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Abstract 

The behavior of plane harmonic waves in a linear elastic material with voids is analyzed. There are two 
dilational waves in this theory, one is predominantly the dilational wave of classical linear elasticity and the 
other is predominantly a wave carrying a change in the void volume fraction. Both waves are found to 
attenuate in their direction of propagation, to be dispersive and dissipative. At large frequencies the 
predominantly elastic wave propagates with the classical elastic dilational wave speed, but at low frequencies 
it propagates at a speed less than the classical speed. It makes a smooth but relatively distinct transition 
between these wave speeds in a relatively narrow range of frequency, the same range of frequency in which 
the specific loss has a relatively sharp peak. Dispersion curves and graphs of specific loss are given for four 
particular, but hypothetical, materials, corresponding to four cases of the solution. 

I. Introduction 

The theory of linear elastic materials with voids is a modified elasticity theory in which 
change in volume fraction as well as strain are taken as independent kinematic 
variables. The theory is intended for application to solids with small distributed voids. 
The voids are assumed to contain nothing of mechanical or energetic significance. The 
linear theory was developed by Cowin and Nunziato [1] as a specialization of a 
non-linear theory [2]. 

In this paper we investigate the propagation of plane harmonic waves in a linear 
elastic material with voids. The response of an idealized material to propagating plane 
waves illustrates many of the features of the material's behavior. For linear elastic 
materials these waves are discussed, for example, by Kolsky [3]. For linear coupled 
thermoelastic materials an analysis of the plane wave behavior is given by Deresiewicz 
[4] and Puri [5,6]. Cowin and Nunziato [1] derived the frequency equation for plane 
waves in the context of the theory of linear elastic materials with voids, but they did not 
undertake a complete analysis of the equation. They observed that the frequency 
equation obtained was similar to the frequency equation for linear coupled thermoelas- 
ticity. Nunziato and Walsh [7] have discussed plane waves in a one dimensional 
granular medium. The theory of one dimensional granular media is a special case of the 
theory presented in [1] and considered in this paper. A survey of the current literature 
on plane waves in coupled elastic fields is given by Puri [6]. In the present article we 
present a complete analysis of the frequency equation for plane waves in a linear elastic 
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material with voids. There are two dilational waves in this theory, one is predominantly 
the dilational wave of classical linear elasticity and the other is predominantly a wave 
carrying a change in the void volume fraction. Both waves are found to attenuate in 
their direction of propagation, to be dispersive and dissipative. At large frequencies the 
predominantly elastic wave propagates with the classical elastic dilational wave speed, 
but at low frequencies it propagates at a speed less than the classical speed. It makes a 
smooth but relatively distinct transition between these wave speeds in a relatively 
narrow range of frequency, the same range of frequency in which the specific loss has a 
relatively sharp peak. Dispersion curves and graphs of specific loss are given for four 
particular, but hypothetical, materials, corresponding to four cases of the solution. 

The basic equations for linear isotropic elastic materials with voids are summarized 
in the next section, and material parameters that occur in the wave analysis are 
introduced in the subsequent section, Section 3. The major results of this paper are 
presented in Section 4 and concern the dispersion of plane harmonic waves propagating 
in an infinite medium. The amplitude ratios of these waves are analyzed in Section 5. 
Section 6 contains a discussion and Section 7, a summary of conclusions. 

2. Summary of the theory 

In this theory the basic concept is that the bulk density of the material is the product of 
two fields, the density field of the matrix material "t and the volume fraction field u, 

p= u. (2.1) 

We make the customary assumption of the linear theory that the reference configura- 
tion is free of stress and strain. Equation (2.1) can be written as OR = 7RPR for the 
reference configuration, where ~'R is assumed to be spatially constant. 

The independent kinematic variables in the linear theory are ui(x, t) and ~(x,  t), 
where ui(x, t) is the displacement field from the reference configuration and ~(x,  t) is 
the change in the volume fraction from the reference volume fraction and is given by 

e?(x, t)  = 1,(x, t)  - VR, (2.2) 

where x is the spatial variable in cartesian co-ordinates and t is the time. The 
infinitesimal strain tensor Eu(x ,  t) is determined from the displacement field u i by the 
relation 

E,j = ½(,, , , , j  + uj.,), (2.3) 
where the comma followed by a lower case Latin letter indicates a partial derivative 
with respect to the indicated co-ordinate axis. 

The equations of motion for the medium considered are the balance of linear 
momentum 

pi~, = Tq , j  + pb, (2.4) 
and the balance of equilibrated force 

pkq~ = h~, i + g + p¢, 

where T~j is the symmetric stress tensor, b i is the body force vector, h i is the 
equilibrated stress vector, k is the equilibrated inertia, g is the intrinsic equilibrated 
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body force and d is the extrinsic equilibrated body force. These terms are discussed in 
detail in [1] and [2]. 

The constitutive equations for the linear isotropic theory of elastic materials with 
voids relate the stress tensor T~j, the equilibrated stress vector h i and the intrinsic 
equilibrated body force g to the strain El j, the change in volume fraction ~, the time 
rate of change of the volume fraction qS, and the gradient of the change in volume 
fraction O,i; thus 

T~j = X 3 , j E k k  + 21~E,j  + f l q , 3 i j ,  (2.6) 

h i = otdp,i, (2.7) 

g = - to+ - ~q~ - f l E k k .  (2.8) 

The coefficients ~, tt, a, r ,  ~ and to depend on v R and satisfy the following 
inequalities 

tt>~0, a>~O, ~>~0, to>~0, 

3~ + 2/z >~ O, (3X + 2/z)~ >~ 3fl2. * (2.9) 

The field equations governing the displacement field u i ( x ,  t )  and the volume 
fraction field if(x, t) are obtained by substituting the constitutive relations (2.6), (2.7) 
and (2.8) into the equations of motion (2.4) and (2.5) as 

(X +/*)V V"  u +/~V2u + flY0 = 0~, (2.10) 

and 

a V 2 ~  - t o 6  - Idqa - f l V  . u = o k 6 .  (2.11) 

The boundary condition on ~ is 

n. Vq, = 0 , .  (2.12) 

where n is the unit normal to the external boundary and the boundary conditions on u i 

are those of classical elasticity. 

3. Material parameters 

The purpose of this section is to define and discuss the significance of the material 
parameters that will appear in the next section on the analysis of plane progressive 
waves. These material parameters are simply algebraic combinations of the material 
properties such as the density p, the elastic coefficients with dimension of stress X,/x, fl 
and ~ and the material coefficients a (of dimension stress times squared length) and to 
(of dimension stress times time). The material parameters to be discussed fall into three 
categories: wave speeds, dimensionless numbers, and material coefficients with dimen- 
sion of length. 

The material coefficients of dimension length are defined by the expressions 

~ f l  , ~ , ~ elY2 , (3.1) el= e2= / 

* In [1], this inequality is incorrectly reported as (3~ +2/Q~ > 12fl 2. 
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where H is a dimensionless number, 

(3.2) H--- )t + 2/~ - 

The definitions of go and H were introduced in [11, where it was shown that g0 is 
always real and H positive. There are four wave velocities of interest. They are denoted 
by c 1 through c 4 and defined as follows: 

CI-~- , 172= - - ,  C3= C 4 = - - .  (3.3) 
p ' ~0~0 

The velocities c 1 and c 2 are the familiar distortional and dilational wave velocities, 
respectively, from classical elasticity (cf., e.g., Kolsky [3]). The velocities c 3 and c 4 will 
be shown to be the wave velocities of a wave carrying a change in the void fraction $ at 
high and low frequencies, respectively. 

The dimensionless number N defined by 

B 2 
dezH for ~ > 0,/~ > 0, (3.4)  N -- ~()t + 2/~) = g# " "  

is called the coupling number because it is a measure of the coupling between the 
displacement deformation u and the void volume deformation q~. N is a non-negative 
number which only vanishes when fl vanishes. When N is zero the constitutive 
equation for stress, (2.6), does not depend upon co; the constitutive equation for the 
self-equilibrated force g, (2.8), does not depend upon strain; and the wave equations, 
(2.10) and (2.11), governing the elastic waves and the void volume fraction wave 
uncouple. An increase in fl is reflected as an increase in N and the coupling between 
volume fraction deformation q~ and the displacement deformation u. Furthermore, N 
satisfies the inequalities 

0 ~ < N < I ,  for # >  0,-~> 0; (3.5) 

thus N must be a non-negative number less than one. In order to prove the inequality 
(3.5) consider the identity 

3(X + 2/t)~ = (3X + 2/~)~ + 4/z~. (3.6) 

From (2.9)1 , (2.9)3 , (2.9)6 it follows that 

3(X + 2/~)~ > (3X + 2/~)~ > 3fl 2 >~ 0; (3.7) 

thus 

(x+ 
> 1, (3.8) #2 

and the restriction (3.5) follows from (3.4). 

4. Dispersion of plane waves in an infinite medium 

Plane acoustic waves are solutions of (2.10) and (2.11) for which the displacement 
vector u i and the volume fraction difference q~ are of the form 

ui=AdiU(x  , t), q ,=BU(x ,  t), (4.1) 
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where 

U(x,  t ) =  Re(exp( i (Kt -~/mix i ) ) )  , (4.2) 

and ~ is the frequency, m~ the direction cosines of the normal to the plane of the 
waves, d~ the direction cosines of the displacement vector u(x, t) and ~k is a complex 
number such that Im ~k < 0. d and B are the amplitudes of the displacement and 
volume fraction change waves, respectively. Substitution of (4.1) and (4.2) into (2,10) 
and (2.11) yields 

[{ (~k -t- t.t )d jmjm i + I.tdi } t~ 2 - pl~Zdi] d .+ iflq,,miB = 0  (4.3) 

and 

(aq~ 2 + io~K - pkK 2 + ~)B - iflq~A = 0. (4.4) 

A partial analysis of this result was presented in [1]. It was shown there that, for 
equivoluminal or distortional waves characterized by dim i = 0, the amplitude B of the 
volume fraction vanishes. These distortional waves propagate at the velocity c I defined 
by (3.3) without affecting the porosity of the material, and without attenuation. 
Longitudinal or dilational waves are characterized by dimi = 1. Multiplying (3.2) by ds 
or m~ and using the condition dim i = 1 yields 

((X + 2/*) ~b 2 - px 2 }A + ifl+B = 0. (4.5) 

For the pair of equations (4.4) and (4.5) to have a non-trivial solution for A and B we 
must set the determinant of their coefficients equal to zero, thus 

{(X + 2/~) q, 2 - O~ z ) { ark 2 + iwx + ~ - pkx 2 } - 132~k 2 = 0. (4.6) 

Equation (4.6) is the dispersion relation for dilational waves. Using the notations (3.1) 
through (3.4), (4.6) can be rewritten as 

( ~p2___~2 q.,2 x2 1 +i¢0K N 2 
- c--~+~2 2 a -7-2 2+ = 0 ,  (4.7) 

or, equivalently, 

~k 4 -  ~2 x__~.2 1 i~_~ ~k 2 + . . . . . .  0, 
(4.8) 

where (3.1)3 has been employed. 
The dispersion relation (4.8) is similar to the dispersion relation for plane thermo- 

elastic waves, and our analysis of the dispersion relation (4.8) will follow that of Puri [5] 
for thermoelastic waves. The information obtained from the dispersion relation in- 
cludes the wave numbers, the wave speeds, the attenuation coefficients and the specific 
loss. The wave numbers are the real parts of + and the wave speeds are frequency 
divided by the wave number, The attenuation coefficients are the imaginary part of q~ 
multipled by minus one. The specific loss, A W / W ,  is 4~r times the absolute value of the 
ratio of the imaginary part of g, to the real part of q,, 

AW ~ t I m ~ .  
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Kolsky [3, p. 99] notes that specific loss is the most direct method of defining 
internal friction for a material. Specific loss is the ratio of the energy dissipated in 
taking a specimen through a stress cycle, AW, to the elastic energy stored in the 
specimen when the strain is a maximum, W. For a plane sinusoidal wave of small 
amplitude Kolsky [3, p. 106] shows that the specific loss A W / W  is given by the above 
formula. 

The two solutions of (4.8) will be designated as ~k 2 and ~k 2. It will be shown that ~ke 
is associated with a wave that is predominantly an elastic wave of dilatation and g'v is 
associated with a wave that is predominantly a volume fraction wave. These two 
solutions are given by 

2q, 2, 2~b2v = D _ F, (4.9) 

where 

~2 x2 1 ioax 
D = c 2  + c  2 eg a ' 

(4.10) 
1 io~x r ~ = ~ _ ~ ( , ~  

These solutions to (4.8) can be reduced to the form 

2~e , 2~y v = "Jr'((O "}- ~ - F 2 )1 /2" t - (O-  ¢ 0  2 -  F 2 )1/2), (4.11) 

where the first sign is chosen so that Im q, < 0. The quantity v/D 2 -  F a can be 
expressed as 

v ~ -  F2 = 2~ ( a - ib ), 
C2 

where 

a , b =  c2 4 

(4.12) 

1/2 (,2 1)] 1/2. 

+ 4  ed 
(4.13) 

The detailed structure of the solution of dispersion relation (4.8) along with 
expressions for the wave speeds, attenuation coefficients and specific loss are all given 
in Table 1. In Table 1 the following notations 

1[((,2,2 2,a  )2)J2 
?' e = S  c-7 + c-7 ~ c2 :0 ~ + c, + ~  

( 1¢__~2 ~__~2 21¢a 1)] 1/2 ' 
+ c~ + c 2 --  ¢2 g0g 

L , M =  1 ~  x 2 + x  2 2Jea 1 2 2b~¢ ~0 

v~ c~ c~ ¢2 ~,2 + ~2 - ~  

( 1)] ~¢2 x2 2xa 

+ - 7 ~ + ¢  2 ~2 ;~ ' 

(4.14) 

(4.15) 
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are employed. Cases 3 and 4 in Table I include a change in the structure of the solution 
at a frequency x 0. The frequency x 0 at which the solution changes is given by 

c_2c ! 
~ =  4 ( 4 - 4 )  ( 1 - N ) - 1  , (4.16) 

which is real if 

C 4 C 4 
c 3>/c 2 > / ~  or c 3~<c 2 ~ < ~  (4.17) 

~ - - N  ~/1 - N  

Although the solution to the dispersion relation (4.8) summarized in Table 1 is 
complex, it can be interpreted physically without a great deal of difficulty. To obtain 
these physical interpretations we first consider the special solutions of the dispersion 
relations for high and low frequency and then we consider specific numerical examples 
for materials that fall in the cases 1, 2, 3 and 4 of Table 1. We begin with the analysis 
and interpretation of the dispersion relations for high and low frequencies. For high 
frequencies, from (4.9), we can write 

() i/ L'21" 3 N o~ 1 
2 _ _  _ _  + 2 2 - -  - -  + 0 ( 4 . 1 8 )  

cg t (cg-cg) I c3-c  -Y ' 

which yields 

_._i 1 / , l  (4.19) 

and 

K 2 1 c~N . o~ 
I" 1--K + O(1), ~2 = (4.20) 

which gives 

~V=c3 x ~ c  3 + O  . (4.21) 

Since c 2 is the classical elastic bulk wave speed and c 3 is a wave speed associated with 
the volume fraction, qJe represents the predominantly elastic wave and ~kv represents 
the predominantly volume fraction wave. The phase speeds, attenuation coefficients 
and specific loss for these waves at high frequency are summarized in Table 2. These 
results show that the specific loss vanishes for both the waves as x approaches infinity. 
In the case of low frequencies, it follows from (4.9), for small values of x, that 

¢~ = x iNd2x 2 (4.22) 
C2~1  - -  N (1 - N)  C2C 4 . . . .  

a n d  

~Pv = c4 do . . . .  (4.23) 
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Table 2. The phase speed, attenuation coefficient, specific loss and amplitude ratios for the elastic wave and 
the volume fraction wave at high and low frequencies. 

Frequency Wave type Phase speed Attenuation coefficient Specific loss Amplitude 
ratio 

c3~c4D2N 4~'c4c4DaN 2c 2 1 
f Elastic c 2 

~,(~-~)(~-N):o :(4-d)~O-N) ~:~n:o High ] wave s 2 2 2 

Volume 2 
frequency | fraction c3 c3 4~rc__~32D o~ 

k wave c4 ~0 C 4 

[ Elastic c4N 4~rN 
Low ] wave c2~/1 - N 0 ( I~_ N)~D~:o D 
frequency ~ Volume 1 c 4 1 

l fraction c 4 - -  D = - -  
\ wave :0 :0 x H:o 

The phase speeds, attenuation coefficients and specific loss for these waves at low 
frequency are also summarized in Table 2. From Table 2 it can be seen that the phase 
speed for the elastic wave is not modified for large frequencies, but it is multiplied by 
the factor (1 - N )  1/2 which is greater than zero but less than or equal to 1 for small 
frequencies. For the elastic wave, the attenuation is small at both large and small 
frequencies, and the specific loss approaches zero as x tends to both zero and infinity. 
Since the specific loss is not, in general, zero it follows that it must be maximum for 
some value of ~. The predominantly volume fraction wave has different phase veloci- 
ties, like the elastic wave, as the frequency tends to zero and infinity. However, the 
attenuation coefficient for this wave has a finite value at both the frequency extremes, 
indicating a greater attenuation than that experienced by the elastic wave. For the 
volume fraction wave the specific loss becomes unbounded as the frequency tends to 
zero and decreases to zero as the frequency becomes unbounded. 

We return now to the interpretation of the general solution to the dispersion relation 
(4.8) summarized in Table 1, without the approximation of high or low frequencies. To 
give a graphical representation of the various solutions to the dispersion relation we 
consider four sets of material constants which specify four different hypothetical 
materials. The four different materials have values of X, /~, ~ and fl which are 
identical. These values, A = 15 GPa, /t = 7.5 GPa, ~ = 12 GPa and fl = 10 GPa from 
(3.1) through (3.4), yield the following values for the indicated physical constants: 
c I = 1937 m / s ,  c 2 = 3873 m / s ,  H = 1 / 3  and N = 0.2778. The four different materials 
are distinguished by their values of c 3, to, a and c a, which are given in Table 3. Figures 
1, 2, 3 and 4 are plots of the predominantly elastic wave and the predominantly volume 

Table 3. The values of material constants for materials 1, 2, 3 and 4. 

Material c 3 to a c 4 

1 5000 m / s  1 M Pa s 8 GPa m 2 16,653 m / s  
2 2000 m / s  10 M Pa s 8 GPa m 2 1665 m / s  
3 5000 m / s  1 M Pa s 0.1 GPa m 2 1862.3 m / s  
4 2000 m / s  10 M Pa s 40 GPa m 2 3724.5 m / s  
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Figures 1 to 4. These are graphs of wave speeds against frequency for materials 1 through 4, respectively. The 
material constants X = 15 GPa, ~ = 7.5 GPa, ~ = 12 GPa and fl = 10 GPa are the same for each material and 
the values of c3, o~, a and c 4 are given in Table 3 for materials 1, 2, 3 and 4. The solid curves represent the 
phase velocity for the predominantly elastic dilational wave and the dashed curves, the phase velocity for the 
predominantly void volume fraction wave. The value of the frequency at which these curves cross in Figs. 3 
and 4 is given by (4.16). 

fraction wave phase velocities against frequency for the materials 1, 2, 3 and 4, 
respectively. The materials 1, 2, 3 and 4 correspond to the cases 1, 2, 3 and 4 of Table 1 
so that each solution case is represented by a material designated by the same number. 
Figures 5, 6, 7 and 8 are graphs of specific loss against frequency for materials 1, 2, 3 
and 4, respectively. These graphs are all consistent with the limiting values obtained 
above for phase velocities and specific loss for large and small frequencies. In each case 
the predominantly elastic wave phase velocity generally, but not always, increases with 
frequency as shown by materials 3 and 4 in Figs. 3 and 4. The phase velocity of the 
predominantly volume fraction wave can be either less than or greater than the phase 
velocity of the predominantly elastic wave, and for materials 3 and 4 the two wave 
speeds cross at the frequency x 0 given by (4.16). At this frequency the graph for the 
elastic wave velocity for material 3, Fig. 3, shifts smoothly from the branch 2 x / ( P  - L) 
for x < r 0 to the branch 2 x / ( P  + L) for x > K 0 and the situation is reversed for the 
void volume wave speed. An analogous, but reversed, situation pertains in the case of 
material 4 as illustrated by Fig. 4. These are simply the graphic representations of the 
analytical results for wave speeds summarized as cases 3 and 4 in Table 1. The graphs 
of the wave speeds in Figs. 1 through 4 clearly indicate the narrow range of frequency 
in which the transition from wave speeds at small frequencies to wave speeds at large 
frequencies takes place. Note that the frequency scales in Figs. 1 through 4 all start at 
100 Hz rather than zero Hz. This representation was chosen because all the wave 
velocities were constant in this frequency domain and were equal to their values at 100 
Hz. 

The graphs of specific loss versus frequency given in Figs. 5 through 8 for materials 
1 through 4, respectively, are basically quite similar to one another. For the predomi- 
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Figures 5 to 8. These are graphs of specific loss against frequency for materials 1 through 4, respectively. The 
material constants are as described in the captions to Figs. 1 to .4. The solid curves represent the specific loss 
for the pr&tominantly elastic dilational wave and the dashed curves, the phase velocity for the predominantly 
void volume fraction wave. 

nantly elastic wave the specific loss curve is zero at the extremes of high and low 
frequency and rises to a relatively sharp peak near the frequency ~0 at which the phase 
velocities are most rapidly changing. For the predominantly void volume wave the 
specific loss is always greater than for the elastic wave and Figs. 5 through 8 suggest 
that this wave will be damped out at all but the highest frequencies. 

5. The amplitude ratios of the plane harmonic waves 

In this section, in order to obtain further insight into the nature of these waves, we 
determine the ratio of the amplitude of the void fraction wave to the amplitude of the 
elastic wave. From (4.5) we can write this ratio of amplitudes as 

B p x 2 - ( h + 2 / ~ ) q ,  2 l ( p x  2 ~ )  (5.1) 
R - A i#g, 1 B~ 

There are two amplitude ratios of the form (5.1) corresponding to the two solutions, qJe 
and q%, of the dispersion relation (4.8). The complete solutions (4.1) of the displace- 
ment field ui(x, t) and the field ~(x, t) are given by 

u i = di(AeU~(x, t) +AvUv(x, t)), (5.2) 

d? = BeUe(x , t)+BvU~(x, t), 
where 

U~(x, t) = Re(exp(i(xt - ~,mixi))), (5.3) 

Uv(X, t)= Re(exp(i(xt-*~m,xi))). 
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There are, therefore, two amplitude ratios, R e and R v, given by 

• B v 

Re=--~,  RV = A---- ~. (5.4) 

a s  

In the case of the predominantly elastic wave the amplitude ratio R e is given by (5.1) 

C 3---~-~ v 

i a ~ c 2 _  c~ )1/2 

For large x, (5.5) has the approximation 

Re__4 1 O(!/, 
o ~  eo~ + ~ j  

and for small x, 

Re = 4to L + O(~2). 
g~ c2 

For the wave that is predominantly void volume fraction, (5.1) yields 

11~ v c~o , 
Rv= H C2(I_i~xc3Z_~dx2C32 )1/2 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

where the subscript indicates the wave type. For large values of x, 
i 

]1 c2 x + O ( 1 ) ,  (5.9) 1 
Rv=~-c3  - c--~ 

I 

and for small x, 

1 
R v = H• ° + O(•). (5.10) 

Thus we can conclude, for the elastic wave 

c3 2 1 
limitR e = 0, limitR e = (5.11) 
~-.o ~-~oo c2c4 HEo 

and for the void volume wave 

1 
limit R v = - -  limit R v --* oo. (5.12) 
~ - - , 0  n g ' 0  ' K---, oo 

These results have also been summarized in Table 2. They show that the void volume 
change amplitude of the elastic wave vanishes at zero frequency, and the displacement 
amplitude of void volume wave vanishes as the frequency becomes infinite. This 
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suggests that the predominantly elastic wave is purely elastic at zero frequency and that 
the predominantly void volume wave is purely a void volume wave as the frequency 
tends to infinity. In other portions of the frequency domain these results show that 
both waves have non-zero amplitudes of both types. 

6. Discussion 

Our conclusions are summarized in the following section. In this section we discuss two 
topics. The first is the relation of the present work to the study of Nunziato and Walsh 
[7]. The second topic is the estimation of the frequency at which the specific loss 
reaches its maximum or peak value. 

Nunziato and Walsh [7] consider the propagation of infinitesimal sinusoidal progres- 
sive waves in the context of a one dimensional theory which is identical with the theory 
employed here when the co appearing in equation (2.8) is set equal to zero. Their results 
on harmonic waves can be obtained from the results presented here by setting co = 0. 
Nunziato and Walsh point out a resonance that occurs at a particular frequency. Our 
results show that this resonance will not occur unless we eliminate the damping in the 
void volume, that is to say, unless we set co = 0. The results of the present work, 
summarized in Table 1, show that only one wave can have a resonance and that the 
resonance will occur when P = L. A close inspection of the expressions for P and L 
reveals that P and L cannot be equal unless co and a are both zero. The condition that 
a be zero yields the same resonance frequency as given in [7]. In [7] it appears that there 
is resonance in both the waves, but a closer investigation of c2(co) given by equation 
(48) in [7] yields the fact that there is resonance only in one wave and for the other 
wave, in the notation of [7], C 2 2 2 2 2 = VlV2/(Vzco ~ + X0) as the frequency approaches COr" All 
the results for plane waves in [7], except for the velocity of void volume wave at small 
frequencies, can be obtained from the results presented here by letting co = 0. The 
results for small frequencies can be obtained by letting co = 0 in (4.9) and (4.10). 

Our second topic in this section is estimating the frequency at which the peak occurs 
in the specific loss versus frequency curve. This peak is illustrated in each of the Figs. 5 
through 8. It  would be quite useful to have a formula for the frequency in question. In 
theory one could take the derivative of the specific loss with respect to frequency and 
set it equal to zero to obtain the value at which the specific loss is an extremum. In 
practice, the calculation is too complex. Following Deresiewicz [4] it is possible to 
estimate desired frequency by assuming that the coupling number N is small. The zero 
order approximation of the frequency in question for small values of N is 

22 [(I )1j2 
- -  C2C3 16 1 1 2 1 CO2 [ 1 1 co4 

/2 1 1) 2111J2 
- ~ c~ c3 2 +~-~ + O ( N ) .  

(6.1) 
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7. Conclusions 

1. There are two dilational and one equivoluminal plane waves in a linear elastic 
material with voids. The equivoluminal wave has the same characteristics as the 
corresponding wave in classical elasticity. Of the two dilational waves, one is predomi- 
nantly the elastic wave and the other can be identified as a predominantly void volume 
fraction wave. The presence of the voids introduces the second dilational wave and a 
dissipative mechanism associated with the voids causes both waves to attenuate. The 
coupling of the equations of motion also makes the waves dispersive in nature. There is 
no resonance unless the dissipative mechanism, denoted by o~, is taken to be zero. 

2. At large frequencies the predominantly elastic dilational wave propagates with 
the classical dilational velocity denoted here as c 2. As the frequency approaches infinity 
for the elastic wave, the attenuation coefficient and consequently the specific loss are 
very small and approach zero. The void volume wave at large frequencies propagates 
with constant speed, has a constant attenuation coefficient, but a small specific loss 
which approaches zero as the frequency becomes infinite. These remarks are illustrated 
by the phase velocity versus frequency curves, Figs. 1 to 4, and the specific loss versus 
frequency curves, Figs. 5 to 8. 

3. At small frequencies the velocity of the elastic wave is given by c2x/1 - N where 
0 ~< N < 1 and c 2 is the classical phase velocity of the elastic wave. For the elastic wave, 
the attenuation coefficient and specific loss remain small and approach zero as the 
frequency approaches zero. The low frequency phase velocity of the void volume wave 
is also different from its phase velocity at large frequencies, as can be seen in each of 
the Figs. 1 to 4. The attenuation coefficient of this wave is modified but remains a 
constant. The specific loss, however, is large and increases without limit as the 
frequency approaches zero. The void volume wave is so heavily damped at any but a 
very high frequency that it is unlikely to be observed at those frequencies. These results 
are illustrated by the Figs. 5 to 8. 

4. The specific loss for the elastic wave approaches zero at both ends of the 
frequency spectrum. In general it has an extremal value between the two limits, which 
in Figs. 5 through 8 is a single sharp peak. The specific loss for the void volume wave 
has an infinite value at zero frequency and decreases monotonically to zero as the 
frequency approaches infinity. 

5. The solutions for displacement (or stress) and the void volume fraction ~ consist 
of two parts corresponding to ~e and q~v, representing elastic and void volume effects. 
Each part is a wave form. The amplitude of the elastic wave in the solution for ~ is very 
small as compared to the amplitude of the elastic wave in the solution for u i at small 
frequencies. At large frequencies the ratio of the two amplitudes is a constant. The 
amplitude of the void volume fraction wave in the solution for ff is very large as 
compared to the amplitude of the void volume fraction wave in the solution for ui at 
large frequencies. For small frequencies the ratio of the two amplitudes is a constant. 
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