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Abstract 

The linear theory of elastic materials with voids is considered. Some basic theorems concerning the existence 
and uniqueness of solution, the reciprocity relations and the variational characterization of the solution are 
presented. 

1. Introduction 

In [1], Nunziato and Cowin gave a nonlinear theory of elastic materials with voids. The 
intended applications of the theory are to geological material like rock and soils and to 
manufactured porous materials. 

The linear theory of elastic materials with voids was established by Cowin and 
Nunziato [2]. In this paper we consider the linear theory of elastic materials with voids 
and establish some basic theorems concerning the existence and uniqueness of solution, 
the reciprocity relations and the variational characterization of the solution. 

2. Basic equations 

We refer the motion of the continuum to a fixed system of rectangular Cartesian axes 
Ox k (k = 1, 2, 3). We shall employ the usual summation and differentiation conven- 
tions: Latin subscripts (unless otherwise specified) are understood to range over the 
integers (1, 2, 3); summation over repeated subscripts is implied and subscripts pre- 
ceded by a comma denote partial differentiation with respect to the corresponding 
Cartesian coordinate. 

Let B be a regular region of three-dimensional space occupied by an elastic material 
with voids. Let B be the interior of B. We call 3B the boundary of B, and designate by 
n i the components of the outward unit normal to 3B. 

Let u i denote the components of the displacement vector field. Then the compo- 
nents of the infinitesimal strain field are given by 

=1 (2.1) ei+ ~ ( u i , j + u j , i ) .  

We denote by q0 the change in volume fraction from the reference volume fraction [2]. 
We consider an elastic material with voids which possesses a reference configuration in 
which the volume fraction is constant. 
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The constitutive equations for the linear theory of elastic materials with voids are [2] 

t+g = Cigrsers + D+jsq~ ~ + B~jcg, 

h i = A,j~p.j + Drsiers + bi~p, (2.2) 

g = - -~¢p  - -  B i j e i j  - -  bicP,i ,  

where t~j are the components of the stress tensor, h+ are the components of the 
equilibrated stress vector, g is the intrinsic equilibrated body force and Cijr~, D~j k, Ai/, 
Bij , bi, ~ are characteristic coefficients of the material. We have assumed that g does 
not depend on c~. Obviously, this restriction involves only the quasi-static or dynamic 
theory. The results presented in Section 4 for the dynamic theory can be easily 
extended to the case when g depends on ¢~. The material coefficients obey the 
symmetry relations 

Cijrs = Crsij = qirs, Bij = B j i ,  

Ai j= Aji, Dij =D/jr. (2.3) 

The equations of motion governing a continuum with voids are the balance of linear 
momentum 

t j i , j  + P f i  = P U i ,  (2.4) 

and the balance of equilibrated force 

ok+ = h,,~ + g + p: .  (2.5) 

Here fs are the components of the body force vector, O is the density in the reference 
configuration, k is the equilibrated inertia and Y is the extrinsic equilibrated body 
force. 

Let us consider the subsets ~'i (i = 1 . . . . .  4) of 0B such that ~1 U ~ 2  = ~3  U ~]'4 = 0B,  

~1 n E z = ~3 ¢3 ~'4 = ¢- We consider the following boundary conditions 

ui=ui  on E , × [ 0 ,  t0), ti=-t+in:=?i on E 2X[0 , t0 ) ,  
(2.6) 

= ~ o n  ~3 × [0, to), h = h i n  i = ]z o n  "~]'4 )< [0 ,  t 0 )  , 

where fii, ?~, ~p, h are prescribed functions and t o is some instant that may be infinite. 
To the system of field equations we adjoin the boundary conditions (2.6) and the 

initial conditions 

u,(x,  O)= u°(x) ,  iC(x, O)= v°(x) ,  qo(x, 0) =q%(x) ,  (2.7) 

+ ( z ,  o) = 

where u °, v °, %, v o are prescribed functions. 

3. Equilibrium theory 

In the case of equilibrium the equations (2.4) and (2.5) become 

t j i , j  "1- Pfi  = O, 

and 

hi,  i -}- g 4- p f  = 0, 

(3.1) 

(3.2) 
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respectively. The basic equations of elastostatics are: the equilibrium equations (3.1) 
and (3.2); the constitutive equations (2.2); the geometrical equations (2.1). To the 
system of field equations we add the boundary conditions (2.6) where the boundary 
data are independent of time. 

Let us consider the body subjected to two different systems of loadings L (~) = 
(fi(~), f (~), ~"),  ~}~), q)(~), h(~)}, ( a = l ,  2) and the corresponding states C (~)= 
( u} "), ¢p(~), e}; ), t}~ ), h} ~), g(~)}. We introduce the notations 

t} ~) = "sit(~)'s, h(~) = hi(a)ni" (3.3) 

Let us prove the following reciprocal theorem. 

THEOREM 3.1: I f  an elastic material with voids is subjected to two different systems of 
loadings L (~) (a = 1, 2), then between the corresponding states C (~) lhere is the following 
relation 

£ p (  L(1)U~ 2) "t- {(1)¢p(2))dx + foB( t}l)u} 2) + h(1)q~ (2))dx 

-m- £ p (  fi(2)u}l)-ot- ~(2)ctg(1) ) d x  -~- ~B(  t52)u}l) q- h(2)~(1) )dx .  (3.4) 

PROOF: On the basis of the relations (2.3), from (2.2) we get 

( t~))_ n ~(1)_ B,j~p(1) )e[2)= ( t~2)_ l) ,~(2) "-'ijk'r.k ~ijk'r,~ - BijeP (2)) e~) ), 

(h~l )  _ Drsie~ls) _ bi ~(1)'~ ~(2) _ j t l ~ , i  - (h~ 2) - Drst -e(2)rs - bitp~(2) ~ ~(1)jtF,i, 

_(g( l )  + ~¢p(1) + Bije~)) + bi~!~) ) qo(2) = _(g(2) + ~¢p(2)+ Bije}2) + biq)!2i ) )q¢,). 

Adding up these relations we obtain 

ti j(1).(2)cij q_ hi(1)~(2)tF,i _ g(1)q0(2) = -,Jt(Z)e(a)-,e + hi(2)~(1)w,i --  g(2)q 0(1)" (3.5) 

If we introduce the notation 

I~B = Js'  f (t~)e!~)'s ,g +hi(~)-(e)v., - g(~)rP(e)) dx,  (a,  fl = 1, 2), (3.6) 

then, from (3.5), we have 

112 = I21. (3.7) 

By using the relations (2.1), (3.1)-(3.3) and the divergence theorem, we obtain 

I,~ B = f~ ( t}~)uf  ) + h(~)cp (B))dx + £(  i,(o) uS ) + e(o,w(,) )dx. (3.8) 

From (3.7) and (3.8) we obtain (3.4). Using Theorem 3.1 we can obtain relations of 
Somigliana type. 

Let us note that if we take L (1) = (f~, t ,  fii, ?~, q~, h and C (1) = 
(ui, % eij, tij, hi, g}, then, from (3.6) and (2.2), we obtain 

it'll = fB(t i je i j  + hieP,i-gqg) d x =  2 fBWdx,  (3.9) 
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where 

__ 1 1 (3.10) W -  ~Cijrseijers "4- ½~2 -b ~Aij~, icP, j  -}- B i j ~ e i j  q- Di jke i j~ ,  k q- bitpcp,; 
is the potential energy density associated with strain and void volume distortion. The 
relation (3.8) becomes 

111 = f~B(tiUi-[- h c p ) d x +  fBp(f~u; + Ycp)dx. (3.11) 

Thus, f rom (3.9) and (3.11) we obtain 

2fWdx=f (t,u,+h, )dx+fBp(f, ui+t, )dx. (3.12) 

This relations leads to the following uniqueness theorem. 

THEOREM 3.2: Suppose that the potential energy density is a positive definite form. Then 
any two solutions of the problem are equal modulo a rigid displacement. Moreover, if E 1 
is non-empty, then the mixed problem has at most one solution. 

PROOF: Let (Ui,  q), eij , tij , hi, g )  and (ui, % eij , tij' hi, g) be solutions of the 
boundary  value problem, and let u/° = u; - fi;, cp ° = cp - Fp,..., gO = g _ g. According to 
the linearity of  the problem (u°i, ~po, e o, t o, h,, gO) is a solution corresponding to 
f~ = 0, ~= 0. Moreover  t°u ° + h°cp ° = 0 on OB. We conclude from (3.12) that 

s W ° d x  = 0, (3.13) 

where W ° is the potential  energy density corresponding to e ° and cp °. Since W ° is a 
positive definite quadratic form, f rom (3.13) we obtain e ° = 0, cp ° = 0 and therefore 

u° = a ° + ,ijkbOxk, ¢p°=0,  (3.14) 

where a ° and b ° are arbitrary constants.  If  "~1 is non-empty  we obtain u ° = 0, cp ° = 0 
in B. 

The field equations of  the static theory can be written in the form 

Au = f ,  (3.15) 

where u = (u 1, u 2, u3) = (ui, ~p), f =  (Pfi, P£) and Au has the components  

AiU = - (CijrsUr,s + Dijkep, k + Bij~) , j  , 

A 4 u  = - ( OrsiUr, s -or h i j ~ ,  j -~- b i ~ )  i .4- n i j u i ,  j --~ b, ep,, + ~¢p. (3.16) 
If  a = (a  1, a 2, a 2, a4) and b = (b 1, b 2, b 3, b4) are two vectors, then we will denote  by 
ab the scalar product  ab = Z4=aa~bv 

If  we introduce the notat ions 

U = ( U } I )  ¢p(1)), / )=(U~2)~0(2)) ,  (3.17) 

t i ( u ) = t ~  1), h ( u ) = h  (a), p ( u ) = ( t i ( u ) , h ( u ) ) ,  

then the relation (3.4) can be expressed as 

( uAo - oAu)dx  = ( u ) -  up( (3.18) 
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From (3.18) we conclude that in the case of homogeneous boundary conditions the 
operator A is symmetric. Moreover, in this case (3.12) becomes 

fBuAudx= 2fsWdx. (3.19) 

Let us study the existence of the solution of the equation (3.15) with the boundary 
condition 

p ( u )  = 0  on ~B. (3.20) 

We assume that the domain B is C~-smooth [3] and the body forces and the 
coefficients of the material belong to C ~. We consider only a "C~-theory '' but it is 
possible to get a classical solution of the problem for more general domains and more 
general assumptions of regularity for the above functions (see [3,4]). In what follows we 
establish an existence theorem using results from [3]. We assume that W is a positive 
definite quadratic form, so that 

2W>~c(eijeij+~j~,i+~p2), c > 0 (c = coast.). (3.21) 

To prove existence of the solution of the boundary value problem (3.15), (3.20), as in 
[3], we consider the system 

Au + qu = f , (3.22) 

where q is an arbitrarily fixed positive constant. First we consider the boundary value 
problem (3.22), (3.20). Using (3.19) it follows [3, p. 62] that the inequality to be proven 
in this case is the following 

2fwdx + q f y d x  >1 c011ull , e0> 0 (e0= coast.) (3.23) 

for any u ~ Ha(B ). Ha(B ) is the Hilbert function space obtained by the functional 
completion of Ca(B) with respect to the scalar product 

(u, v)=fBDsuDSvdx,  (s = 0, 1). 

Using (3.21) one easily sees that the inequality (3.23) is implied by the following 
inequality 

fB(eijeij+cP,i~P,i+~PZ)dx + fau2dx>~cxl[U[l~, e x > 0 ( c l = c o n s t . ) .  (3.24) 

Using the second Korn's inequality we can write 

fBeijeijdx + fB(u(a')2dx>_-callu(X'[l~, c 2 > 0 ( c 2 = c o n s t . ) ,  (3.25) 

where u (1) = (ui, 0). If we denote u (2) = (0, 0, 0, ep) we have 

f ( + w2 )dx + fB(u, 2, )2 dx > II ,,2, I1 . (3.26) 

From (3.25), (3.26) follows (3.23). Thus, the boundary value problem (3.22), (3.20) has 
only one solution which is C ~ in B. The differential operator is formally self-adjoint, 
so that a C ~ solution in B of the system 

Au + qu - Xu = f , (3.27) 
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with the boundary condition (3.20) exists when and only when 

j u * d x  = O, 

where u* is any solution belonging to C ~ of the problem (3.27), (3.20) with f =  0. In 
the case when X = q the only C ~ solution of the homogeneous system is (3.14). Thus 
we have the following theorem of existence. 

THEOREM 3.3: The boundary value problem (3.15), (3.20) has solutions belonging to 
C°~(B) if and only if 

f pl/dx = 0, f o,,j,X/kdX = O. (3.28) 

In the above relations ¢ijk is the alternating symbol. It is easy to show that in the case 
of the inhomogeneous condition p ( u ) =  (~;, h) on 0B, the conditions (3.28) are 
replaced by 

fBPf;dx + f o j i d x  = O, 
(3.29) 

fsPc;skXJkdX + f~ C;skXjt\dx= O" 

We say that S = {u;, % e;j, tij, h;, g} is a kinematically admissible state if 
(i) u i ~  C2(B), ¢p ~ C2(B), u i ~  CI(B), cp ~ CI(B), 
(ii) the functions u;, % e~s, t;j, h;, g satisfy the equations (2.1), (2.2) and the boundary 
conditions imposed on E 1 and E 3. We have the following theorem of minimum 
potential energy. 

THEOREM 3.4: Let K denote the set of all kinematically admissible states, and let A be the 
functional on K defined by 

A(s)=f Wdx-fp(I,u,+  )dx-f ;,u,dx-f 
";X2 ~'4 

for every S = (u;, % e/j, t/j, h/, g} ~ K, where W is given by (3.10). Let S be the 
solution of the mixed problem. Then 

A (  S*) ~ A (  S) ,  

for every S ~ K, and equality holds only if S = S* modulo a rigid displacement. 

The proof of this theorem can be made by the procedure used in the classical theory of 
elasticity [5]. 

4. The dynamic theory 

Let f be a function of position and time defined on B × [0, to). We say that f ~  C M'N 
if 

0m l a y /  
Oxi~xy... Ox s ~ Ot" ] 
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exists and is continuous on B ×[0, to) for m = 0, 1 . . . . .  M; n = 0, 1 , . . . ,  N, and m + n 
~< max(M, N). We introduce the notion of admissible state S = ( u ,  % e~j, t~j, h~, g} 
by which we mean an ordered array of functions u~, % e~j, t~j, h ,  g defined on 

× [0,to) with the following properties 

U i ~ C 1"2, ¢p E C 1'2, ei j  E C 1'0, h i ~ C 1'0, g E C 0"0, eij  = eji , t i j  = tji. 

Clearly, the set of all admissible states is a vector space provided we define addition 
and scalar multiplication in the natural manner S + S' = ( u~ + u~,...,  g + g ') ,  XS = 
( X u , . . . ,  hg  ). By a solution of the mixed problem we mean an admissible state which 
satisfies the field equations (2.1), (2.2), (2.4), (2.5), the boundary conditions (2.6) and 
the initial condition (2.7). The uniqueness of the solution has been established in [2]. In 
what follows we derive the reciprocal theorem and variational theorems of Gurtin type 
[7]. First, we will present an alternative formulation of the boundary-initial-value 
problem. Let u and v be functions defined on B ×[0, to), continuous on [0, to) with 
respect to time t for each x ~ B. We denote by u * v the convolution of u and v 

[u * vl(x ,  t)=f0u(x,' t - ' r ) v ( x ,  ~')dr. 

Let us introduce the notations 

y ( t )  = t, F~. = p (7  * fi + tv° + u°) ,  (4.1) 

G =  O[Y * ~+ k( tvo  + eP0)] • 

Following [6,7] one can prove the following theorem. 

TnrOgrM 4.1: The functions u~, % t~j, hi ,  g satisfy the equations (2.4), (2.5) and the 
initial conditions (2.7) i f  and only if 

Y * tji,j + Fi = Pui, 3' * (hi,i + g)  + G = pkrp. (4.2) 

This theorem enables us to give an alternate formulation of the boundary-initial-value 
problem in which the initial conditions are incorporated into the field equations. Thus, 
the admissible state S is a solution of the boundary-initial-value problem if and only if 
S satisfies the equations (2.1), (2.2), (4.2) and the boundary conditions (2.6). 

Let us consider two systems of loadings L (~) = (f,(~), ~(~), ~ ) ,  ?~), ~(~), 
~(~), u°(% v°(% W~o ~), Vo ~)} ( a = l ,  2) and the two corresponding solutions S (~)= 
(u} ~), rp ("), e}7), t}~ ), h} ~), g(")}. We introduce the notations 

Fi (~) = p( ' /  * fi (") + to °(~) + u °(~) ), G (~) = p[ V * f(~) + k (  tv(o ~) + ~(o)1 "co i .  

THEOREM 4.2: I f  an elastic solid is subjected to two systems of loading L (~) (a = 1, 2), 
then between the corresponding solutions S (~) there is the following reciprocity relation 

fB [ F/(1) * u~2)+ G(I)* ~(2)]dx + lab Y* [t:l) * u~2) + hO)* ¢P(2)] dx  

= fB[ Fii(2) * u~l)-~- G(2) * fp(1)]dx~- f~B'~ * [t~2) * u~l)-[- h(2) * fp(1)]dx. (4.3) 
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PROOF. We will use the method given in [8,9]. On the basis of the relations (2.3), from 
(2.2) we get 

t~) ) * ~ij~(2)_Lw t ,  i/'(1) * W,i~(2)_ g(1) * cP (2) = t[ 2) * e~) )+ h~ 2) * 'e,i~(1) - -  g (2)  , ~0(1). (4.4) 

If we introduce the notations 

lo,=fj, It};) * e}f ) + "  h} ~ '*  'v.i~(B)- g(~) . cp(B)] dx,  (4.5) 

then from (4.4) we have 

112 = I21" (4.6) 

Using (2.1) and (4.2) we obtain 

3'* [t}~ )*  e}~ )+ -,h!~)* v,,-(B) _ g(~) ,  cp(~)] 

= y ,  ( ,~7 ' ,  u ~ ' )  e *  J,,l ,j- t ~ ,  u~B~+e, (h~ °~, ~ ) , ,  

- e  * (h!~+ ¢ o ~ ) , , , ,  ~(B~ 

= e *  (t~;, • u ? ,  + h l °~ ,  ~'~)~ + F,'°~ • u?'  + G ' ° ' ,  ~'~' 
_ pu},,) , u}~)_ pkcp(,~) , ¢p(B), (4.7) 

so that 

/ ~  = £ ( F i  (~ * u}~ + G (~) , rp(~l)dx 

+ f~ y * (t} ") * u} #)+ h (") * cp (t~))dx 

- £ p ( u }  ") * u f  ~ + k~p ("~ * cp (B))dx. (4.8) 

From (4.6) and (4.8) we obtain the relation (4.3). 
By using (2.1) and (2.2), the equations (4.2) can be expressed in terms of displace- 

ment and volume fraction. The resulting equations can be written in the form 

Lu = F, 
where u = (u~, cp), F =  (F~, G) and the components of the operator L can be found 
easily. The relation (4.3) becomes 

£(v, Lu-u, Lv)dx =f~B e * [ v *  p ( u )  - u * p ( v ) ] d x .  

We conclude that in the case of homogeneous boundary conditions the operator L is 
symmetric in convolution. Let us denote by D L the domain of the definition of the 
operator L. Following [10,11] we have the following variational theorem. 

THEOREM 4.3: Let  M c D L be the set of  all admissible vectors u which satisfy the 
homogeneous boundary conditions, and for each t ~ [0, t o) define the functional F t {.  } on 
M b y  

Ft{u } = f (u  * L u - 2 u  * F ) ( x ,  t ) d x ,  (4.9) 
¢B 
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for every u ~ M. Then 

8 r , ( . )  =0 ,  t ~  [o, to), 
at u ~ M if  and only i f  u is a solution of  the boundary-initial-value problem with 
homogeneous boundary conditions. 

With the help of (2.2), (4.5) and (4.8) we can express the functional F, (.  } in the 
form 

r, (,,} =f,? • ( c . su , ,  • u i , j+2Di jku i , j  * ~p.k+Aijq~,i * ~P,j 

+l~q~ * q~ + 2biq~,i * ep + 2Bijui,  j * ~)dx  

+ f , f ( u i*  u, + kw* w)dx - 2 f p ( L  * u, + d* w)dx. (4.10) 

The following variational theorem fully characterizes the solution of the mixed 
problem. 

THEOREM 4.4: Let ~g be the set of  all admissible states, and for each t ~ [0, to) define the 
functional f~, ( . )  on Mg by 

fB { 1 a t { S  ) = ~, * (~Cijr,er, * e i j+Di jke i j  * ~ , k + ~ A i j e P , i  * ep,j 

+ ½~q) * ep + biep, i * op + Bijeij * qo) -y  * ( tij * eij + h i * ep, i 

- g  • ~ ) - ( ~  • tj, l + F~) • u i - [ r  * ( h i , +  g ) + a ]  • 

+ ½p(., • u, + k,~ • w))dx + fx V . t ,  * r,,dx+fx2v * ( t ,  - [ i ) * u i d x  

+ f_ y *  h *  q)dx + / _  y *  ( k -  h) * ¢pdx. (4.11) 
3 4 

Then 

8~2t{S } = 0  over J¢', t ~  [0, to), (4.12) 
at an admissible process S i f  and only i f  S is a solution of  the mixed problem. 

PROOF: Let S ' =  (u~, qo', e~'j, 6'j, h~, g ' ) ~ , g  from which it follows that S +  hS '  ~ J /  
for every real ;k. Then (4.12), together with (2.3), the divergence theorem and the 
properties of the convolution, implies 

~a,(s/=f.{v, [(Cime,s + Dijs~P,, + B i j e P - t i j ) *  ei'j 

+ (AijcP,j + Dr~ie~ + bi~ - hi)  * ~ i  

"1-( ~9  + n i j e i j  -t- biep, i -}- g )  * fp' -4- ½( ui, j + uj, i - 2e i j  ) * tilj] 

-- ( ]t * tji, j + F i - PUi)  , u ; -  [ y * ( hi,i + g )  + G -  pkq)] * q0'}dx 
+ fx v * (~,,- u , ) ,  t;dx + f~ v * ( t , -  ~,) • u;dx 

+ • ( , -  q)) * t;dx + f * (h - h)  * q)'dx, t~[O, to). (4.13) 
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If S is a solution of the mixed problem then (4.13) implies (4.12). As in [7] we can 
prove that the "only if" part is also true. 
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