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Abstract. Conservation laws and associated integrals of motion for the dynamics of rods are 
derived. The classic conservation laws are those of total linear and angular momentum, and, for 
hyperelastic rods, conservation of energy. It will here be shown that an additional conservation law 
arises in each of two cases. The first case is that of uniform, hyperelastic rods, the second is that of a 
class of transversely isotropic rods. AMS(MOS) 73C50, 73K05. 

I. Introduction 

This note  describes two conservat ion laws that  are implied by the equat ions of  
mo t ion  of  a rod in the presence of  a con t inuous  Symmetry group.  For  our  
purposes  a conservat ion law means an expression of  the form 

D, = F s, (1.1) 

where D, the density, and F, the (negative of) l h e f l u x ,  are each functions of the 
(scalar) independent  variables s and t, and a (vector) dependent  variable y and 
its derivatives. The actual system of partial differential equat ions  that  model  
the dynamics  of  a rod is equivalent to the two conservat ion laws (2.12) and 
(2.14) below, tha t  express balance of  linear and angular  momentum.  If the rod 
is hyperelastic (2.12) and (2.14) imply a third conservat ion law (2.19) that  

expresses conservat ion of  energy. The addit ional  conservat ion laws that  are of  
p r imary  concern  here arise in the cases of  a uniform, hyperelastic rod, where 
the symmet ry  is translation in arc-length, and  in a class of  transversely 

isotropic  rods, where the symmetry  is ro ta t ion  a b o u t  the centerline of  the rod. 

The  precise forms of  the conservat ion laws are detailed in equat ion (3.2) for 
the case of  a uniform hyperelastic rod, and in equa t ion  (4.5) for the case of 
isotropy.  

One  reason that  conservat ion laws are of  interest is that  for boundary  
condi t ions  s u c h  that  the flux evaluated at the boundar ies  vanishes, each 
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conservation law (1.1) can be integrated over the space variable s to yield an 
associated integral of motion 

ds = 0. (1.2) 

In the case of a uniform, hyperelastic rod the integral will be called the impulse 
(3.3). The impulse is associated with the symmetry of translation in arc-length, 
and is not simply related to total linear momentum, which, for rod dynamics, 
is the integral generated by translational symmetry in space. In the case of an 
isotropic rod the integral is the total component of the angular momentum 
along the local axis of transverse isotropy, and will therefore be called the 
isotropic angular momentum (4.9). 

The bulk of the presentation concerns conservation laws for the dynamics of 
a shearable, extensible rod deforming in three dimensions. In Section 2 the 
dynamical system governing the motion of rods is described. In Section 3 the 
conservation law and associated integral for uniform, hyperelastic rods are 
described, and in Section 4 the analogous quantities are derived in the 
appropriate (sub-)case of transverse isotropy. The particular manifestations of 
the conservation laws in the special cases of string models, of inextensible, 
unshearable rods, and of planar motion are outlined in Section 5. Existing 
literature is described in the remainder of the Introduction. 

The existence of extra conservation laws in the presence of additional 
symmetry is unsurprising when the system governing the motion of rods is 
viewed within the context of Noether's Theorem as described by, for example, 
Olver [(11, Chpts. 4 and 7]. Moreover the flux in each conservation law for 
system of partial differential equations describing the time dynamics of a rod 
necessarily generates an integral of the corresponding system of ordinary 
differential equations describing the equilibrium configurations. (However, as 
in the case of conservation of energy (2.19), the static integral may be trivial.) 
Thus it is not coincidental that the two symmetries that are here used to 
generate conservation laws for the dynamics, are exactly cases in which 
integrals of the static equations are known. Similarly the special cases of the 
conservation laws (3.2) and (4.5) that arise for the system of ordinary 
differential equations describing travelling waves in a rod were previously 
found by Antman & Liu [1, eqs. (3.8) and (3.13)]. Because of these relations 
to known special cases, it is comparatively easy to conjecture the appropriate 
form of the conservation laws for the case of general dynamics. Accordingly we 
found it simpler to couch our presentation in terms of the a posteriori 
verification of various identities. Nevertheless it should be recognized that for 
hyperelastic rods we could have exploited Noether's Theorem to find the 
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conservation laws (3.2) and (4.5) constructively. On the other hand conserva- 
tion law (4.5) persists for a class of rods that are not hyperelastic. As the 
dynamics of non-hyperelastic rods are not associated with an action principle, 
Noether's Theorem is not applicable, and there is no immediate and general 
connection between symmetries 'and conservation laws. This fact is another 
motivation for the nonconstructive arguments presented here, which are 
equally valid in both the hyperelastic and elastic cases. 

Despite the above remarks, to our knowledge neither of the conservation 
laws (3.2) and (4.5) have been described previously for the generality of 
dynamic rod models that are adopted here. However each conservation law 
certainly has its antecedents in the literature. For a hyperelastic, shearable, 
extensible rod, Simo et al. [12, eq. (6.26)] found the conserved quantity (4.9) 
as a consequence of their Hamiltonian formulation of the rod dynamics. As 
previously remarked our direct derivation of the conservation law (4.5) and 
associated integral (4.9) is slightly more general because we need not assume 
hyperelasticity, which is required for the Hamiltonian formulation to be valid. 
Perhaps more relevantly our derivation also implies (4.5) in the case of an 
inextensible, unshearable rod. It is a somewhat surprising fact that while the 
system governing the statics of an inextensible, unshearable rod is a consider- 
able simplification of the system governing the statics of an extensible, 
shearable rod, the dynamics in the supposedly special case are in many ways 
much more complicated. In particular, even if the rod is assumed to be 
hyperelastic, the Hamiltonian formulation of the dynamics, as described in 
[12], does not specialize in any obvious and simple fashion. The difficulty is 
associated with the fact that the net force in the rod, n say, is no longer 
determined via a constitutive relation, but instead plays the role of an 
additional dependent variable (or Lagrange multiplier maintaining the con- 
straints of inextensibility and absence of shear), with no explicit equation 
governing its time evolution, cf. [4], [5], [6], [8], [9], and [13]. We also record 
the fact that Coleman et al. [6] independently discovered conservation of 
isotropic angular momentum for an inextensible, unshearable, linearly elastic 
rod using a formulation of the rod dynamics in terms of certain Euler angles. 

The explicit manifestation (5.12) of the impulse in the case of the planar 
dynamics of an inextensible rod was only recently found in [8]. In that work 
the impulse was also used in the variational characterization and stability 
analysis of planar solitary waves. Our terminology 'impulse' for the conserved 
quantity associated with translation in arc-length is motivated by analogy with 
similar problems arising in the analysis of one-dimensional wave motions in 
fluid mechanics, of. [3]. Subsequently the particular form (5.8) of the impulse 
conservation law for three-dimensional motion within the context of a certain 
string model was discovered by Healey [10] and was exploited in the analysis 
of relative equilibria. In the case of these classic string dynamics some 
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simplifications arise, cf. the two expressions (3.3) and (5.9) for the impulse. 
Generalization from the planar case also led Coleman et al. 1,6,1 (independently 
of this work) to discovery of the impulse for three-dimensional motions of an 
inextensible, unshearable, linearly elastic rod, again using an analysis involving 
Euler angles. It seems almost certain that the impulse (3.3) will prove useful in 
the variational characterization and stability analysis of steady motions of rods 
in three dimensions, (such as the three-dimensional travelling waves that have 
been discussed in I-1-1 and more recently in 1,7]), but those issues will be 
investigated elsewhere. 

2. Rod dynamics 

The derivation of the equations of motion will only be outlined here, as the 
rod model that will be adopted is a comparatively standard one (cf. e.g. 1,1,1 or 
1,2,1). The dependent variables are a vector function r(s, t ) ~  3 and an or- 
thonormal frame of directors di(s, t) ~ ~3, i = 1, 2, 3. (Hereafter subscripts will 
be taken to run from 1 to 3, and repeated indices should be summed unless 
stated to the contrary.) The independent variables are two scalars, namely 
undeformed arc-length s, and time t. At each time t, the curve r(-, t) can be 
interpreted as a material line in a long, slender elastic body. The triad {di} can 
be interpreted as providing information concerning the orientation of the 
material cross-section of the rod. 

The kinematics of the rod are encapsulated in the relations 

r ' =  v, (2.1) 

d ~ = u  x dl, (2.2) 

and 

/1~ = to x d~. (2.3) 

Here d; denotes the partial derivative with respect to arc-length s, while ~1 i 
denotes the partial derivative with respect to t, etc. The components vi = v-d~ 
of the vector v(s, t) with respect to the triad {d~} are the strains associated with 
stretching and shear, the components u~ = u- d i of the (Darboux) vector u are 
the strains associated with bending and twist, and the components co i = to-di 
of the vector to(s, 0 can be regarded as the body components of the angular 
velocity of the material cross-section at s when viewed as a rigid body. Because 
v~, u~ and ~ are components with respect to a variable frame we obtain 
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relations such as 

to' = ~o;ds + u × to, (2.4) 

and 

r" = v'  = v~d s + u x v. (2.5) 

(By convention expressions such as v~ involve the derivative of the ith 
component of v with respect to the triad {dj}, which is of course not the same 
as the ith component  of v', etc.) We shall exploit the compatibility conditions 

i) = ~ds,  (2.6) 

and 

to'=/tldi,  (2.7) 

which are implied by use of equations (2.2), (2.3) and (2.4) in the identities 

~2 02 
(.~-~tt d s = ~--t-~s d l . 

The densities of linear and angular momentum are, respectively, 

p(s, t) =-- p (s ) f ,  (2.8) 

and 

lt(S, t) --  l i j (s ) to  jd  s. (2.9) 

Here p(s)  is the mass per unit arc-length associated with the material cross- 
section at the point s, which is determined entirely by the reference configur- 
ation. The quantities ls j (s  ) are the components of the inertia tensor of the 
material cross-section at s expressed with respect to the triad {ds}. It will be 
assumed that these inertia coefficients are independent of the strains u s and v r 
Thus the quantities ls j (s)  are also completely determined by the reference 
configuration and will therefore be regarded as known. In particular the 
symmetry conditions 

l l j  = l j i  (2.10) 
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are valid. It is consistent to restrict to the case in which the cross-section is 
modelled as a lamina with principal axes of inertia d I and d 2, so that 

lij = O, i ~ j ,  133 = I l l  + 122 , (2.11) 

but our analysis does not require this delimitation. 
In a rod model the stresses acting across each material cross-section are 

reduced to a net force n(s, t) and moment re(s, t) (of the material on the s i d e  
s ÷ acting on the material on the side s-  at the point r(s, t)). Then balance of 
linear and angular momentum yield the equations 

= n', (2.12) 

and 

= m' + r' x n. (2.13) 

The system is closed by specification of a constitutive law relating the stresses 
n and m to the strains u and v. However it may immediately be observed that, 
trivially and independent of the constitutive relation, (2.12) is in the form of a 
conservation law with density p and flux n. Moreover, using (2.8) and (2.12), 
equation (2.13) can be rewritten in the conservation form 

( , t + r  x p ) , = ( m + r  xn)~. (2.14) 

Consequently, for appropriate boundary conditions, such as the periodic ones 
pertinent for a closed loop, the total linear momentum ~p ds and total angular 
momentum ~(z + r x p) ds about a fixed origin are integrals of the motion, as 

could have been surmised at the outset. 
We next demonstrate that for a hyperelastic rod the equations of motion 

(2.12) and (2.13) imply a third (well-known) conservative law, namely conser- 
vation of the total energy. A rod is said to be hyperelastic if there exists a scalar 
valued strain energy density function W(v,, u,, s), dependent upon the six strains 
and arc-length, with the property that the components of stress n~ -= n. d, and 
m~ =- m .  d~ satisfy the constitutive relations 

n, = wo,, (2.15) 

and 

m~ = IV,,,, (2.16) 
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Here Wv, denotes the partial derivative of W with respect to the argument v i, 
etc. Because the constitutive laws specify the components of n and m with 
respect to the variable basis {di}, the kinematic relations 

n' = n~d~ + u x n, (2.17) 

and 

m'  = m~d i + u x m (2.18) 

are implied. Conservation of energy is expressed by the relation 

(~p.i" + ½n'to + W), --- (m" to + n.i')s. (2.19) 

Identity (2.19) can be verified by expansion of the derivative on the right-hand 
side to obtain 

m " t o  + re. to '  + n ' . f  + n.i" 

which, by (2.1), (2.7), (2.12) and (2.13), is the same as 

(~ - v x n). to + miit i q- p" f "-l- n.  

o r  

~ P i  ..t- p" r "1- miit i -I- ni~ i 

which, with constitutive relations (2.8), (2.9), (2.15), and (2.16), can be seen to 
coincide with the left-hand side of (2.19). 

3. A conservation law for uniform, hyperelastic rods 

It will now be demonstrated that for a uniform, hyperelastic rod, the equations 
(2.12) and (2.13) governing the dynamics imply another conservation law and 
associated first integral. A rod is said to be uniform if the coefficients p and I o 

are actually constants, 

p' - l~j - 0, (3.1) 

and, in addition, the constitutive law has no explicit dependence on the 
arc-length s. For  a hyperelastic rod to be uniform the strain energy density 
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function W must have no explicit dependence upon arc-length s. 
The following conservation law is then a consequence of the governing 

equations (2.12) and (2.13) that express balance of linear and angular momen- 
tum: 

0 t .  u + p .  v)t = ( m .  u + n-  v - W + ½c~. ~ + ½i'. P)s. (3.2) 

To verify (3.2), the derivative on the left-hand side can be expanded, using (2.1), 
as 

~ ' u  + n - u  + p . v  + p . i" ,  

which, upon elimination of li, p, n, p and n by use of (2.6), (2.8), (2.9), (2.12) 
and (2.13), can be seen to be the same as 

(m' + r' + n)- u + t~illjo9 ~ + n'.  v + p f .  f'. 

Then by the kinematic relations (2.1), (2.5), (2.17), (2.18) and symmetry 
condition (2.10), we obtain 

m~u i + n}v i + (z2toilotOj)s + (12pi"i')s, 

or, with constitutive laws (2.15) and (2.16), 

_I. 1_ . . .  (uiWu, + viWv, - W + 2toilljo3 j + 2pr r) s, 

which can be seen to coincide with the right-hand side of (3.2) because of the 
constitutive relations (2.8), (2.9), (2.15) and (2.16). 

It should be remarked that it has nowhere been assumed that the constitut- 
ive relations (2.15) and (2.16) are such that the stresses (n,m) vanish for 
vanishing strains (v, u). Consequently the analysis presented here is valid for 
the dynamics of uniform hyperelastic rods whose unstressed state is helical. 

The quantity 

f ( n ' u  + p'v) (2.3) ds 

will be called the impulse, where it is understood that the range of integration 
is the entire length of the rod. The impulse is clearly a finite quantity if the rod 
is of finite length (and the evolution is assumed to be smooth), but the impulse 
will also be finite for an infinite rod if either the strains (v,u) or the momenta 
(p, ~) decay sufficiently rapidly. 
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The impulse is actually a time-invariant quantity, i.e., a conserved quantity 
or integral of the dynamics, for systems with appropriate boundary conditions. 
For  example in a finite closed loop of rod, all the dependent variables must be 
periodic functions of s, and the impulse is therefore a conserved quantity. For  
an infinite rod the impulse can also be a (finite) conserved quantity. For 
example the impulse will be a constant of the motion if the momenta satisfy 
lims_.+__oo(p,n) = 0 and the strains satisfy lim~_~__~(v~,ui)= (t3~,~i) for some 
constants (z3~, fit). 

Notice that the flux appearing in the conservation law (3.2) is the Legendre 
transform of the density of total energy of the rod. As such it is reminiscent of 
the Eshelby Energy-Momentum tensor which arises in a conservation law for 
the elasto-statics of a homogeneous elastic material in several space dimen- 
sions. This problem is discussed among other places, by Olver 1-11"1, Example 
4.32, p. 281, with a brief discussion of related issues and literature on p. 288. 

It should also be remarked that linear combinations of the conservation laws 
(2.12), (2.14), (2.19) and (3.2) can be taken to yield new conservation laws. In 
some circumstances such a construction may have nontrivial implications. For  
example the boundary conditions may be such that a linear combination of the 
fluxes may vanish and so provide a conserved quantity, while the individual 
conservation laws do not imply any integral of motion. Moreover in the case 
of an infinite rod some linear combination of the densities may provide a finite 
conserved quantity while none of the individual conservation laws have 
associated convergent integrals. This last phenomenon is related to the choice 
of frame from which the rod dynamics is viewed. 

4. Isotropie rods 

We now drop the hypotheses that the rod is uniform and hyperelastic and 
instead assume that the rod is transversely isotropic. By transversely isotropic 
it is meant that the constitutive relations for the stresses and momenta are 
symmetric to rotations about one of the directors, d 3 say. As full isotropy, i.e., 
independence of the constitutive relation to arbitrary rotations of the basis {d~}, 
is not a pertinent concept in the context of rods, we shall henceforth allow the 
adjective transversely to stand by implication. Antman l-2, Theorem 9.16-1 

demonstrates that the hypothesis of isotropic elastic response is equivalent to 
the specialized constitutive relations 

n = Nlv  + N2u -'l- N3d3, (4.1) 

and 

m = Mlv + Mzu + M3d3, (4.2) 
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where the N~ and M s are each scalar functions of the six scalar arguments ]ul, 
Ivl, u .v,  u3, v3 and s. Isotropy of the dynamic properties of the rod follows when 
the expression (2.9) for the angular momentum is specialized to 

n - l l to  + (13 -- I1)c03d 3. (4.3) 

Here d 3 is a principal axis of inertia with associated principal inertia 13(s), and 
the other two principal inertias both equal l~(s) (cf. (2.11) with I~ = I2). The 
general expression (2.8) for the linear momentum is already isotropic. 

With constitutive relations (4.1), (4.2) and (4.3), and the additional restric- 
tion 

Ml(lUl, u-v, Ivl, u3, /3 3, S) ~--" N 2 ( I u l ,  a - v ,  Ivl, I/3, 17 3, s) ,  (4.4) 

the conservation law 

(x- d3) t = (m.  d3)s, (4.5) 

is a consequence of the angular momentum balance (2.13). In particular the 
derivation of (4.5) does not exploit the linear momentum balance (2.12) so the 
conservation law remains valid even for systems with external body forces. The 
delimitation (4.4) is actually implied in the case of an isotropic hyperelastic rod 
where there is a strain energy function of the form W(lul, u . v ,  Ivl, u3, v3, s). 
Another plausible special case is M 1 - N z = O. 

The validity of (4.5) can be seen after three preliminary calculations. First 
we note that because of hypothesis (4.2) 

m-(u x d3) = M1v'(u x d3). (4.6) 

Similarly by (4.3) 

R-(to × d3) -- 0. (4.7) 

Thirdly equations (2.1) and (4.1) are used to write the balance of angular 
momentum (2.13) in the form 

m' + v x (N2u  + Nad3) = ~, 

from which it may be concluded that 

m'-  d 3 + N2(v × u). d 3 = ~- d 3. (4.8) 
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Now we use (2.2), (2.3), (4.4), (4.6), (4.7) and (4.8) to calculate that 

( X "  d3)  ' - -  (m.  d 3 )  s = 9 "  d 3 + n .  (co × d3)  - m'.  d 3 - -  m" (u x d3 )  = 0 ,  

as is required to validate (4.5). 
The quantity 

fn .  ds (4.9) d3  

will be called the (component of) isotropic angular momentum. The isotropic 
angular momentum is an integral of the motion for appropriate boundary 
conciitions, for example the periodic conditions associated with a closed loop. 
The remarks made at the end of Section 3 concerning infinite rods and linear 
combinations of conservation laws apply with equal validity here. 

5. Strings, inextensible rods and planar dynamics 

In this section we shall consider the conservation laws that arise in certain 
degenerate eases of the rod model described in Section 2. The treatment of 
special eases is by no means exhaustive, but it does relate the conservation laws 
(3.2) and (4.5) to quantities found in previous works. 

A model of a string is obtained if the strain v is declared to satisfy 
v I = v 2 = 0, so that (2.1) reduces to 

r ' =  v3d3 ,  ( 5 . 1 )  

and the constitutive laws for the force and moment are taken to be 

n I = n 2 = 0 ,  n 3 = N 3 ,  (5.2) 

and 

m l = m  2 = 0 ,  m 3 = M 3 .  (5.3). 

Here N a and M 3 are scalar functions of the arguments (v 3, u 1, u 2, u 3, s). 
Conditions (5.1) and (5.2) require that the force in the string is always 
tangential. Condition (5.3) states that there are no bending moments, although 
the string can support a twisting moment  about the unit tangent vector d 3. 
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For this string model the balance of angular momentum (2.13) simplifies to 

= m', (5.4) 

which is trivially in conservation form. Thus for the dynamics of any such 
string there are always three conservation laws, namely (2.12), (5.4), and, 
because (2.14) is still valid, 

(r × p), = (r × n)s. (5 .5)  

It could be argued that (5.5) is not independent of (2.12), and (5.4), but because 
it is expressed in terms of different variables it has the potential to yield 
integrals of motion under different sets of boundary conditions. 

The string is uniform and hyperelastic if there is a strain energy density 
function W(v 3, u3) such that N 3 = Wv3 and M 3 = W u .  ( W  must be independent 
of u~ and u 2 to be consistent with the requirements n~ = n 2 = 0.) For such a 
string the conservation of impulse (3.2) takes the form 

(n "u + p.r ' )  t = ( m 3 u  3 -[-/'!3133 - W q- ½£0-n  + ½i'- p) s. (5.6) 

Notice that the constitutive laws for a hyperelastic string automatically satisfy 
the constitutive isotropy assurnptions (4.1), (4.2), and (4.4) (with 
N 1 = N 2 = M~ = M 2 = 0), so if the dynamic isotropy consition (4.3) is also 
satisfied we obtain the law of conservation of isotropic angular momentum 
(4.5) as before. Furthermore the conservation laws (5.6) and (4.5) are truly 
independent. In the absence of the dynamic isotropy condition (4.3), equation 
(4.5) does not hold. A final special feature arises when for a uniform, 
hyperelastic, isotropic string, it is further assumed, as in classic string models, 
that the strain energy density function is of the decoupled form 

W(v~, us) = W~(vs) + W2(ug. (5.7) 

Then the balance of linear momentum (2.12) decouples from the balance of 
angular momentum (2.13), and the additional conservation law 

(p "r'), = (//3/)3 - W 1 -b ½i'" p)  s (5.8) 

is implied. The associated impulse is 
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The conservation law (5.8) was found and exploited by Healey [10] in an 
analysis of the dynamics of closed loops of string. Healey also remarked that 
for uniform closed loops the impulse (5.9) is a conserved quantity that can be 
interpreted as a total circulation. 

A different special case arises in the example of an inextensible, unshearable 
rod. In this model we prescribe 

/)1 ~ /)2 ~ 0, I) 3 = I, 

so that r'= d 3. The constitutive relations (2.15) are discarded and the force 

n(s, t) assumes the role of an additional dependent variable. The equations of 
motion are unaffected, and so in the uniform hyperelastic case the conservation 
laws (2.12) and (3.2) imply that 

( n . u + p - ( d 3 - e ) ) t = ( m - u + n - ( d 3 - e ) -  W+½to-rc+½i'.p) s. (5.10) 

Here e ~ ~3  is any constant vector. The case of an infinite rod with conditions 
at infinity requiring that the rod be at rest and d 3 - ,  e provides an example 
where the conservation law (5.10) implies the integral of motion 

f (n  + -- e)) ds (5.11) ° u p ' (d  3 

while, if n(oo) # n ( -oo) ,  neither the total linear momentum ~pds nor the 
impulse (3.3) are individually invariants of the motion. 

A further special case arises when the planar dynamics of an inextensible, 
unshearable rod with a linear constitutive relation between bending moment 
and curvature are considered. This model is the dynamic version of the classic 
elastica of Euler. Then we can set r' = d 3 = (cos ~b, sin ~b, 0), and calculate that 
u = ( 0 , 0 , ~ )  and (after nondimensionalization) n = (0,0,tk,). For  the planar 
elastica, (5.11) reduces to 

f (c~tc~ ~ + - e)) ds, p-(d 3 (5.12) 

which is precisely the integral of motion discovered and exploited in I-8]. 
Motivated by (5.12), but independent of the present work, Coleman et al. 
I'6, eq. 3.32a] found the invariant 

f ( i  d~ "d'~ + d2"d~)ds 0 d 3 + 
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w h i c h  is t h e  e q u i v a l e n t  o f  a n o n d i m e n s i o n a l  f o r m  of  (5.11) w h e n  the re  is a 

l i n e a r  b e n d i n g  law, t he  ine r t i a  is o f  the  p a r t i c u l a r  f o r m  (2.11), and  e = 0. 
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