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Abstract 

It is shown that the constitutive equations for a linear elastic material with voids imply a viscoelastic 
stress-strain relation known as the "standard linear solid" in the case of quasi-static, homogeneous 
deformations in the absence of self-equilibrated body forces. It is noted that, even for deformations that are 
dynamic and /or  inhomogeneous the viscoelastic behavior is still qualitatively similar to that predicted by the 
standard linear solid model. 

1. Introduction 

This paper concerns the viscoelastic behavior of the material described by the theory of 
linear elastic materials with voids. The basic equations for this theory are described in 
Section 2. The theory was developed by Cowin and Nunziato [1] and its intended 
application is to the prediction of the mechanical behavior of solid materials with small 
distributed voids. In all applications [1,2,3,4,5,6] of this theory, the viscoelastic effects 
have played a prominent role. The purpose of this paper is to show that the type of 
linear viscoelasticity generally displayed by linear elastic materials with voids is that of 
a standard linear solid [7,8,9,10]. The standard linear solid is a particular linear 
viscoelastic model. It will be described and its constitutive equation recorded in Section 
3. 

In the theory of linear elastic materials with voids the constitutive equation for stress 
is linearly related to the strain and to a parameter e~ which represents the change in 
local volume fraction of the solid from a reference value of the local volume fraction. 
The value of ~ is determined by an equation relating q~ and its time rate of change to 
the value of the local strain and other parameters. The inclusion of the time rate of 
change of q~ is the source of the viscoelastic type behavior in the theory. Since stress is 
related to strain and to ~ it is not obvious how to classify the viscoelastic behavior of a 
linear elastic material with voids. Normally, a viscoelastic constitutive relation contains 
only stress, strain and time rates of change of stress and strain of various orders. The 
classification of the viscoelastic constitutive relation is by the particular orders of the 
temporal derivatives of stress and strain that occur in it. In this paper the parameter 
is removed from the constitutive relation so that a relation between stress, strain and 
the time rates of change of stress and strain can be obtained. It is shown here that the 
stress-strain relation for a linear elastic material with voids undergoing a quasi-static 
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homogeneous deformation in the absence of a self-equilibrated body force is exactly the 
constitutive relation of the linear viscoelastic model called the standard linear solid. In 
Section 3 this is shown in the special case of uniaxial deformation of an isotropic 
material, and in Section 4 the same calculation is repeated for an arbitrary deformation 
of an anisotropic material in order to specify the conditions under which the result is 
true. The implications of this result are discussed in Section 5. In particular, it is noted 
that viscoelastic behavior of the general type characterized by the standard linear solid 
model has been obtained in all the inhomogeneous and dynamic problems solved in the 
content of the linear theory of elastic materials with pores. 

2. Summary of the theory 

The linear theory of elastic materials with voids deals with small changes from a 
reference configuration of a porous body. In this configuration, the bulk density p, 
matrix density ~, and matrix volume fraction v are related by 

PR = ~/RvR, (2.1) 

and the body is taken to be strain-free, although not necessarily stress-free. The 
independent kinematic variables in the linear theory are the displacement field ui(x, t) 
from the reference configuration and the change in volume fraction from the reference 
volume fraction, , ( x ,  t), 

* ( x ,  t ) = v ( x ,  t ) - v R ( x ) ,  (2.2) 

where x is the spatial position vector in cartesian coordinates and t is time. The 
infinitesimal strain tensor Eij(x,  t) is determined from the displacement field, ui, 
according to 

Eij  = l ( u i ,  j -~- u j , i )  , (2.3) 

where the comma followed by a 10~ver case Latin letter indicates a partial derivative 
with respect to the indicated coordinate. 

Assuming the region occupied by the body is regular, the equations of motion 
governing a finear elastic continuum with voids are the balance of linear momentum, 

Oui = T~j,j + obi, (2.4) 

and the balance of equilibrated force, 

pk~ = h i,' + g + pg'. (2.5) 

Here T~j is the symmetric stress tensor, bi is the body force vector, h i is the 
equilibrated stress vector, k is the equilibrated inertia, g is the intrinsic equilibrated 
body force and ¢ is the extrinsic equilibrated body force. 

The constitutive equations for the linear theory of elastic materials with voids relate 
the stress tensor T~j, the equilibrated stress vector h i and the intrinsic equilibrated body 
force g to the strain Eij, the change in volume fraction , ,  the time rate of change of the 
volume fraction +, and the gradient of the change in volume fraction , ,  i; thus 

Tij = Cijkmgkm "~ Dijk*,  k + gi j • ,  (2.6) 

hi = a i j * , j  + OijkEjk  q'Z*,i, (2.7) 
g = --09+ -- ~* -- n i j E i j - - f i * , i  (2.8) 
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where Cijkm , Dijk, Bij , Aij, f~, o~, ~ are functions of vR- If the material symmetry is of 
a type that possesses a center of symmetry, then the t e n s o r s  Dij k and f, are identically 
zero and the constitutive equations (2.6), (2.7), and (2.8) simplify. If, in addition, the 
material is isotropic in its dependence of T,7, h i and g upon Eij, ~,i and ~, then Cijkm, 
A~j and Big are given by 

Cijkm = )k~ijSkm + ]L( Sik~jm q- ~im~jk ), (2.9) 

Aij  = °t~ij, Bij  = fl~ij, 

and the constitutive equations (2.6), (2.7) and (2.8) become 

Tij = XSijEkk + 2#Eij  + fle~rij, (2.10) 

h i = a~b,i , (2.11) 

g = -~o4 - ~ ,  - flEkk. (2.12) 

The isotropic elastic coefficients must satisfy the inequalities 

/,>_-0, a > O ,  ~ > 0 ,  ~>_-0, x~>~fl 2, (2.13) 

where 

= X + ~/~. (2 .14)  

The coefficient o~ and the equilibrated inertia k must be non-negative in order to 
satisfy a dissipation inequality resulting from the second law of thermodynamics. 

3. The  stress-strain relation for uniaxial deformation 

In this section it will be shown that the stress-strain relation governing the quasi-static, 
homogeneous, uniaxial deformation of a linear elastic material with voids in the 
absence of self-equilibrated forces is the viscoelastic stress-strain relation known as a 
standard linear solid. In the case of a uniaxial deformation the stress-strain relation 
(2.10) takes the form 

Tl l  = )kEkk "4- 2 p t E l l  + fld?, (3.1) 

0 = XE~k + 2/~E22 + fl~,, 

0 = h E k k  + 2/-tE33 + fldp. 

These equations are easily solved for E22 , E33, Ek~ and • in terms of the quantities T n 
and Ell which are to appear in the stress-strain relation; thus 

1 7 7 ,  E = = E 3 3 = E  n = - ½ b t T a l ,  E ~ k = 3 E  n - ~  11 (3.2) 

1 ( (x +.) + 2.)EH) (3.3) 
~ = B  t~ 

In the case of a homogeneous quasi-static deformation in the absence of self-equi- 
librated body forces, every term in (2.5) is identically zero. Thus, in particular, g is zero 
and it follows from (2.12) that the equation governing ~ in this case is 

~o~ = ~e~ + flEck = O. (3.4)  
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The stress-strain relation is obtained by substitution of Ekk from (3.2) and 4~ from (3.3) 
into (3.4) and subsequent rearrangement of terms; thus 

TII = tETI, = Eo(Exl  + tTEn), 
where 

3/~(x~- B z ) o~(X +/~) 
E 0 - ( ) t + / ~ ) } _ / 3 2 ,  t e - } ( ) t + / ~ ) - / 3 2 '  

The quantities t E and t r 

(3.5) 

K~ 
t r = - -  (3.6) 

are the times of relaxation at constant strain and stress, 
respectively, and E 0 is the Young's modulus of the material when t E and t v vanish. 
The inequalities (2.13) insure that tE, t v and E 0 are all positive. In linear viscoelastic 
theory a stress-strain relation of the form (3.5) is said to characterize a standard linear 
solid. The spring and dashpot analogue models for this stress-strain relation are shown 
in Fig. 1. Such analogue models are, in general, not unique and for the standard linear 
solid there are two. 

4. General stress-strain relations 

It is not difficult to manipulate the constitutive relations (2.6), (2.7), (2.8) and the 
balance of equilibrated force (2.5) into a general stress-strain relation for linear elastic 
materials with voids. The first step consists of substituting (2.7) and (2.8) into (2.5) and 
rearranging terms; thus 

006 + ~O + BrsErs = Ai jdP , i j  dr DijkEjk,i q- P:--  pK~). (4.1) 

The second step is to solve (2.6) for BijO, 

Bijd p = Zij  --  CijkmEkm -- OijkdP,jk . (4.2) 

,oI -t 

Eo(tT-tE) ~ 

I ll (t) 

> Eo < EiiCt) 

tTEo 
tT-t E 

T n (t) 

I e  T ~Eo 

I= =1 Eo'  
t T - t E 

//,./ ~/../,. / / i /I , . / . .  

Figure 1. Illustrations of the two spring and dashpot models of the standard linear solid. 
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The third step is to multiply (4.1) by Bij and then to replace Bijff by the right hand side 
of (4.2) and rearrange terms; thus 

~ 0  

Zij ~- --ff Zij = ( Cijkm -- BijBkm ) Ekm + ---~ CijkmJEkm + J i j ,  (4.3) 

where 

1 ~0 ± 
Jij----~Bij(Arm~P,rm W DkmnEmn,k q-OE--OKdp)+ DijkdP,k-I--ffDijk~),k. (4.4) 

The principal conclusion can be obtained from an inspection of equations (4.3) and 
(4.4). Comparison of (4.3) with (3.5) shows that (4.3) is the tensor component form of 
the constitutive equation for a standard linear solid if the term J,j is zero. Equation 
(4.4) shows that J~j will be zero if the deformation is homogeneous and quasi-static and 
if the self-equilibrated body force vanishes. These are then the conditions under which 
a linear elastic material with pores is characterized by a stress-strain relation of the 
standard linear solid type. 

A further result can be obtained if the material symmetry is of a type that possesses 
a center of symmetry and, consequently, the tensor D~j k vanishes. In this case a 
stress-strain relation is obtained by substituting the expression for B~j~ from (4.2) into 
(4.4) and subsequently substituting the result into (4.3) and rearranging terms; thus 

0 , )  • Tij +_~ Tij + pk~j 1 -- -~ A k m T i j ,  krn = ( Cijkm -- nijnkm ) ekm 

o~ • .. 1 1 (4.5) + -ff CijkmEkm + pkCijkmEkm -- -~AkmCijrsErs,k m + -~pE. 

This rather long equation shows that, in general, in a linear elastic material with pores 
and with a center of symmetry, inhomogeneous and non-quasi-static deformations 
change the type of viscoelastic behavior. If the deformation of.the material is homoge- 
neous but not quasi-static then the terms involving the second gradients of stress and 
strain vanish and the stress-strain relation is of a higher order viscoelastic type than the 
standard linear solid. The inclusion of the terms involving the second gradients of stress 
and strain induce non-local effects in the stress-strain relation. 

5. Discussion 

It has been established that the constitutive equations for a linear elastic material with 
voids imply a viscoelastic stress-strain relation known as the standard linear solid in the 
case of quasi-static, homogeneous deformations in the absence of self-equilibrated body 
forces. In this section it is argued that, even for deformations that are dynamic a n d / o r  
inhomogeneous the viscoelastic behavior is still qualitatively similar to that predicted 
by the standard linear solid model. The single attractive feature of the spring and 
dashpot analogue models for viscoelastic behavior is that one can gain some intuitive 
understanding of the viscoelastic response from thought experiments with the model. 
For  example, the effect of the quasi-static placement of a constant load on the model 
can be seen to be an initial elastic deflection characterized by an initial elastic constant 
followed by a creeping deflection that terminates in a state characterized by a final 
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elastic constant. In between the initial and final states the instantaneous response is 
characterized by an instantaneous elastic modulus that depends on the amount of 
creeping deformation that has occurred. These and other general features of the 
qualitative response of a standard linear solid have been seen in all the solutions to 
specific problems involving linear elastic materials with voids in quasi-static inhomoge- 
neous deformations. This general type of viscoelastic behavior has been displayed in 
each of the following quasi-static non-homogeneous problem solutions: thick walled 
cylindrical and spherical pressure vessels [2], pure bending of a beam [4], shrink fit 
about an elastic cylinder [5], and a circular hole in a field of uniaxial tension [5]. In 
each of these problems the initial stress and strain distribution is exactly that predicted 
by classical elasticity theory in the same situation. This result is a consequence of the 
solid volume fraction field being initially homogeneous. As time increases inhomogene- 
ity develops in the solid volume fraction field. The rate dependence development of this 
inhomogeneity is the causal factor for the viscoelastic effects. The developing inhomo- 
geneity in ff causes the stress and strain fields to deviate from their initial, classical 
elastic values. As time tends to infinity the creeping motions induced by the inhomoge- 
neous field stop and a steady solution with an inhomogeneous volume fraction field, a 
new strain field and, generally, a new stress field emerge. With the exception of the 
behavior of the volume fraction field, these qualitative features are the qualitative 
features of the standard linear solid. They are induced in a linear elastic material with 
voids by the inclusion of ff as an independent variable, and thus they have a specific 
physical origin not considered in classical viscoelasticity. 

The similarity between the qualitative behavior of a linear elastic material with voids 
and the behavior of a standard linear solid is observed even more strikingly in the 
dynamic and inhomogeneous situation of harmonic wave propagation. The propagation 
of harmonic waves in a standard linear solid is discussed by Hillier [9] and by Kolsky 
[10] and in a linear elastic material with pores by Puff and Cowin [6]. For both 
materials the phase velocity and internal friction or specific loss is plotted as a function 
of frequency. These plots appear as Figure 28 of Kolsky's book [10] and in Figs. 5, 6, 7 
and 8 of Purl and Cowin [6]. In both situations the internal friction or specific loss 
tends to zero at both low and high frequencies and in between it is characterized by a 
relatively sharp peak that occurs at a specific, finite value of frequency. Also, for both 
the standard linear solid and the linear elastic material with voids the phase velocity, 
identified in [6] as the elastic phase velocity, has one relatively steady value at low 
frequencies and a higher and relatively steady value at high frequencies. The transition 
from the lower to the higher phase velocity occurs relatively sharply near the frequency 
at which the internal friction reaches its peak value. The only apparent qualitative 
difference between the predictions of the two theories with regard to harmonic wave 
propagation is the existence in the theory of elastic materials with voids of a second 
wave associated with changes in the solid volume fraction. This wave however, is very 
heavily damped at all frequencies except very high frequencies. 

There are some interesting implications of the results presented here. For example, 
there is a demonstration that rate dependence in a microstrnctural parameter such as 
solid volume fraction can induce a viscoelastic stress-strain relation. This result is 
interesting from a theoretical viewpoint and from the viewpoint of trying to identify the 
best constitutive models for specific real materials. There are many real materials that 
have, for some range of parameters, been classified'as viscoelastic on the basis of their 
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stress-strain response. The present result suggests that it might be more instructive to 
measure stress, strain and some microstructural parameter in order to obtain a simpler 
and more physical constitutive relation. 
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