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Abstract. A micromechanics analytical model is developed for characterizing the fracture behaviour of a fibre 
reinforced composite laminate containing a transverse matrix crack and longitudinal debonding along 0/90 
interface. Both the matrix and the fibres are considered as linear elastic. A consistent shear lag theory is used to 
represent the stress-displacement relations. The governing equations, a set of differential-difference equations, are 
solved satisfying the boundary conditions appropriate to the damage configuration by making use of an eigenvalue 
technique. The properties of the constituents appear in the model explicitly. Displacements and stresses in the 
fibres and the matrix are obtained, and the growth of damage is investigated by using the point stress criterion. 
The investigation includes fibre stress distribution in zero degree plies, transverse crack and debonding intitiation 
as functions of laminate geometry, and the effect of fibre breaks in the zero degree ply on damage growth. The 
predicted damage growth patterns and the corresponding critical strains agree with the finite element and 
experimental results. 

1. Introduct ion 

It has been generally accepted that the ultimate failure of  a fibre reinforced composi te  
laminate results when the load-carrying fibres break. However ,  the failure initiates at a fairly 
low stress level in the matr ix phase of  the composite when small cracks appear  in the matrix. 
This sublaminate failure can be broadly  classified into three categories: transverse cracks, 
free-edge delamination,  and interlaminar debonding in the direction of  load carrying fibres 
(longitudinal cracks). These three sublaminate failure modes are depicted in Fig. 1. 

In particular, matrix transverse cracks appear  at a much lower stress than those predicted 
by classical laminat ion theory and first ply failure criterion. Garre t t  and Bailey [1], Parvizi 
and Bailey [2] and Parvizi et al. [3] described and explained the occurrence of  systematic 
transverse cracking at low strains of  the inner ply in three layered glass fibre polyester and 
epoxy cross ply laminates in which a tensile load was applied parallel to the fibres in the outer  

plies. Reifsnider and others [4, 5] conducted a number  of  experimental  investigations on 
composite laminates and established the dependence of  stiffness and fatigue life of  a com- 
posite laminate on transverse cracking. Crossman and Wang [6, 7], Crossman et al. [8] and 
Wang et al. [9] demonst ra ted  that  stress analysis, which is based on the laminated plate 
theory,  is inadequate  for predicting transverse cracking and the initiation o f  delamination.  
They predicted transverse cracking and edge delaminat ion by using a generalized plane 
strain, finite-element analysis to calculate the strain energy release rates. The investigators 
above have reported the presence of  longitudinal cracking parallel to load carrying fibres and 
the coupling between transverse cracks and longitudinal cracks. 

This paper  deals with the development  of  a micromechanics analytical shear lag model  for 
predicting the onset and growth of  longitudinal crack at the tip of  an existing transverse 
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Fig. 1. Schematic view of sub-laminate damage pattern. 

crack in a laminate. The model is based on a consistent shear lag theory developed recently 
by Sendeckyj and Jones [10, 11] which unlike the classical shear lag models [12, 13] predicts 
fibre as well as matrix stresses accurately. The governing equations are solved using an 
efficient eigenvalue solution technique [14], rather than a Fourier transform technique used 
in most of the earlier shear lag models [10-13]. The self-similar growth of an initial inherent 
transverse crack through the transverse plies is predicted based on the point stress criterion; 
failure occurs when the axial stess in the unbroken ligament at the crack tip reaches the 
ultimate tensile strength of the matrix or the fibre depending on the ligament location. The 
onset of delamination along the interface between the axial plies and transverse plies is 
assumed to occur when the interfacial shear stress reaches the matrix shear strength. The 
model predictions are compared with those of  finite element and experimental results. 

2. Formulation 

A schematic edge view typical of a laminate considered in the analysis is shown in 
Fig. 2. It consists of angle plies, zero degree plies, and 90 degree plies; zero degree direction 
coincides with the load axis. A single transverse crack lies entirely in the 90 degree plies. It 
is further assumed that the transverse crack lies in the matrix phase with no fibre splits. At 
either end of the transverse crack, longitudinal cracks of arbitrary length (/~) are located. The 
load carrying plies may contain an arbitrary number of broken fibres; fibre breaks in these 
plies may or may not form a continuous transverse notch. The laminate is then subjected to 
a remote uniform tensile strain. The elements marked A, B and C in Fig, 2 are represented 
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Fig. 2. Idealized sublaminate damage model-end view. 

by equivalent unidirectional fibre-matrix elements such that the longitudinal and transverse 
moduli of the equivalent elements are the same as those of the corresponding actual elements. 
With this idealization the edge view shown in Fig. 2 can be schematically represented as a 
combination of five two-dimensional unidirectional regions, each region having different 
equivalent fibres as shown in Fig. 3. The transverse crack is formed by breaking equivalent 
fibes in the region of 90-degree plies. The longitudinal symmetric debonding is assumed at 
the crack tips. After having established a unidirectional region consisting of parallel fibres 
in the direction of the applied load a generalized consistent shear lag theory is developed in 
the following section. 

2.1. Generalized consistent shear-lag model 

Let us consider a unidirectional region shown in Fig. 3, with or without damage, subjected 
to some forces or constrained displacements at infinity and free of stresses on both sides. 
A typical fibre/matrix element from the lamina such as element A in Fig. 3 which is of finite 
width h and an infinitesimal height dy is considered for the analysis. The properties of 
the fibre and the matrix for each element may be different. For the sake of simplicity, 
during derivation, the heterogeneous fibre/matrix element is replaced by an equivalent 
homogeneous orthotropic element [10, 11] in which the properties of the fibre and the matrix 
are smeared out through the use of micromechanics [15]. This homogeneous element is 
shown in Fig. 4 along with various stress components. With reference to the free body 
diagram shown in Fig. 4 the equilibrium equations in the transverse (x) and axial (y) 
directions for a generic element n and special element at the free edge (n = 1 and n = N) 
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can be written as 
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Fig. 4. Free body diagram of homogeneous element. 
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where the subscripts (n + 1/2) and (n - 1/2) indicate the mid-nodes between the elements 
n and (n + 1) and (n - 1) and n respectively, subscript y preceded by a comma indicates 
differentiation with respect to y, and c~,,m is Kronecker delta (6 ..... = 0 for rn ¢ n and 6,,, = 1 
for m = n). 

Next, a set of approximate constitutive relations are derived. In general, the constitutive 
equations for a homogeneous, orthotropic material can be written as [15] 

O" x ~-- C l l U x  @- C12v,y , (2a) 

O'y ~--- C12/d,x -1- C22v,y , (2b) 

"C = C66(Uy -1- V,x), (2C) 

where u and v are the x and y components of  the displacements, C~j are the orthotropic elastic 
constants. These general relations can be applied to any element n by replacing C~/in (2) with 
the constants C~ appropriate to that element. The elastic constants for an element can be 
expressed in terms of  fibre and matrix properties as 

C2n2 = ~C2n2f + (1 - -  ~)Cff2 .... C~l = C~,fC~lm/[~C~l m -}- (1 - ~2)C~lf] , 

Gin2 ~- ~Cf2 f ~- (1 - ~)C~2m, c6n6 = Cg6fC~6*6m/[~YCg6m-}- (1 - )))Cg6f], (3 )  

where subscripts f and m represent the fibre and the matrix respectively and ? = b/h. The 
mid-node (n + 1/2) is common to elements n and (n + 1). The transverse stress, G(,+1/2~, at 
mid-node is interpreted as 

1 o-xin+l/2 ) = ~[ax(n+,/2)l + O-x(,+m)l+], (4) 

where O-x(n+l/2) ] is the mid-node stress from left and O-x(n+i/2)[ + is the corresponding stress 
from right. The mid-node shear stress is interpreted likewise. Following (2), we can write 

1 n n - / ' ~ n +  1 ]+ 
O-x(n+l/2) = ~{[Cllld(n+l/2),x -}- C12v(n+l/2),y ] -}- [C'l'?lu(n+l/2,x -}- v. 12 V(n+l/2),y ] }, ( 5 a )  

(Ty m ~- Ci72Un,x "~- C]2vn,y, ( 5 b )  

1 y C  n [u T(n+l/2) = 2 [  661- (n+l/2) ,y-~ 7-)(n+1/2),:,']- -~ C~61[bl(n+l/2),y ~- 'U(n+l/2),.v]+} - (5c) 

To make the problem mathematically tractable, the differentials with respect to x are 
approxmated by (central, backward and forward) difference formulas. Further,  the mid- 
node displacements are approximated by the average of  the centre line displacements of  the 
adjoining elements. These approximations are 

1 
Un'x - -  h [b/(n+l/2) - -  /'/(n 1/2)], (6a) 

2 
u~,+l/2~,xl- = ~ [u~n+l/2~ - u,,], (6b) 
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2 
u(,,+l/2),xl + = ~ [u(.,+l) - u(.+l/2)], (6c) 

1 = - -  n 1 n t~n+ 1"~ (7a) G(~+m) 2 h  ( C l l  ~- C~-l)(Un--1 - un) -'1- 2(C12  -]- ~-~12 JVnq-1/2,y, 

~y(n) = Cln2(bln+l/2 --  un-l/2)/h + C~2%,y, (7b) 

~n+l/2 = 1 (C~6  + Cg+l)bln+(1/2),y "~ (Vn+l - -  'Un)/h]. (7C) 

d2{u} d{v} (8a) 
dr /2  [K,]{u} = [C~] d---~- 

and 

With these approximations the constitutive relations for element n can be written as 

The transverse and shear stresses at (n - 1/2) can be obtained by substituting (n - 1) for 
n in (7a, 7c). 

Substituting (7) into (1) the equilibrium equations in terms of  the displacements can be 
obtained. These equations can be converted into a more convenient dimensionless form by 
making a change in the variable, y = h~/. With some further simplifications the final 
equilibrium equations are obtained and written in the following matrix form: 

d2{v} d{u} (8b) 
dr/2 [Kvl{v } = [C~] d---~-' 

where, vector {u} and {v} are 

{.} = 

{¢/-3} = {'/'31, V 2 , ' ' ' ,  VN}, 

with u, and % representing the x and y displacement components  of  fibre n and the 
tridiagonal matrices [K,], [Kv], [Q],  and [Cv] are given in Appendix A. Equations (8a, 8b) 
can be reduced to a first order equation 

d{w} 
- [ K ~ . l { w } ,  (9 )  

dr/ 

b/(n+l/2 ) = 1[~/n -~- b/(n+l)] , (6d) 

'U(n+l/2 ) = 117-) n -t- 'U(n+l)]. (6e) 
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where 

dul dun d% dVN} r, 
{W} = Ul . . . .  , ~/N, Vl, " " " , g-)N, dr/ ' "" ' '  dr/ ' dr/ . . . . .  dr/ 

[Kw] 

0 

0 

[x.] 

0 

o [1] o 

L 
o o [11 

o o [G] 

[Kv] [C~] 0 N × 4 N  

The general solution of  the above equations can be written down if the eigenvalues and 
eigenvectors of  matrix [K,.] are known. Let rj, j = 1, 2 . . . .  , K1 be the real eigenvalues of 
the matrix [K,,], {AJ}, {Bj} be the first 2N components  of  the corresponding eigenvectors, and 
& + iqj, pj, qj > 0, j = 1, 2, . . . , K2 be the complex eigenvalues of  the matrix [K,,.]. 
{A(} + i {A~}, {Bff } + i{B / } be the first 2N components  of  the corresponding eigenvectors, 
/(1 and K2 are the number  of  the real and complex eigenvalues respectively, so that, K, + 
2/(2 = 4N. The eigenvalues can be readily calculated numerically once the matrix [K,,] is 
formed. Then, the general solution to (9) is 

KI K2 

{u} = Z C:(A/) erjn + Z eP'~[CJ"({A(} cos q/r/ - {AS} sin q/r/) 
j = l  j = l  

2 R + Q ({A/} sin q, rl + {AJ} cos qjr/)], (10a) 

K1 K2 

{v} = 2 Cj(Bi) egn + Z e&~[cja({BT} cos qjr/ - {B/} sin q j q )  
j = l  j = I  

+ ~2({B~} sin q/r/ + {Bf} cos q/q)], (10b) 

where Cj, C/1 , C./.2 are the 4N constants to be determined from the boundary conditions. In 
the following sections the appropriate boundary  conditions for the two damage configur- 
ations, transverse cracking only and transverse cracking with longitudinal splitting, are 
discussed. 

2.2. Transverse cracking 

A transverse crack is formed by breaking the "equivalent fibres" in the 90 degree plies. The 
appropriate boundary  conditions are 

{ey}]~:,~ = e0, ( l l a )  

{ql~=~.,. = {~}Go = O, ( l lb )  

[T~]{V}Go + [T~]{~.}l.=o = O, ( l lc )  
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where [T6] is a diagonal matrix with non-zero elements of unit magnitude from N1 to N2 only 
and ITs] = [I] - [T6] with [I1 being a unit matrix. 

By substituting (7) and (10) into the above boundary  conditions equations (11) we get a 
system of linear algebraic equations for the unknown constants Cj, Cj 1 , and ~2. Once these 
constants are known the displacements and stresses at any location can be calculated. 

2.3. Transverse cracking and longitudinal delamination 

To apply the generalized consistent shear-lag solutions to the problem of  transverse cracking 
with longitudinal delamination the unidirectional region is divided into four regions as 
shown in Fig. 5. The necessary boundary  conditons for various regions are 

%1~=0 = ~,1~=0 = 0 for regions2 and 3, (12a) 

oy,l~=0 = %1~=0 = 0 for region 1, (12b) 

ey~]n~+oo = %, %1~-.+o~ = 0 for region 4. (12c) 

In addition to the above boundary  conditions the axial displacement %, the transverse 
displacement u,, the axial stress ayn, and the transverse stress o-x, of a fibre n must be 
continuous along t/ = t/,. 

Because region 4 is an infinite strip, the expressions for displacements {u} and {v} will be 
different from those given by (10), which correspond to regions of  finite length. Since the 
strains (therefore stresses) should remain finite when t/ ~ + co, those terms with positive 
eigenvalues in the displacements, (10), must be zero. F rom this it can be seen that the matrix 
[Kw] has a zero eigenvalue with two independent eigenvectors { 1 . . . .  , 1, 1 , . . . ,  1, 0 . . . .  ,0 ,  
0, . . . , 0} and {1 . . . . .  1, - 1 . . . . .  - 1, 0 . . . .  ,0 ,  0, . . . , 0}. The displacements for the 

3 REGION 1 
i 2 

~0 

Fig. 5. Transverse crack with splitting. 
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region 4 are 

KI 

{u) = (Co - ~0~/){1) + ~ ~{Aj}e -'?~ + 
j =  1 

K2 

e-m[Ci~({Af} cos qjt/ - {AJ} sin qstl) 
j=l 

+ ~2({A~} sin q,r/ + {AJ} cos qjt/)], (13a) 

KI 
{v) = (Co + + Z 

j = l  

Cj{Bj}e -(/q -Jr- ~ e -pJrl [C].l ({B Rj } cos qstl - {B/} sin qjr/) 
j =  I 

+ Cj2({B~} sin qjt/ + {B/} cos qjt/)]. (13b) 

Clearly the boundary conditions equations (12) have been satisfied. 
By applying (10) to regions 1, 2 and 3 separately and satisfying the boundary conditions 

and continuity conditions, a system of linear algebraic equations for the unknown constants 
corresponding to each region are obtained. After solving these equations, the stresses and 
strains in any fibre/matrix element can be obtained. 

2.4. Numerical solution scheme 

One of the major advantages of  the present model is that simple explict expressions for the 
displacements and stresses have been obtained. In each case it is a linear combination of a 
finite number of functions of the form e ;x. Clearly, the bigger the number N is, the more 
accurate the calculation of the displacements will be. However, due to the limitation on 
computer capacity and numerical errors, there is a limit on that number N over which no 
practical benefit could be derived. As shown in Fig. 3 each element consists of one fibre 
surrounded by the matrix on either side. Thus it seems that the number N would be the total 
number of fibres in the entire region. However, since the equivalent homogeneous element 
has been adapted during derivation, we can construct the element as a combination of two 
or more fibres or divide one layer into more than one element. Thus the number N can always 
be kept around an optimum value. 

3. Results and discussion 

3.1. Analytical results 

The results are given for a laminate with an idealized cracking geometry shown in Fig. 2. It 
is assumed that the crack growth path is one dimensional and the crack front is represented 
by a point. Symmetric graphite/epoxy laminates of [0m/90,]~ and [0k/0,,,/90,] s types are 
considered in the analysis. The following properties along the material principal axes are 
used in the calculations: E 1 = 144.8GPa, E2 = E3 = l l .7GPa,  G~2 = G ~ 3  = 6.5GPa, 
G23 = 3.5 GPa,/~12 = #J3 = 0.3,/~23 = 0.54, matrix tensile strength = 80 MPa, and matrix 
shear strength 40 MPa where axis 1 is aligned in the fibre direction and plane 2-3 is normal 
to it. 
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First, the self-similar growth of an initial (inherent) transverse crack through the 90 degree 
plies is presented based on the point stress criterion; failure occurs when the stress in the 
unbroken element reaches the ultimate stress of the fibre or the matrix depending on the 
element location. Since the region of 90 degree plies has been replaced by equivalent 0 degree 
plies the ultimate stress of this equivalent fibre is assumed to be approximately equal to that 
of the neat matrix material. The inherent flaw size is approximately 2.6 T to 3.6 T [9] where 
T is the ply thickness. Second, the onset of delamination along the 0/90 interface parallel to 
the applied load and the extension of the transverse crack into the 0 degree plies by breaking 
axial fibres is investigated. The delamination is assumed to occur when the interfacial shear 
stress reaches the matrix shear strength. The point stress criterion was proposed by Nuismer 
and Whitney [16] for notched composites. This criterion has been extended to shear lag 
models for unidirectional composites [13, 17] with some success. To illustrate the application 
of the failure criterion, let us consider a transverse crack contained in 90 degree plies of 
[02 /902]  , symmetric laminate. For a normalized crack length of 0.4 and an applied remote 
strain of 0.45 percent the analytical model would predict an axial stress of 80 MPa and a 
shear stress of 21 MPa in the matrix ligament at the crack tip. If the ultimate tensile and shear 
strengths of the matrix are 80 MPa and 40 MPa, respectively, the point stress criterion would 
predict a self-similar cracking. 

Figures 6 and 7 show the remote strain required to extend an inherent transverse crack, 
as a function of the 90 degree layer thickness for [Om/9On] s and [45k/Om/90n] , laminates 
respectively. The tendency of the laminate for microcracking in the transverse plies increases 
with the transverse ply thickness. The axial plies provide substantial constraint for smaller 
90 degree ply thicknesses. For a given 90 degree ply thickness the addition of zero degree plies 
increases the transverse cracking strain. A comparison of Fig. 6 and Fig. 7 shows that the 
presence of angle plies decreases the transverse cracking strain for smaller 90 degree layer 
thicknesses. 

The tendency of laminates to delaminate along the 0/90 interface in the presence of a 
transverse crack is studied next. Figures 8 and 9 show the laminate strain at the onset of  
delamination (splitting) along the 0/90 interface for the [Om/9On] s and [02/Om/90n] s laminates 
for various 90 degree ply thicknesses. Here, it is assumed that a transverse crack has already 
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Fig. 6. Predicted tensile strain at the onset of transverse cracking for [0m/90,,]s laminates. 



0.5 

m=2 

l.t 

z 
.<: 
n,. 
I , -  
09  

LIJ 
I - -  
z O . 4  

"t 
C:l 
i , i  

13_ 
13_ 

0 .3 

Micromechanics characterization 133 

m=l  

1 .Od 

0 2 4 6 
NUMBER OF 90 DEGREE LAYERS, n 

Fig. 7. Predicted tensile strain at the onset of transverse cracking for [452/0,,/90,,], laminates. 
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Fig. 8. Predicted tensile strain at the onset of delamination for [%/90,,], laminates. 
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Fig. 10. Laminate strain for the onset of  transverse cracking or delamination at the interface. 

propagated up to the interface and that the interface delamination occurs due to the large 
shear stress at the transverse crack tip. For the two types of laminates it can be seen that the 
tendency for delamination increases with an increase in 90 degree layer thickness. In Fig. 10 
the laminate strains for the onset of interface delamination are compared with those for the 
onset of transverse cracking for a [02/90,,], laminate. For thinner 90 degree layers the 
delamination strain is much higher than the transverse cracking strain and hence the 
laminates with a few 90 degree plies would exhibit only transverse cracking. However, the 
laminates with thicker 90 degree layer would delaminate following a transverse cracking. 

Next, the crack tip stress and strain distributions along with maximum stresses are 
presented. Of particular interest is the role of the crack tip stress field on the failure modes, 
such as self-similar cracking in the 90 degree layer as well as in the 0 degree layer, matrix 
splitting in the 90 degree layer and the 0/90 interface delamination. The crack tip axial strain 
distribution for a unit applied laminate strain is shown in Fig. 11 for various crack lengths. 
As the crack propagates toward the 0/90 interface the maximum (crack tip) strain increases 
until the tip is very close to the interface and then begins to decrease. When the crack tip is 
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Fig. 11. Crack tip strain distributions and maximum strains. 
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Fig. 12. Strain distribution in zero degree plies for [02/90]., laminates. 

at the 0/90 interface the crack tip maximum axial strain (now in the first 0 degree ply) is 
significantly smaller. However, once a 0 degree ply breaks then the maximum strain increases 
with the crack length, indicating an unstable crack growth in the 0 degree layer once it is 
initiated in it. This is further illustrated in Fig. 12 in which two crack tip strain distributions 
in the 0 degree layer are plotted, one with no broken plies in the 0 degree layer and the other 
with a single broken 0 degree ply. 

The possibility of a longitudinal matrix splitting within the 90 degree layer is also 
studied. In Fig. 13, applied laminate strain required for the self-similar growth of an 
existing transverse flaw and that required for the longitudinal matrix splitting respect- 
ively are shown for various crack lengths for [02/902], laminate. For the most part the 
strain for splitting is much higher than that required for self-similar crack extension. When 
the crack has extended through the entire thickness of the 90 degree layer the situation is 
reversed. Therefore, it can be observed that a transverse (inherent) flaw generally grows in 
a self-similar fashion up to the 0/90 interface and then only interface delamination may 
occur. 
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Finally, the effect of  0/90 interface delamination crack on the fibre and matrix stresses 
is presented. In Fig. 14 the maximum axial strain in the first 0 degree ply along the 
transverse crack plane (x-axis) is plotted for two laminates. As the delamination grows 
the maximum strain in the 0 degree ply decreases, indicating that once the 0/90 interface 
fails the transverse crack extension into 0 degree plies would not occur. The shear and 
transverse normal stresses in the matrix at the top of  the interface delamination crack 
are presented in Fig. 15 for various delamination crack lengths for the two laminates. 
The transverse normal stress ax increases with the crack length initially and then drops, 
whereas the shear stress z increases monotonically. Therefore, if the delamination were 
to initiate due to transverse normal stress then it would be arrested. On the other hand, if 
the delamination were to initiate due to shear stress then it would propagate in an unstable 
manner. Also plotted in Fig, 15 is the principal shear stress neglecting the axial stress in the 
matrix. A failure criterion based on the principal shear stress would predict unstable and 
stable crack growth regions. 
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Table 1. Summary of predicted and experimental results 
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Laminate tensile strain at onset of transverse cracking 

Laminate type Experimental [9] Predicted Predicted [9] 
(present model) 

[02/90], 0.55% to 0.57% 0.46% 0.59% 
[02/90z]s 0.29% to 0.36% 0.40% 0.36% 
[02/904], 0.24% to 0.28% 0.32% 0.27% 
[02/908], 0.19% 0.28% - 

Table 2. Summary of predicted and experimental results 

Laminate tensile strain at onset of interface delamination 

Laminate type Experimental [9] Predicted Predicted [9] 
(present model) 

[02/90], (not observed) 1.12% 1.2% 
[ 0 z / 9 0 2 ]  s 0.92% 0.81% 1.05% 
[02 /904 ]  , < 0.8% 0.35% 0.78% 

3.2. Comparison with experimental results 

Using the material properties listed in Table 1, which approximately correspond to a 
graphite/epoxy (T300/934) unidirectional lamina, the predicted laminate strains for trans- 
verse cracking as well as interface delamination in various laminates are compared with finite 
element predictions and experimental results [9]. These are summarized in Table 1 for 
transverse cracking and in Table 2 for interface delamination. The predictions of the current 
model do not include thermal (residual) stresses. The agreement between the results with 
respect to the transverse cracking event is good. With respect to the delamination event the 
agreement is good considering the fact that the experimental data  is limited. Inclusion of 
thermal effects should substantially improve the predictions. 

3.3. Some comments on element size 

For a continuous medium the elastic stress field at the crack tip is unbounded.  The finite 
difference solution, however, provides only an averaged stress state in each finite-difference 
element near the crack tip. Thus, the crack tip stress in the current discretized model like all 
shear lag models is finite. Further, the calculated element stresses depend on the element size. 
In the present work the size of  the finite-difference element is the same as the fibre-matrix 
element size. This selection of  the element size implies that the variation of stresses is 
averaged over one fibre centre-line spacing. Most discretized composite models such as those 
based on shear lag assumptions treat the stresses in a shear lag element to be constant and 
get good results for fibre-dominant composites. 

4. Conclusions 

The material properties appear explicitly in the model. The model can account for the 
self-similar growth of inherent flaws in the transverse plies, fibre fracture in the load carrying 
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axial plies and interface delamination between zero and 90 degree plies• The applied load is 
tensile in nature and is parallel to axial plies• Based on a simple point stress criterion (tensile 
or shear) the three failure modes, transverse crack growth in the 90 degree plies, fibre breaks 
in the axial plies and interface delamination, are predicted from the constituent properties 
and the laminate configuration• The focus of this research has been in studying the onset and 
growth of delamination at the 0/90 interface when the transverse crack intersects the 
interface• The predictions agree with the experimental as well as finite element results• 

A p p e n d i x  A 

The matrix [Ku] appearing in (7) is 

(K.),,1 (Ku)l,2 

• • . 

( & )  . . . .  1 (Ku)n,. ( &  L,n + 1 

(K.)N-1,N(K.)N,N 

with the non-zero elements (Ku)i,j given by 

Clk 
12 

( K u ) l ,  1 =- - -  ( K u ) l ,  2 ~- 2 - T - ,  
C66 

C~21 + 2C~1 + C~1 +' 
(Ku)., n = 2Cg 6 ' 

(K~)N,N-1 -- (Ku)N,U- 2 C~-6' 

n - ±  
C I  1 2 

(A1) 

C1½ 6 6  C~6 ½ 
(Kv) l ,1  = - -  (Kv) l , 2  - C~ 2 , ( K v )  . . . .  1 - C2n2 , 

-- g'~n+½ i'~n+½ 
C~6 ~ -1- ~66 ~66 

- - , ( A 3 )  (Kv) .... C2 ~ , (Kv)n,n +1 c2n2 

( K v ) N , N  1 ---~ - -  ( K v ) N , N  ~-" - -  C N  ½, 

given respectively by 
The matrices [Kv], [Q], and [Cv] are also tridiagonal matrics with their non-zero elements 

. . . .  , - 

C~+~ (A2) 
( K u ) n , n +  1 - -  C ~  6 ' 
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1 ± l± C6~ - C]2 - - , C 6 ~ -  C~ 
(Cu)l ,  1 - -  C~ 6 ' (Cu)l,2 - C~ 6 ' 

c;2 '2 + cg#} 
( C . ) n #  i - 2Cg 6 (Cu) .... 

Cn+l __ C ~ 2 1  _~_ Cg6~1  n - ,  (A4) 12 - -  C66 

4C~6 

f~n+½ t~N-½ - C~?  ½ Jr- ~66 ~'~66 -]- CN ½ 
(Cu)n,n+ 1 --  2Cg 6 (Cu)N'N-I C N 

(C)N,N - c g  
' 

c6'a 
( C v ) l ' l  - -  2C~2 ' (Cv)1'2 - 2C~2 ' 

Gin2 Jr- C g 6  ½ Cg 61 - -  C~#  1 

(C~) .. . .  ' - 2C~ ' (C~)~,.  - 2C~2 ' 

(A5) 

C12 + ~'~66 
(Cv ) , v ,+ , -  2Q'2 , (Cv)N,N- , -  2G{  , 

(C~)N,N 2C N 
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