ 
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Hence (i) implies that 

S',~ ~ 0 in L2(~'~) 
S~-S~--~O in LZ(f~) 

Thus 

S~2 = S203 = S~1 = 0 

and 

when 

when 

i~j 

i~j 

R. Rostamian 

(A.5)  

(A.6)  

S~1 = $2°2 ~-- S~3 = p f o r  s o m e  p ~ L2(f~). 

Hence S O= pI. Then div S o= 0 implies that Vp--0,  so p = const. Then from (iii) it 
follows that p = 0, hence S o= 0. Next, we prove that the convergence Sn--~ S o is 
actually strong in H, and thus will reach a contradiction. For this, we write div S" = 0 
in the expanded form 

S~I,1 + S~2,2 + S~3,3 = 0 
~ n n 

$12,1 + $22,2 + N23,3 = 0 

S~3,1 + 8~3,2 + 8~3,3 = 0 

from which we obtain 

S~a,~ = -$7~,~-  S~,~ 

S7~,~ = - S ~ , z  - S~,~ + ( S ~  - S~a),~ 

S~,3 = - ST~,l - S~,~ + (ST, - S~),3 

Now the right hand side converges to zero strongly in H-~(~) by (A.5) and (A.6). 
The left hand side is the gradient of Sll. Hence 

V S ~  0 in H-~(a) .  (A.7) 

Since we have already shown that S" ~ 0 in H, by the compact imbedding of H into 
H - ~ ( a )  we get 

S ~  0 in H - ~ ( a ) .  (A.S) 

(A.7) and (A.8) together imply that 

S ~ 0  in L~(a). 

This is because the expression [lull~-,+llV~ll~-, defines a norm on L~(a) which is 
equivalent to the usual norm. 

In a similar way, we obtain 

S ~ 0  and S ~ 0  in L2(~). 

hence by (A.5) 

S " ~ 0  in L2(~). 

This is in contradiction with IS"I= 1, thus completing the proof of the proposition. 
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