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Abstract. Residual stress is the stress present in the unloaded equilibrium configuration of a body. 
Because residual stresses can significantly affect the mechanical behavior of a component, the 
measurement of these stresses and the prediction of their effect on mechanical behavior are important 
objectives in many engineering problems. Common methods for the measurement of residual stresses 
include various destructive experiments in which the body is cut to relieve the residual stress. The 
resulting strain is measured and used to approximate the original residual stress in the intact body. 
In order to predict the mechanical behavior of a residually stressed body, a constitutive model is 
required that includes the influence of the residual stress. 

In this paper we present a method by which the data obtained from standard destructive experiments 
can be used to derive constitutive equations that describe the mechanical behavior of elastic residually 
stressed bodies. The derivation is based on the idea that for each infinitesimal neighborhood in a 
residually stressed body, there exists a corresponding stress free configuration. We refer to this stress 
free configuration as the 'virtual' configuration of the infinitesimal neighborhood. The derivation 
requires that the constitutive equation for the stress free material be known and invertible; it is 
used to relate the residual stress to the deformation of the virtual configuration into the residually 
stressed configuration. Although the concept of the virtual configuration is central to the derivation, 
the geometry of this configuration need not be determined explicitly, and it need not be achievable 
experimentally, in order to construct the constitutive equation for the residually stressed body. 

The general mathematical forms of constitutive equations valid for residually stressed elastic 
materials have been derived previously for a number of cases. These general forms contain numerous 
unknown material-response functions or material constants that must be determined experimentally. 
In contrast, the method presented here results in a constitutive equation that is an explicit function 
of residual stress and includes only the material parameters required to describe the stress free 
material. 

After presenting the method for the derivation of constitutive equations, we explore the relationship 
between destructive experiments and the theory used in the derivation. Specifically, we discuss the use 
of the theory to improve the design of destructive experiments, and the use of destructive experiments 
to obtain the data required to construct the constitutive equation for a particular material. 
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1. Introduction 

R e s i d u a l  s t ress  is the  s t ress  s u p p o r t e d  b y  a b o d y  that  is in m e c h a n i c a l  e q u i l i b r i u m  

in the  a b s e n c e  o f  e x t e r n a l  forces .  T h e s e  s t resses  are  a m a j o r  c onc e rn  for  n u m e r o u s  
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industries because they can significantly affect the mechanical properties of a 
component. For example, residual stresses in silicon semiconductor films can cause 
delamination, cracking, and stress migration of atoms, all of which degrade the 
stability of microelectronic devices [e.g., 1,2]. During manufacture, composite 
materials often develop residual stresses that can cause cracking in the material 
even before it enters service. This damage clearly reduces the fatigue life of the 
final product [3]. Residual stresses in castings are a problem as well. Produced by 
thermal gradients during cooling, they often cause excessive distortion when the 
castings are machined. 

It should be noted, however, that not all residual stresses are detrimental. Com- 
pressive residual stresses are designed into ceramic components [4] and steel roller 
bearings [5] to increase fatigue life and tensile failure limits. Some biological tis- 
sues, such as the heart, arteries, veins, and trachea, support residual stresses [6]. 
The residual stresses in the heart and arteries are thought to minimize the peak 
stresses experienced by these tissues in vivo [7]. 

There are two central issues in work dealing with residually stressed bodies. 
The first issue is the determination of the residual stress field supported by a given 
body, and the second issue is the derivation of a constitutive equation with which 
to describe the mechanical behavior of the residually stressed material. Because 
residual stresses are a common and potentially critical phenomenon, significant 
efforts have been made to develop methods for the detection and measurement of 
residual stress fields. Although there are a number of non-destructive techniques 
with varying applicability and effectiveness [e.g., 8, 9], we concentrate here on 
destructive and semi-destructive experiments [e.g., 8, 10] because they are the 
methods most commonly used to estimate residual stresses in elastic bodies. These 
experiments include sectioning the body into separate pieces, hole drilling, ring 
coring, and surface grinding. In all cases the body is cut in a way that is supposed 
to relieve residual stress, if any is present. The objective is to obtain a stress free 
configuration of a part of the body, and to measure the displacement that results 
from the relief of the residual stress. Then, in order to estimate the residual stress 
originally supported by that part of the body, the constitutive equation for the stress 
free material is evaluated with the strain calculated from the measured displacement 
data. (This process is discussed in more detail in Section 6.) 

Prediction of the mechanical behavior of the material in the intact residually 
stressed body requires a constitutive model that includes the influence of the 
residual stress. Such a constitutive equation can be difficult to construct because the 
experimental approach used to measure properties of stress free materials cannot be 
applied to residually stressed materials. The mechanical properties of the material 
in a non-residually stressed body can be measured with experiments performed 
on a geometrically simple piece of the material. A constitutive law formulated for 
this specimen can then be used for any body composed of the same material. In 
contrast, the effective elastic properties of the material in a residually stressed body 
depend on the residual stress [11]. If a portion of the body is excised, some or all 
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of the residual stress in that portion is relieved. Therefore, the material properties 
measured with this excised specimen typically will not represent the properties 
of the material in the intact residually stressed body. This is the case even for a 
residually stressed body composed of a material that would be homogeneous and 
isotropic if it supported no residual stress. 

The question, then, is how to include the effects of the residual stress in the 
constitutive equation for the material in an elastic residually stressed body. In 
this paper we demonstrate how to derive a constitutive equation that (1) depends 
explicitly on the residual stress, (2) includes only the material properties required 
to describe the stress free state of the material, and (3) is especially suited to model 
the destructive experiments described above. By the method presented here, the 
constitutive equation can be derived for a point in an elastic residually stressed body 
if the constitutive equation for the stress free material associated with that point is 
known and invertible. Constitutive equations can be derived that are appropriate 
for either infinitesimal or finite deformations of the residually stressed body, given 
the appropriate constitutive equation for the stress free material. Knowledge of the 
process that produced the residual stress is not required. 

The derivation of the constitutive equation is based on the idea that for each 
infinitesimal neighborhood in the residually stressed body there exists a corre- 
sponding stress free configuration. The derivation is presented first for a special 
class of residually stressed bodies that can be cut, as in a destructive experiment, 
into a collection of completely stress free parts with finite volume. By definition, 
the residually stressed bodies in this special class possess the necessary stress free 
configurations. In order to derive the constitutive equation for a more general resid- 
ually stressed body, we establish conditions sufficient for the existence of a stress 
free configuration of the material in the neighborhood of a point. We show that in 
the general case the stress free configuration is attained in the limit as the volume of 
the neighborhood approaches zero, so this stress free configuration can be thought 
of as a point. When the residual stress and the properties of the stress free material 
are sufficiently smooth functions of position in the neighborhood, this stress free 
configuration can be used to derive the constitutive equation for the corresponding 
point in the residually stressed body. 

In this paper we will refer to the stress free configuration of a part of a body as 
the 'virtual configuration' of that part. The virtual configuration is employed only 
to give a physical interpretation of the mathematics used in the derivation; we use 
the adjective 'virtual' to emphasize that this configuration is a conceptualization. 
The geometry of the virtual configuration need not be determined explicitly, and 
the virtual configuration need not be achievable experimentally. To be consistent 
with standard terminology, we will refer to material that supports no stress as 
'natural material'; thus, a virtual configuration is composed of natural material. 
This includes the case where the virtual configuration is attained in the limit as the 
volume approaches zero. 
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The mathematical preliminaries employed in this paper are recalled in Sec- 
tion 2, and the method for the derivation of the constitutive equation is presented 
in Section 3. In Sections 4 and 5, constitutive equations are formulated for specific 
residually stressed bodies. For each of these examples, the residual stress field is 
given and the constitutive equation for the natural material is known and invertible. 
The residually stressed body in the example of Section 4 is a member of the special 
class described previously, for which the virtual configurations have finite volume. 
A more typical residually stressed body is considered in Section 5. In Section 6 we 
focus on the relationship between destructive experiments and the virtual config- 
uration. We first determine approximate virtual configurations of specific parts of 
the example residually stressed body from Section 5. Then, since the objective of 
destructive experiments is to obtain an approximate virtual configuration experi- 
mentally, we explore the use of a mathematical approximate virtual configuration 
in the design of these destructive experiments. 

To appreciate the advantages of the method presented here, one need only review 
the constitutive equations available prior to this work. Constitutive equations have 
been derived for elastic residually stressed materials under deformations with 
small displacement gradients [12, 13, 14], and deformations with small strains and 
arbitrary rotations [ 15]. These constitutive equations are derived by the linearization 
of the finite elastic constitutive equation for a stress free material, so each contains 
a fourth-order elasticity tensor that depends implicitly on the residual stress. The 
functional form of this dependence on residual stress is not known explicitly in most 
cases, which limits the usefulness of these constitutive equations. A method has 
also been developed to obtain the most general form of the constitutive equation for 
any hyperelastic residually stressed material with known material symmetry. The 
method is demonstrated in the context of transversely isotropic residually stressed 
materials for both finite [16] and infinitesimal [17] deformations. The explicit 
dependence of these general forms on residual stress is known, but they contain 
numerous unknown material-response functions or material constants that must be 
determined experimentally. Hence, these constitutive equations are impractical to 
use in cases where the opportunity for experiments is limited. None of the above 
derivations requires knowledge of the process that produced the residual stress. 

In contrast, for a constitutive equation derived by the method presented here, 
the explicit functional form of the dependence on residual stress is known and 
the equation contains only the material properties required to describe the natu- 
ral material. This method can be used to obtain the constitutive equation for any 
residually stressed material that behaves elastically in deformations from the resid- 
ually stressed configuration. This includes all of the examples described at the 
beginning of this section. In addition, the data required to construct the constitu- 
tive equation for a specific residually stressed body can be obtained from standard 
destructive experiments on that body. Therefore, in many situations constitutive 
equations derived by the method presented in this paper will be more useful than 
those previously available. 
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2. Preliminaries 

In this section we introduce the notation that will be used throughout the paper. 
The principal invariants of  a tensor A are 

IA = trA, 

I IA = ½[(trA) 2 - trA2], (2.1) 

I I I A  = detA = ~[(trA) 3 - 3(trA)(trA 2) + 2trA3]. 

By the Cayley-Hamilton theorem every tensor satisfies its own characteristic equa- 
tion; thus, 

A 3 - IAA 2 + I I A A  - I I I A 1  = 0. (2.2) 

Consider a body that is in equilibrium in an unloaded reference configuration. 
The deformation f is a smooth, one-to-one mapping of each point p in the body 
into a corresponding point x = f(p) in the deformed configuration of the body. 
Since f is one-to-one, there exists an inverse function f-1 such that p = f-m (x). It 
is assumed that the deformation gradient F = Vf  satisfies det F > 0, so that by the 
polar decomposition theorem, F has the unique representation 

F = VR, 

where the left stretch tensor V is positive definite symmetric and the rotation R is 
proper orthogonal. We will find it convenient to use the left Cauchy-Green strain 
tensor B, which is defined by 

B = FF T = V 2. (2.3) 

O 

A residual stress T is a stress field supported by a body that is in mechanical 
equilibrium in the absence of surface tractions and body forces. The residually 
stressed configuration of the body will be denoted by B0. Clearly, a residual stress 
field must satisfy 

o 

div T =  0 

and (2.4) 

in the configuration B0, and the zero-traction condition 

o 

T n = 0  (2.5) 
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Fig. 1. The unloaded configuration/3o, containing the part 7~0, supports a residual stress field 

T. The deformation f maps B0 into configuration B, which supports the Cauchy stress T. The 
response of/30 to f is elastic. 

on the surface 013o, where n is the outward unit normal. 
One consequence of the zero-traction condition (2.5) is that the residual stress 

depends on the shape of/30. This condition restricts the form that a residual stress 
field can have in a given body; such restrictions will play a role in the example of 
Section 5. Another consequence of (2.5) is that the residual stress is necessarily 
inhomogeneous [13]. Therefore, since the response of the material in B0 depends 
on the residual stress, the constitutive equation appropriate for deformations out of 
configuration/30 must also depend on position. 

For an elastic body that supports no residual stress, the stress is a function only 
of the current configuration, so at each point x in the deformed body, the Cauchy 
stress can be expressed in terms of a response function ~ of the deformation 
gradient as 

T(x) = 'E(F(x), x). (2.6) 

Equation (2.6) is the constitutive equation for the material in a stress free (natural) 
configuration. We will use the term 'natural material' to refer to material in the 
natural configuration. 

For the special case of an isotropic elastic material, the combination of material 
symmetry and the principle of material frame indifference gives a constitutive 
equation equivalent to (2.6) for the Cauchy stress in terms of B [18]: 

T(x) = ~(B(x) ,x) .  (2.7) 

Through the remainder of the paper, dependence on position will not always be 
shown explicitly. However, the fact that these constitutive equations are defined 
pointwise will play a central role in some of the arguments. 

3. Derivation of the Constitutive Equation 
O 

Consider a body that supports a residual stress field T in the undeformed config- 
uration B0, as shown in Fig. 1, and assume that the body responds elastically to 
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0 O 

Fig. 2. On release of the surface tractions Tn, the part ~0 relaxes into the stress free 

configuration R. This deformation is described by the mapping ~-l(p) .  

a deformation f out of this residually stressed configuration. Our objective is to 
derive a constitutive equation with which to model the deformation of the body 
from configuration B0 into configuration B = f(B0). The dependence of the consti- 
tutive equation on residual stress will be determined explicitly, and the constitutive 
equation will include only the material response functions or material constants 
required to describe the natural material. Thus, given the residual stress field and 
the properties of the natural material, this constitutive equation can be used to 
describe the mechanical behavior of the residually stressed material. It is assumed 
in the derivation that the constitutive equation for the natural material is known and 
invertible. However, knowledge of the process that produced the residual stress is 
not required. 

In Section 3.1 we present the derivation in the context of a special class of 
residually stressed bodies for which the approach is transparent. The derivation for 
a more general class of residually stressed bodies is presented in Section 3.2. That 
derivation uses the basic method of Section 3.1, but requires additional technical 
details. 

3.1. A SPECIAL CASE 

Consider the special class of residually stressed bodies defined as follows. Suppose 
B0 can be cut into a finite number of parts such that each part is entirely free of 
residual stress. That is, if a part 790 were removed from B0 and relieved of the 
tractions imposed by the rest of the body, it would deform elastically into a stress 

o 

free region. This deformation is denoted by f - t  in Fig. 2, where R is a stress free 
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configuration of the part 790. (In contrast, the removal and unloading of a portion 
of a typical residually stressed body will not necessarily result in a stress free 
region.) 

We now turn to the derivation of the constitutive equation for the material at a 
point p in 790. The constitutive equation will be appropriate for a deformation f out 
of the residually stressed configuration B0. We will show that the Cauchy stress T 
in the deformed configuration is given by a response function '~ of the deformation 

o 

gradient F(p) = Vf(p) and the residual stress T(p): 

o 

T = ~(F,  T). (3.1) 

A 

By this derivation, the explicit functional form of ~ will be obtained for a point in 
the body in terms of the residual stress and the mechanical properties of the natural 
material associated with that point. 

Because the material in R is elastic and unstressed, the appropriate constitutive 
equation for any deformation out of R is the constitutive equation for the natural 

O 

material, equation (2.6). In particular, the deformation f shown in Fig. 2 is the 
deformation of the region T~ that would be required to produce the residual stress 

O O o 

I? in the part 790. Hence, T is given by (2.6) evaluated at F = V f: 

O ~ O 

T = ~E(F). (3.2) 

Similarly, for the deformation f, which maps T~ into a configuration P = f(790), 
the stress T in 79 is given by 

T = ~E(F). (3.3) 

* 0 

Next, note that the deformation f is the composition of f and f, 

- f o  f ,  

so the deformation gradients are related by 

= F~' .  (3.4) 

Substitution of (3.4) into (3.3) gives the Cauchy stress in B as 

o 

T = ( 3 . 5 )  
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O 

To obtain a constitutive equation in the form of (3.1), we need only express F 
0 O ~ O 

explicitly in terms of T. We assume that (3.2), i.e., T=  ~(F),  is invertible, so there 
exists a function f" such that 

O N O 

F = ~(T). (3.6) 

Equations (3.5) and (3.6) combine to give 

~ O 

T = ~(F~(T)) ,  (3.7) 

o 

which is of the desired form, T = ~:(F, T). 
o 

Note that the deformation f is not needed for the derivation of the constitutive 
o 

equation; only the gradient F is required, and is obtained from the residual stress 
through (3.6). As a consequence, the configuration 7~ need not be determined 
explicitly in the derivation. For this special class of residually stressed bodies, the 
derivation requires only that the natural material in 7~ respond elastically under the 

O * 

deformations f and f, and that the constitutive equation for the natural material be 
invertible. 

3.2. THE GENERAL CASE 

In the derivation presented in Section 3.1, we inverted the constitutive equation 

for the natural material to obtain the deformation gradient F as a function of the 

residual stress ~7. This step can be accomplished without a physical interpretation 
o o 

of F. However, to communicate the physical meaning of F, and F as well ,  we 
incorporated the idea of the stress free region ~ with non-zero volume into the 
derivation. As we have already mentioned, such a region ~ does not exist for 
residually stressed bodies that do not belong to the special class treated in Section 
3.1. Therefore, we will identify a counterpart to the region 7~ that will provide a 
physical interpretation of the derivation for a general class of residually stressed 
bodies. We will see that for a typical residually stressed body, the stress free 
configuration of the material in the neighborhood of a point is attained in the limit 
as the volume of the neighborhood approaches zero. This stress free configuration 
can therefore be thought of as a point. Furthermore, since the properties of the 
material in the excised configuration of the neighborhood approach those of the 
natural material as the volume (and the stress) approaches zero, the constitutive 
equation for the associated point in the residually stressed body can be derived 
using the basic approach of Section 3.1. 

Of course, every constitutive equation is derived in terms of the material prop- 
erties at a specific point in a body. However, this idea is of central importance here 
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t~ 

Fig. 3. The part :P0, is a spherical neighborhood with radius e of the point ~. On release of 
o .  

the surface tractions Tn, the part 7~0, relaxes into the residually stressed configuration R , .  

because residually stressed bodies are necessarily inhomogeneous. Therefore, the 
functional form of the constitutive equation may change with position, even if the 
underlying natural material is homogeneous. Our use of an infinitesimal neigh- 
borhood of a point, and the limit as the volume of the neighborhood approaches 
zero, is in the same spirit as the use of a similar limit in the proof of Cauchy's 
theorem [18]. That is, information about the stress state at a point is obtained by 
first considering the conditions on a finite volume of material containing the point, 
and then taking the limit as the volume decreases to the point. 

The Stress Free Configuration 

We define a part 790, of the residually stressed body to be a spherical neighborhood 
with radius 6 of a point ff in/30. Let the boundary of 790, be denoted by 0790,. A 
typical 790, is shown in Fig. 3 as it would be if it were removed from the residually 

O o 

stressed body, and the tractions t~ = Tn  imposed on 0790, by the rest of the body 
were maintained. (The vectorh is the outward unit normal to 079o,.) If the tractions 
t, were then removed, the part 790, would deform into the configuration R~; this 

O 

deformation is denoted by f~- 1. Note that the configuration ~ supports the residual 
o 

stress field T~, which in general is not zero. 
To identify a stress free configuration of the material in an infinitesimal neigh- 

O 

borhood of if, we will establish that the residual stress T ~ in ~ vanishes in the 
limit as e approaches zero. In order to be clear, we make the following observations 
regarding the meaning of this limit. As e approaches zero, 790, represents succes- 
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0 

sively smaller spherical neighborhoods of the point ft. The residual stress field T 
is independent of e, so each successive 790, contains a subset of the residual stress 
field supported by a larger neighborhood of ft. The tractions t~ on 0790, depend on 
e because 0790, includes a different set of points for each choice of e. Finally, since 
a different portion of both the residual stress field and the body is included in each 

O * 

successive neighborhood of if, the region 7~e and the deformations f~ and f~ are 
also different for each e. The significance of the fact that these functions defined 

O 

on 790, and Re are changing as e approaches zero is that the residual stress T'~ in 
7Z~ typically changes at all interior points of 7Z~ as e approaches zero. 

O 

For convenience, we define f~-I for each e such that the image of the point ff is 
always the same point in space. We denote that point as ~ (Fig. 3) and write 

o 

=f~-l(~) (3.8) 

for all e. This can be accomplished with a superposed rigid motion for each 6 and 
results in no loss of generality. By (3.8) it is clear that the region Re degenerates 
to a point at ~ in the limit as e approaches zero. 

O 

With (3.8) in mind, we resume our discussion of the changes in T~ as 6 
O 

approaches zero. In the appendix we show that if T and the properties of the 
natural material are both C '1 functions of position in 790,, and if the deformation 
o O 

f~- ~ is a C 2 function of position* in 790,, then the stress T ~ at ~ approaches zero as 
e approaches zero, i.e., 

o 

lim T~(~) - 0. (3.9) 
e - - -*O 

The material at the point ~ is a stress free configuration** of the residually stressed 
material at the point if, in the limit as • approaches zero, and can therefore be used 
to derive the constitutive equation for ~ as in Section 3.1. 

We offer the above conditions as sufficient for the existence of the stress free 
configuration as defined by (3.9). In fact, the derivation presented below can be 
performed at ff as long as (3.9) holds and the constitutive equation for the natural 
material at ~ is invertible. It is possible that less restrictive conditions exist for 
which these requirements are met. 

We will refer to the stress free configuration of a part of/30 as the virtual 
configuration of that part, and denote it by 79v. In addition, we denote the virtual 

* The assumption that ~ ~-l is a C 2 function of position is motivated on physical grounds in the 
appendix. 

** This idea of pointwise stress free configurations is not new. For example, a similar stress free 
configuration is defined in [19] and used to solve boundary value problems in [19] and [20]. 
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B 

configuration of/30 by/3,,, and define it as the closure of the union of the virtual 
configurations 7:',~: 

n 

- U 
i=1 

Of course, n is finite for residually stressed bodies in the special class defined in 
Section 3.1, and infinite for the typical residually stressed body. When n is infinite 
the virtual configuration Pv has no volume and therefore cannot exist physically. 
We adopt the adjective 'virtual' to emphasize that the virtual configuration is a 
mathematical construct used to provide a physical interpretation of the derivation; 
it need not be determined explicitly and it need not be achievable experimentally. 
However, such a virtual configuration can be approximated experimentally. This 
topic is explored in the context of destructive experiments on residually stressed 
bodies in Section 6. 

Derivation of the Constitutive Equation 

Since the elastic material at ~ is stress free in the limit as ¢ approaches zero, the 
o * 

constitutive equation appropriate for the deformations f6 and f6 is the constitutive 
equation for the natural material, equation (2.6). In order to use (2.6), we must first 

O $ 

define the deformation gradients V f~ (~) and V f~(~) in the limit as ¢ approaches 
zero. For a given • > 0, let 

0 0 

F 6 -  Vf6(q) 

and 

F6- vf (q). 
O 

In rectangular Cartesian coordinates, the components of F6 can be written as 

O O 

(F~)ij = lim f ' ' (~  + 6qej) - f6,(q) (3.10) 
~q-,O 6q 

Since the fight hand side of (3.10) is well defined as • approaches zero, we can 
define 

O O 

F --- lim Ft. (3.11) 
6---*0 

Similarly, 

F = lira Ft, 
6--*0 

(3.12) 
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where (F~)ij is given by an expression analogous to (3.10). 

As in Section 3.1, the gradients F and ~" defined by (3.11) and (3.12) have 
0 

physical meaning. Here F is the deformation gradient (relative to the virtual con- 
o 

figuration) that is required to produce the residual stress T at the point ~ in B0. 

The gradient F has similar physical meaning in relation to the stress T at the point 

= f~ (9) in B, in the limit as e approaches zero. 

Evaluation of (2.6) with ~" and ~', respectively, gives 

O ~ O 

T =  ~(F) 

and (3.13) 

T = ~(F).  

0 

In order to obtain a constitutive equation of the form T = "~(F, T) from (3.13)2, 
* o * 

we need an expression for F in terms of F and T. For e > 0, the deformation f~ is 
O 

the composition of f and f~ for all points in ~ .  That is, 

* O 

L =  fo f~, 

and therefore 

* o 

Vf~ = VtS7 f~ 

in g~. By taking the limit of this expression as e approaches zero (see (3.11) and 
(3.12)), we have 

= F F (3.14) 

at the point q. The derivation now proceeds exactly as in Section 3.1. An expression 
O o 

for F in terms of T is obtained by the inversion of (3.13)1 at the point if: 

N O 

= ~(T). (3.15) 

Then, substitution of (3.14) and (3.15) into (3.13)2 gives the constitutive equation 
for the point ff in B0 for a deformation f: 

N O 

T = '~(F ~(T)), (3.16) 
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O 

which is of the desired form, T = ~(F,  T). 
o 

Because we assume that both T and the properties of the natural material are 
C 1 functions of position, the constitutive equation (3.16) will depend smoothly on 
position p in B0. That is, the constitutive (3.16) will change smoothly with respect 
to position, even though it is derived separately at each point in B0 using a discrete 
virtual configuration for each point. Of course, the functional form of '~ at a point, 

N O 

and therefore of ~(T), will depend on the natural material at that point. 
o 

Finally we note that, as in Section 3.1, the deformation f ~-1 (and hence Re) 
need not be determined in order to derive (3.16). The derivation requires only that 

O 

lim,._.0 T ~(~) = 0, and that the constitutive equation for the natural material be 
invertible. Furthermore, a qualitative discussion of the relationship between 790, and 
7~, is sufficient for a conceptual understanding of the derivation. In experimental 
situations, however, it can be very useful to quantitatively determine a region ~ ,  
for a small value of e, which is an approximation of the virtual configuration. The 
design of destructive experiments for residually stressed bodies is an example of 
such a situation, and is discussed in Section 6. 

3.3. ISOTROPIC NATURAL MATERIAL 

In the important special case where the natural material is isotropic, the constitutive 
equation for deformations from configuration 7~,, in the limit as e approaches zero, 

can be expressed in the form of (2.7). Evaluation of (2.7) with l~ = ~ T ,  where 
is defined by (3.11), gives the residual stress at ff in configuration B0 as 

o O 

T = ~(B). (3.17) 

Evaluation of (2.7) with B = F F  T gives the Cauchy stress T in B as 

(h)  " *  T = ~ = ~ ( F F T ) .  (3.18) 

Then, substitution of (3.14) into (3.18) gives 

T = ~(FI~FT), (3.19) 

o 

where ~ depends on the residual stress through B. Finally, for natural materials 
o o 

such that T = ~(B) has the inverse ~ ,  we have 

O O 

B = ~ ( T ) ,  (3.20) 

o 

with which (3.19) can be rewritten in the form T = 02(F, T). 
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Fig. 4. Physical components of the residual stress field in the spherical shell of Example 1. 

This result for the special case of  an isotropic natural material will  be used in 
the examples presented in Sections 4 and 5. 

4. Example  1 

Here we use the method presented in Section 3 to formulate a constitutive 
equation for a specific residually stressed body. In this example the geometry 
of  the residually stressed body is known and the residual stress is given. We also 
assume that the constitutive equation for the natural material is known and invert- 
ible. With this information it is possible to construct an explicit constitutive law 
for the body which is valid for deformations from the residually stressed configu- 
ration. 

The residually stressed configuration/30 in this example is a thick-walled incom- 
pressible spherical shell that supports the residual stress shown in Fig. 4. The 
internal and external radii are ri = 2.0L and r~ = 3.0L, respectively. The natural 
material is a Mooney-Rivl in  material, for which the constitutive equation* is 

T = - p  1 + 2Cl B - 2c2 B -1 • (4.1) 

* Equation (4.1) is meant to be a general expression of the constitutive equation for a Mooney- 
Rivlin material. That is, the symbol T for the Cauchy stress and the symbol B for the left Cauchy-Green 
strain in (4.1) do not refer to any specific physical quantities in Figs 1, 2, or 3. 
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For this example the constants* are cl = 1.70FL/L 3 and c2 = 0.25FL/L 3, where 
F and L are units of force and length, respectively. The constitutive equation for a 
Mooney-Rivlin material is invertible for all magnitudes of strain [22, 23]. 

Equation (4.1) is valid for deformations from the stress free configuration, so 
the residual stress at a point p E/30 is given by 

"~ ( p ) =  - /~(p)l  + 2cl l ~ (p ) -  2c2 l~-l(p). (4.2) 

Similarly, the Cauchy stress at a point x in an arbitrary deformed configuration/3 
is given by 

T(x) = -/~(x)l + 2cl 1~ ( x ) -  2c2 l~-l(x). (4.3) 

, • • • o T 
With F = F ~ we can write B = F F  T = F B F  , from which we obtain the consti- 
tutive equation 

T = - p  1 + 2clFI~F T - 2c2 F-~vl~-IF -1 (4.4) 
O 

for each point x E /3. Recall that we seek an equation of the form T = '~(F, T). 
Because the constitutive equation for a Mooney-Rivlin material is invertible, we 

O 0 O 

can obtain expressions for B and B -1 in terms of T from the inversion of (4.2). 
These expressions can then be substituted into (4.4) to obtain the desired form of 
the constitutive equation. 

Details of the inversion of (4.2) are presented in [11]. Results from [i 1] that 
o 

are needed here are displayed below. In terms of T and the first two principal 
O O 

invariants** of B (i.e., Io and IIo), the strain B is given by 
B B 

o o 

1~i = ~b01 + 'tiT +'g'2 T2 (4.5) 

where 

ff30"= ~ 2 (  j~2 + 8clc2 +4C21II~ + 2P°~c2 + 4 ~ I ~  +2~C~II~), 

~bl = ~b2 (2/~ + 2~  + 2c2I/~) ' C2 (4.6) 

1 
¢2= 

44I~1 + 4c~1 + 4 4 + 4clc2Iio 
02 B 

* These values for el and c2 coincide with the properties obtained by Rivlin and Saunders in 
their experiments on rubber materials [21]. They use units of kilograms for the force F and units of 
centimeters for the length L. 

** Because this is an incompressible material, I I I .  = 1. 
B 
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O 

All that remains is to determine the invariants of B in terms of the invariants of 
o O 

T. Once the invariants Io and I Io  have been determined, B can be written entirely 
B B 

O 

in terms of T by use of (4.5) and (4.6). 

The invariants of  'r  can be expressed in terms of Io and I Io  by substitution of 
B B 

(4.2) into (2.1). The result is a system of three nonlinear equations* in the three 
unknowns Io , I I o ,  andi~: 

B B 

lOT = -- 3/~ + 2Cl/~ -- 2C2I/~, (4.7) 

I Io  
T 

31o 2 + 4c211~ + 4c2I~ - 4 p c 1 ~  + 

+ 4pc2IIoB -- 4ClC2(/~ IIOB - 3), (4.8) 

I I io  ~3 + 8C 3 8C3 o 2 02 = __ -- __ 4 p c 1 I I  ~ ° 2 -- 4 p c 2 ~  + 2p  C1Io -- 
T B 

02 
- 2 p  - - 2 z ; )  + 

+ 8CLC2(I 2 - 2 I I ~ )  + 4 p c l c 2 ( ~ I ~  - 3). (4.9) 

This system cannot be solved algebraically for /~,  IIo,B and/;; a numerical solution 

is necessary at each point in the body. 
Because the constitutive equation for a Mooney-Rivlin material is invertible, 

O O 

we know not only that (4.5) defines a unique B, but also that such a B exists. It 
follows that, at each point in the body, there will always be only one solution of 
the system (4.7) - (4.9) which gives the correct values o f /~ ,  IIO,B and/~. Note that 

since the left Cauchy-Green strain tensor is positive definite, the values for the 
invariants Io and I Io  must be positive. The solution can be obtained as follows. 

B B 

Equation (4.7) is first solved for Io as a function of~ and I Io  with the result 
B B 

•° 3 o 
Io = T p +  c:II°" cl (4.10) 

Substitution of (4.10) into (4.8) yields a quadratic equation for I Io  in which the 
B 

o 
coefficients are functions of p: 

* The quantity (112 - 21. ) in (4.9) is incorrectly given as ( I io  - 2•.) in (3.14) of [11]. 
B B B B- 
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3¢1c2/~ + ClC2J~ -- 2(c31 + c 3) 
ss7 + H .  + 

B 2Cl c2 B 

+ 4clc 2 

This quadratic equation has two solutions: 

- 3ClC2~ - c,~2 So + 2 ( ~  + ~) 
T 

4Cl c2 
IS+o = B 

where 

O" = 

( =  

3e l i  2 + (2c1S~ - 6c22)i~ + ClIS ~ - 2¢221~r - 12c2e2 
~0. 

-3cfc2~, 

12(ClC 4 - cic2 ) - 2c2c 2 I~,  

1 - - ~  • /o"  &2 
+ 4clc 2 V ~ + (~ + 6, 

22 2 - 4 I / ~ ) +  4(c,c'~ - c ic2) I }  + 56c3c~ + 4(Cl 6 + c6), = clc2(S¢ 

(4.11) 

(4.12) 

and a similar solution I I 7  associated with the negative square root. 
II 

Substitution of I I  + into (4.10) gives an equation for Io in terms of~ and Io. 
B B T 

We will call the solution to this equation I +. Finally, substitution of the equations 
B 

for I + and I I  + into (4.9) gives a single nonlinear equation for the unknowni~+: 
B B 

(iI~+)3 "t - [3 \ c2(4 C21_t_Cl f I~] (1~+)2 -I - 

+ 

_ p+ (~+)2 + ~ +  + ~ + 

+4(~ ~ - 4r÷ (~; ~ :o(~ ~) + 
4)  t ~ + ~,~) + - 

\ C  2 C 1 ] T T 
(4.13) 



VIRTUAL CONFIGURATIONS AND RESIDUAL STRESS 195 

iS 

v 

"F. 

16 

14 

12 

10 

8 

6 

2 I i 
2.1) 2.1 2.2 

I i 

. . . .  IIh 

I I I I 

2.3 2.4 2.5 2.6 

i 

i 

i 

i 

# 

i 

i ,j 
I ! l 

2.7 2.8 2.9 3.0 

Radius (L) 

Fig. 5a. The solution 1 ,  (r) and 1/_, (r) for Example 1. 
B B 

At a specific point in the shell, any real roots/~+ of (4.13) are found*, and each root 
is used to compute the associated numerical values of 1 + and 1I +. This gives a 

B B 
complete solution to the set of equations (4.7) through (4.9) for each root. 

Since the physically meaningful solution to equations (4.7) through (4.9) is 
unique, the search for a root ~+ need proceed only until a root is found that 
corresponds to positive values of I + and IT +. If no such root/~+ exists, then 

B B 
similar steps are taken for I 7  and I I d  to obtain a counterpart to (4.13) that can 

B B 
o o o 

have a set of real roots p - .  Associated with each root p -  is a s e tp - ,  I~-, and 117 
B B 

that is also a solution to equations (4.7) through (4.9). The search for real roots 
/~- is continued until a root is found such that I 7  and I1-~ are positive. Since the 

B B 

existence and uniqueness of 13 in (4.5) is assured for a Mooney-Rivlin material, 
o o 

one and only one root from the set that contains all of the p+ and p -  roots will 
correspond to a physically meaningful solution. 

For the example under consideration, where the residual stress is given by Fig. 4, 
the values of the invariants Io and Iio are shown in Fig. 5a as a function of radial 

B B 
position in the shell. The pressure/~ is displayed in Fig. 5b. These values, together 

• . o 

* Note that the solutions for Iio (e.g., equation (4.12)) contain the square root of a quadratic rap. 
B 

This quadratic must be positive in order that 11, be real. Thus, the search for real roots/~ + of (4.13) 
B 

can be limited to the range for which this holds• 
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Fig. 5b. The solution p(r) for Example 1. 

O 

with (4.5) and (4.6), give the tensor B associated with the residual stress field in 
O 

the shell. The components of B are shown in Fig. 6, from which the components 
o 

of B -  1 can easily be obtained. 
We now have the desired constitutive law for deformations out of the residually 

O O O 

stressed configuration: equation (4.4), with B and B -1 computed from T at each 
point as described above. Note that the constitutive equation (4.4) is an explicit 

O O 

function of residual stress through B,B -1, and equations (4.5) through (4.13). 
Equation (4.4) also contains only the mechanical properties that describe the natural 
material, which are the Mooney-Rivlin constants Cl and c2. 

We chose this as our first example for the following reason. Given the residual 
O 

stress, the left Cauchy-Green strain B must be determined as part of the derivation. 
The residual stress in Fig. 4 can be produced by the eversion of a spherical shell 
[24, 11], which is a known global elastic deformation. Therefore, this example 
provides an ideal setting in which to present and validate the method, since the 
deformation related to this residual stress is known a-priori. It is straightforward to 
show that the eversion deformation produces the left Cauchy-Green strain tensor 
O 

B computed above and shown in Fig. 6. 
The everted spherical shell is an example of a residually stressed body from 

the special class defined in Section 311. Recall that for a body in this class, one 
can always obtain a virtual configuration with a finite number of parts with 
non-zero volume. A discussion of the possible virtual configurations for this spher- 
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Fig. 6. Physical compo.nents of  the left Cauchy-Green strain tensor in the spherical shell of  
Example 1. 

ical shell can be found in Section 6.2. In the next section we formulate a constitutive 
equation for the material in a residually stressed body that is not of this special 
class. 

5. Example 2 

The constitutive equation for the material at a point in a residually stressed body 
can be derived by the method of Section 3 if the residual stress and the properties 
of the natural material are smooth functions of position, and if the constitutive 
equation for the natural material at that point is invertible. The method is applied 
in this section to a body which meets these criteria, but, in contrast with Example 
1, contains no parts for which a virtual configuration with finite volume can be 
obtained. 

o 

Note that, given a residual stress field T (i.e., a stress field that is symmetric, 
satisfies equilibrium on a specific unloaded body, and satisfies the zero traction 
condition on the body surface), the residual stress 

o o 

T~ = c~T (5.1) 

for any real a also satisfies these conditions. In this section we will exploit this fact 
to construct a residually stressed body. 

As in the example of  Section 4, we consider a thick-walled incompressible 
spherical shell with internal and external radii ri = 2.0L and re = 3.0L. The 
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Fig. 7. Physical components of the residual stress field in the spherical shell of Example 2, 
for which t~ = -1. 

natural material is a Mooney-Rivlin material with constants c I ----  1 .70FL/L 3 and 
O 

c2 = 0 . 2 5 F L / L  3, and the residual stress T~ in the shell is constructed from the 
O 

residual stress T in Fig. 4 and the multiplier a = -1 .  This results in the residual 
O 

stress T-1 shown in Fig. 7. In Section 6 it will be established that this residually 
stressed spherical shell is not in the special class defined in Section 3.1. 

The conditions for the use of the derivation in Section 3 are satisfied in this 
example; the constitutive equation for the natural material is invertible and, at each 
point in the body, the residual stress and properties of the natural material are 
smooth functions of position. 

The appropriate constitutive equation for deformations from the residually 
stressed configuration will have the form 

T = - p l  + 2Cl F ~ - 1  F T  - 2c2F-T(i~-I) -1F-1.  (5.2) 

o 

At each point along the radius of the shell, B_~ is computed from the residual stress 
o 

by the method described in Section 4. The components of B_l are shown in Fig. 8 
as a function of radial position in the shell. Similar results can be obtained for any 

O O 

residual stress aT,  with T given by Fig. 4. 
0 

Equation (5.2) together with the strain B_ 1 in Fig. 8 gives the desired constitutive 
o 

equation for T in terms of F and T_~. As in Example 1, T as given by (5.2) is 
o o 

an explicit function of T-1 (through B_~) and contains only the Mooney-Rivlin 
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constants cl and e2. With this example we have demonstrated the formulation of 
a constitutive equation for a body that has a virtual configuration with an infinite 
number of parts with zero volume. From a comparison of Examples 1 and 2, it is 
clear that the process of constructing a constitutive equation for a specific residually 
stressed body is independent of the classification of the body. 

6. The Virtual Configuration 

The concept of the virtual configuration was introduced in Section 3.2 as a tool with 
which to develop an intuitive understanding of the derivation of the constitutive 
equation. However, it is of practical value in modeling destructive experiments 
that are used to determine residual stress. We begin with a brief discussion of these 
experiments. 

In the past, destructive experiments were used primarily to determine residual 
stresses in products of heavy industry, such as railway wheels and rails, tractor 
wheels, and welded pipe. However, the principles of destructive experiments can 
be applied in the elastic regime of any residually stressed body. An interesting 
example is described in [25], wherein a destructive experiment is used to deter- 
mine the residual stress in a multi-layer thin film. The thin film in this case was 
produced by sputtering a thin layer of chromium on both sides of a Kapton substrate 
sheet, followed by a thin layer of copper on both sides. (The Kapton substrate was 
50 #m thick, and single layers of chromium and copper were 535,~ and 8.8 k~, 
respectively.) Residual stresses generated in the film during fabrication were deter- 
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Fig. 9. The configuration of an equatorial slice of a tight-skin mouse left ventricle after a 
single radial cut is made in the original ring of tissue (adapted from Fig. 1 of [27]). 

mined by chemically etching a single layer of metal from one side of the film. This 
produced curvature in the remaining film that was measured and used to calculate 
the original residual stress. Similar methods have been used to obtain information 
about the residual stress in very thin (e.g. 2 #m thick) silicon cantilever beams that 
simulate structures in micromechanical devices [26]. 

Destructive experiments have also been used in the context of residually stressed 
biological tissues. A recent example is the determination of the residual stress in 
the left ventricle of the tight-skin mouse [27]. In this experiment, a thin equatorial 
slice (1-2 mm thick) was removed from the left ventricle and placed in a fluid to 
minimize effects of friction and gravity. In this residually stressed configuration, 
the slice is a continuous ring of tissue. The ring was then cut radially at one 
location, which caused it to open into a 'c' shape and also to warp out of plane, as 
shown in Fig. 9. The cut configuration is assumed to be stress free, and the residual 
stress originally supported by the ring is assumed to be the stress that results from 
deforming the ring back into the uncut configuration. 

The specific examples just described give an idea of how some features of a 
residual stress field can be determined with destructive experiments. It is worth- 
while, however, to discuss certain aspects more formally. Destructive experiments 
in general proceed by one of the following methods: the body is sectioned into 
separate pieces, a portion of the surface is removed (by grinding or etching, for 
example), or a discrete piece is removed. In all cases, the goal is to measure the 
surface displacements that result from the relief of the residual stress, and to use 
that data to deduce properties of the residual stress field. 

Ideally, the cutting process can be continued until any further removal of 
material produces negligible strain by the standards of the particular experiment 
under consideration. It is assumed that each of the pieces that result from the 
destructive experiment is free of residual stress. Of course, there exists the 
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possibility of undiscovered, non-negligible residual stresses in this material. 
One must take care to verify that any remaining residual stresses can actually be 
neglected. 

An estimate of the residual stress originally supported by the intact 
configuration of this material can then be obtained from the solution of the associ- 
ated displacement boundary value problem. Displacement boundary conditions 
are specified for the (assumed) stress free configuration such that the bound- 
ary is returned to the original residually stressed configuration, according to the 
total displacement measured from all of the cuts. The stress that results from this 
deformation can be calculated using the constitutive equation for the 
natural material, and is assumed to be the residual stress in the intact body. 
If the constitutive equation for the natural material is not known, it may be 
possible to measure the mechanical properties of a piece of material in the 
approximate stress free configuration and use this data to formulate a constitutive 
equation. 

The derivation of the constitutive equation presented in Section 3 and 
illustrated in Sections 4 and 5 does not require that a region T~, (or T~ in the 
special case of Section 3.1) be determined. The role of T~, thus far has been 
to provide a physical motivation for the mathematics used to derive the con- 
stitutive equation. However, since the objective of the destructive experiments 
described above is to relieve the residual stress from a portion of the body, it 
would be useful to know what the approximate stress free configuration (e.g., 7~, 
for small c) of a part of the body would be for a given residual stress field. 
Of course, in the experimental situation the actual residual stress field is not 
known. But suppose, for example, that we have a hypothesis of what the residual 
stress might be in the body. In this case, the hypothetical residual stress field could 
be used to determine the approximate stress free configuration of a part, which 
in turn could be used to determine how best to cut the body in order to test the 
hypothesis. 

Recall from Section 3.2 that we have defined the virtual configuration of 
a part of the residually stressed body to be the stress free configuration of 
that part, and the virtual configuration of the body to be the closure of the 
union of virtual configurations of the individual parts. We have also 
established that the virtual configuration of a part ~P0, of a typical residually 
stressed body is attained in the limit as ~ approaches zero, and therefore 
has zero volume. In order to apply the concept of the virtual configuration to 
destructive experiments, such a virtual configuration must be approximated as a 
region with finite volume. In this section the approximation of a virtual config- 
uration is demonstrated in the context of the residually stressed body described 
in Section 5. That example is then used to illustrate that the virtual configura- 
tion of a residually stressed body may not be unique. We close this section with 
a discussion of the relationship between approximate virtual configurations and 
destructive experiments. 
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6.1. APPROXIMATION OF THE VIRTUAL CONFIGURATION: AN EXAMPLE 

In this section we determine an approximate virtual configuration for the thick- 
walled spherical shell used in the example of Section 5. First we establish that 
a stress free configuration with finite volume does not exist for any part of this 
body. Therefore, in a destructive experiment the virtual configuration can only be 
approximated. To show this we verify that the strain associated with the residual 
stress is locally incompatible at all points in the spherical shell. Second, we construct 
a mathematical approximate virtual configuration of the residually stressed body, 
and use the constitutive equation formulated in Section 5 to calculate the stresses 
in this approximate virtual configuration. Since the actual virtual configuration is 
stress free, the magnitude of these stresses is a measure of the accuracy of the 
approximation. 

Compatibility 

If a virtual configuration with non-zero volume exists for a part of  a residually 
stressed body, then there is a compatible strain tensor associated with the deforma- 
tion that maps the virtual configuration into the residually stressed configuration. 
That is, if y is the deformation from the virtual configuration into the residually 
stressed configuration, then there exists a compatible left Cauchy-Green strain 

O 

field B given by 

O 

B : (Vy)(Vy)  T. (6.1) 

The inverse of y maps the residually stressed part into a stress free configuration 
with finite volume that can be achieved experimentally without approximation. 
This is clearly the case in Example 1, where a stress free spherical shell is everted 
to produce a residually stressed spherical shell, and where the deformation y is the 
eversion. The eversion of a hollow elastic tube is another deformation that satisfies 
(6.1). A discussion of compatibility as it relates to residual stress can be found in 
[28], and a more comprehensive discussion of compatibility is given in [29] in the 
context of  finite deformations. 

We now turn to the specific example presented in Section 5, in which the resid- 
ually stressed configuration B0 (the hollow spherical shell) supports the residual 

o 

stress T_ 1 shown in Fig. 7. To establish that there are no virtual configurations 
o 

with finite volume for this body, we show that the strain tensor B_ 1 associated with 
o 

T-1 is locally incompatible in B0, i.e., it does not satisfy (6.1). Therefore, there 
o 

is no deformation that will completely relieve the residual stress T_ l in any finite 
part of B0. 
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O 

By (4.5), the strain B-1 (Fig. 8) is of the form 

o [ ]3-1 @7.)(7.) 0 0 
[B-l] = 0 B-1 (O0)(r) 0 

O 

0 0 B-1 (00)(7.) 

(6.2) 

with respect to the orthonormal basis e(i), where i ranges over the spherical 
O 

coordinates 7., 0, and ¢. Due to the simplicity of (6.2), the incompatibility of B_ 1 
can be shown by direct computation of possible deformations y that satisfy (6.1) 

o 

for B_l .  We will see that no such deformations exist. 
o 0 

Since B-1 does not depend on 0 and ¢, the strain B-1 is constant on any 
surface of constant r in/30. Therefore, the virtual configuration must also be a 

o 

spherical shell, because any other geometry would require that B-1 have both 
0 and ~b dependence on a surface of constant r. A criterion for the deformation 
of a spherical shell into another spherical shell, to within a rigid rotation, is that 

0 O O 

the rotation R_I  from the polar decomposition (Vy) = V_IR_I  have physical 
components such that 

o {1 if i = j  
[ R - l ( i j ) [ =  0 if i ¢ j .  (6.3) 

0 0 

Since [V--l] and [R_I] are diagonal with respect to the basis e(i), [Vy] is also 
diagonal. We can therefore write y = ~(r)e(r), and (6.1) becomes 

d~b(7.) 0 0 
dr 
o ¢(7.) o 

7" 
o o ¢(7.) 

r 

= 0 

0 

0 0 

~/t~_ 1 (00) (7.) 0 

0  /fi_l (oo)(7.) 

(6.4) 

in physical components. The equation for the (00) components in (6.4) gives 

O 

~b(7.) = 7. B-1 (00)(7.), 

but 

d-7 7. -1 (00)(7.) # -1 (7.7.)(7.), 

so the equation for the (rr) components in (6.4) is not satisfied. Therefore, no 
o 

deformation y exists that satisfies (6.4), so B-1 (r) is a locally incompatible strain 
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field. We have shown that no portion of B0 has a virtual configuration with finite 
volume. 

The Approximate Virtual Configuration 

We now proceed to construct a discontinuous mapping from the residually stressed 
configuration B0 of the thick-walled spherical shell into an approximate virtual 
configuration. We will confirm that this approximate virtual configuration is a set 
of individual parts that cannot be assembled into a stress free, continuous whole. 

Due to the absence of ~ and ~b dependence in this problem, the set of all 
points at a given radius in B0 can be mapped by a single function into the virtual 
configuration of that set, which is a continuous spherical surface. To see this, 
consider the outermost, infinitely thin layer of B0, in which the tangential stress 
is compressive. If this infinitely thin spherical subshell were removed from B0 
and unloaded, it would expand radially until the compressive tangential stress was 
relieved. 

An infinitely thin shell is clearly unattainable in a destructive experiment, so 
we are motivated to consider an experiment in which this virtual configuration is 
approximated. Suppose that a spherical subshell with a small but finite thickness 
could be removed from B0 and then allowed to assume a traction free configuration. 
This configuration of the subshell is essentially composed of regions ~ (defined 

o 

in Section 3.2) and supports the residual stress field T ~. However, from the theorem 
o 

in the appendix we know that T ~ vanishes in this subshell as the thickness approach- 
es zero. Therefore, we refer to the unloaded subshell with finite thickness as the 
'experimental approximation' of the virtual configuration, and note that this approx- 
imation improves as the thickness of the subshell is decreased. 

Our objective is to construct a mapping from a given subshell of B0 into an 
approximate virtual configuration of that subshell. The experimental approxima- 
tion obtained through a destructive experiment seems at first to be the obvious 
configuration for which to construct this mapping. However, the residual stress 

o 

field T ~ in the experimental approximation is unknown, so it is unclear how the 
available information can be used to determine the deformation from Bo into this 
approximate virtual configuration. As an alternative, we can formulate a mapping 
from a subshell of B0 into an approximate virtual configuration that differs from 
the experimental approximation, but becomes sufficiently similar to it as the thick- 
ness of the subshell is decreased. This new approximate virtual configuration will 
be referred to as the 'mathematical approximation', and will serve our purpose 
of illustrating the properties of an approximate virtual configuration of a general 
residually stressed body. 

First we consider the subdivision of B0 into a finite number of thin spherical 
shells. For n subshells, the thickness ~r of each is 6r = (re - r i ) / n ,  where ri and re 
are the internal and external radii of B0, respectively. Let rk be the radial coordinate 
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rk 

O~i (rk) 

gk = 

5r 

~k 

Fig. 10. Bk is the kth subshell of the hollow spherical shell in Example 2, and is defined as 
the closure of the union [..J~ 1 Pol (rh). A few representative spherical neighborhoods P0(rk) 
are shown in Bk. The approximate virtual configuration ~k is defined by the deformation gk, 
which is constructed so that the stress Tk is zero at Ok. Because Rk is approximate, Tk is 
non-zero at other radii in Rk, but approaches zero as 6r becomes small. 

of the points that lie midway through the kth shell wall, shown in Fig. 10. The kth 
shell in B0 can be defined as the closure of the union of an infinite number of parts 
Po~(rk), where PO~(rk) is the neighborhood with diameter 6r of the ith point at 
the radius rk (Fig. 10). We denote this set by Bk = I.J~l P0~(rk). A deformation 
gk = 7k(r)e(r)  maps all parts 7)oi(rk) into approximate virtual configurations 
7-4., (pk), where Pk = 7k(rk). In general, p = 7k(r) for (rk -- (6r /2))  <~ r <~ (rk + 
(& /2 ) ) .  The image of the kth shell under the deformation gk is the mathematical 
approximate virtual configuration, and is defined as T4k -- [.J~l 74.~ (pk). 

We construct a deformation gk for the kth shell according to the following two 
criteria. First, the deformation gk must be isochoric because the natural material 
associated with B0 is incompressible. Therefore, 

det(Vgk) = 1. (6.5) 
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B 

The second criterion is that T4k approach the true virtual configuration of the 
material at rk in Bk, in the limit as 6r approaches zero. Although these criteria 
can be met in a number of ways, we choose to construct gk, and therefore Talk, as 
follows. Let Tk(p) be the stress at any radius p within 7¢t,. We require that the 
material at Pk = " / k ( r k )  in Rk be stress free, i.e., 

Tk(pk) = 0. (6.6) 

m 

Surface tractions* would be required on 07~k to physically achieve an approximate 
virtual configuration that satisfies (6.6). However, we will see that the stress Tk(p) 
approaches zero as the thickness of Bk approaches zero, and therefore the surface 
tractions approach zero as well. 

We choose to construct 7-41, according to condition (6.6) because this condition 
O 

allows us to use the strain B_ 1 from Fig. 8 to determine the stress free configuration 
o 

of the material at rk in Bk. Recall from Example 2 that B_ l is the strain associated 
with the deformation from the stress free configuration into the residually stressed 

o 

configuration. Hence, we will use the strain B_I (rk) from Fig. 8 to determine the 
radius Pk of the points originally at rk. The mapping gk (r) for other radii in/3k is 
determined by the incompressibility of the material, i.e., condition (6.5). 

Note the contrast between the mathematical approximate virtual configuration 
that satisfies (6.6), and the experimental approximate virtual configuration obtained 
from the destructive experiment discussed previously. The experimental approx- 

O 

imation, which supports the residual stress T ~, is free of surface tractions and in 
general contains no points that are stress free. The mathematical approximation 
requires small surface tractions in order to maintain a state of zero stress at the 
radius Pk. However, as the thickness of Bk is decreased, both approximate virtual 
configurations approach the true virtual configuration of the points originally at 
9" k . 

O 

We now construct the deformation gk (r). From (6.6) and the definition of B_ 1, 
O 

we know that -1 -1 Z (Vg k )(Vg k ) = B- l  only at rk (since ~ k  is stress free only at Pk). 
O 

Therefore, we also have (Vgk)T(Vgk) = (B_I) -1 only at rk. With (6.2)-(6.4), it 
is easily shown that 

) ( ) Vgk(rk ) = B-I  -1 r k ,  (6.7) 

* For this example, the tractions on 0Rk consist of an inflation (or deflation) pressure superposed 
on a balanced intemal and external pressure. The inflation (deflation) pressure adjusts Tk (00) (Pk) to 
zero, and the balanced pressure (either tensile or compressive) adjusts Tk(rr)(pk) to zero. 
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and from (6.5) and (6.7), 

where 

~/3 

_- o 1 (6.8)* 

~< r ~< \ rk  

To determine the accuracy of the approximation given by (6.8), the constitutive 
equation (5.2) for B0 can be used with Fk = Vg_~ to calculate the stress T~ in 

- -  

each 7~a. The tensor ~7g k exists at all radii in each B~ since the deformation gk, as 
- -  

defined by (6.8), is differentiable at all radii contained in Bk. We present a numerical 
example:/30 is subdivided into ten shells of  equal thickness, numbered one through 
ten from the interior to the exterior of B0. The largest magnitude of Tk (00) in the 
outermost shell of the approximate virtual configuration is T10(0O) = -2.37F/L 2. 
This is an order of magnitude smaller than the residual stress at the corresponding 

o 

point in /30, which is T-1 ( ~ )  = -21.18F/L 2. To see that the approximation 
improves as the number of subshells increases, B0 is subdivided into 50 and 
then into 100 shells. The maximum stress in the outermost shell decreases to 
Ts0(00) = -0.51F/L 2 for 50 subshells, and to Tloo(00) = -0.26F/L 2 for 100 
subshells. 

For the numerical example in which Bo is subdivided into 100 shells, the radius 
p~ of the innermost approximate virtual configuration is Pl = 1.21L, and the radius 
of the outermost is Pl00 = 4.71L. Recall that the internal and external radii of/30 
are 2.0L and 3.0L, respectively. Clearly, the incompressible material of/3o cannot 
occupy all of the space between Pl and PI00. Therefore, as the number of subshells 
in/3o approaches infinity, the approximate virtual configuration of/3o approaches 
an infinite number of isolated spherical shells. 

This example demonstrates how the virtual configuration of a residually stressed 
o 

body can be approximated using the strain (e.g., B_I) associated with the residual 
stress. The example also demonstrates that the local compatibility (or incompat- 
ibility) of this strain can be used to determine whether or not an exact virtual 
configuration with finite volume can be obtained for a specific part of the body. 
This is valuable information in the context of destructive experiments, where the 
ideal (but rarely attainable) situation is to work with a relatively large portion of 
stress free material. We have also shown that once a mapping from/3o into an 
approximate virtual configuration has been constructed, the constitutive equation 
for/3o can be used to evaluate the accuracy of the approximation. 

* Note that 7k(~') is of the form 7~(r) = (A + r3) if3, where A is a constant. This deformation is 
the universal solution for inflation of an incompressible spherical shell [23]. 
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6.2. NON-UNIQUENESS OF THE VIRTUAL CONFIGURATION 

Every residually stressed body has a virtual configuration composed of an infinite 
number of discrete points. For some residually stressed bodies, however, the virtual 
configuration can be more structured, as in the example of the hollow sphere 
discussed in Section 6.1. Recall that for that example, the virtual configurations 
of points at a fixed radius in 130 could be assembled into a continuous spherical 
surface of points that serves as an equally valid virtual configuration. The everted 
spherical shell of Example 1 (Section 4) also has multiple virtual configurations. 
That spherical shell can be partitioned into two equal parts, each of which can be 
'uneverted' to produce a stress free hemispherical shell with finite thickness. These 
hemispherical shells are virtual configurations with finite volume, and each can be 
subdivided in an infinite number of ways to create new virtual configurations with 
finite volume. Multiple virtual configurations can be obtained in this way for any 
residually stressed body in the special class discussed in Section 3.1. 

This idea can be stated more formally as follows. If the closure of the union of 
virtual configurations 79vi, i = 1 to n, of a set o f n  parts of B0 can be assembled into 
a continuous configuration, denoted by 7ds = U~=179vi, by rigid body translations 
and rotations, and if 7Zs can be mapped into a part of B0 by a single continuous 
function, then 7Zs is also a virtual configuration. 

The virtual configuration consisting of an infinite number of discrete points is 
adequate for the derivation of the constitutive equation. For experimental appli- 
cations, however, it is advantageous to determine the largest possible continuous 
virtual configuration, since larger portions of material are usually easier to excise 
from the body and measure. 

6.3. DESTRUCTIVE EXPERIMENTS AND THE VIRTUAL CONFIGURATION 

The concept of the virtual configuration combines with the mathematics used in the 
derivation to provide a sound theoretical framework for destructive experiments. 
In this section we briefly examine the relationship between our theory and the 
physical aspects of these experiments. We first address the use of a destructive 
experiment to obtain the data required to formulate a constitutive equation for the 
residually stressed material. This is followed by a discussion of the role of the 
virtual configuration in the design of destructive experiments. 

Characterization of  a Residually Stressed Material 

As we discussed briefly in the introduction, the properties of the material in a 
residually stressed body cannot be obtained by the same experimental procedure 
used for stress free bodies. Specifically, mechanical testing of a discrete portion 
of a residually stressed body does not provide the properties of that material in 
the intact residually stressed configuration. The reason for this is that the effective 
elastic properties of the residually stressed material depend on the residual stress, 
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and removal of the test specimen will typically relieve some or all of the residual 
stress. Clearly, if all of the residual stress is relieved, mechanical tests performed 
on this specimen provide the properties of the natural material. These ideas are 
central to the following discussion. 

The constitutive equation for a residually stressed material can be constructed 
using the derivation presented in Section 3 and the data from a destructive exper- 
iment. Recall that in the typical destructive experiment, an approximate virtual 
configuration is obtained and the displacement from this virtual configuration to 
the residually stressed configuration is measured. In the notation of Section 3, the 
measured displacements are used to calculate an approximation of the deformation 

O 

gradient F. Mechanical testing of a piece of approximately stress free material pro- 
vides the data needed to formulate a constitutive equation for the natural material 
(e.g., equation (2.6)). This equation is then evaluated with the approximate defor- 

O 

mation gradient to give an estimate of the residual stress T originally supported 
0 ~ 0 0 

by the material in the intact body; that is, T=  ~(F).  Of course, the accuracy of T 
o 

depends on the accuracy of F. 
In Section 3 we sought a constitutive equation for the residually stressed material 

that depends explicitly on the residual stress and the properties of the natural 
material. In Sections 4 and 5 we demonstrated the formulation of such constitutive 
equations in the context of a given residual stress field and an invertible response 
function for the natural material. Destructive experiments, on the other hand, 
provide a different data set; namely, they provide an approximation of both the 

o 

deformation gradient F and the properties of the natural material. If the explicit 
dependence on residual stress is not important in a particular application, the 
constitutive equation for the residually stressed material can be formulated in terms 

o o o 

ofF. That is, rather than inverting ~ to obtain an expression for F as a function ofT, 
o 

as in (3.15), the F calculated from the measured displacements can be substituted 
O 

directly into (3.16) to give a constitutive equation of the form T = '~(FF) for 
the residually stressed material. We emphasize that construction of the constitutive 
equation from such experimental data requires only that the excised portion of the 
body be elastic and nearly stress free. 

Design of Destructive Experiments 

From the previous discussion it is clear that destructive experiments, the concept of 
the virtual configuration, and the theory underlying the derivation of the constitutive 
equation are all closely related. To illustrate this relationship further, we briefly 
discuss a situation in which the calculation of an approximate virtual configuration 
can be of use. 
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The first issue to address in a destructive experiment is how the residually 
stressed body should be cut in order to determine the residual stress most efficiently 
and accurately. Of course, as we have already mentioned, the actual residual stress 
field is not known a-priori. In some cases, however, it may be possible to use the 
equilibrium equation (2.4)1, the zero surface traction condition (2.5), and the body 
geometry to postulate the form of the residual stress field in the body [e.g., 30]. The 
choice of candidate residual stress fields could be further narrowed by information 
about the microstructure of the material or by a model of the mechanism suspected 
to cause the residual stress. An approximate virtual configuration that is constructed 
using one of these hypothetical residual stress fields offers a suggestion for how to 
begin the destructive experiment. 

7. Summary 

In this paper we have presented a method for the derivation of constitutive equa- 
tions for a broad class of elastic residually stressed materials. These constitutive 
equations depend explicitly on the residual stress and include only the material 
properties required to describe the natural material. In addition to a constitutive 
equation, our derivation provides an intuitive mathematical model for standard 
destructive experiments commonly performed on residually stressed bodies. The 
direct parallels between these destructive experiments and the theory used in the 
derivation are made physically meaningful by the concept of the virtual configura- 
tion. 

Appendix 

In the theorem and proof that follow, we rely on a certain familiarity with the 
behavior of elastic residually stressed bodies. We present a brief discussion of this 
behavior here in order to simplify the presentation of the proof. 

If an elastic residually stressed body is composed of a natural material for which 
the material properties are smooth functions of position in the body, and if the body 
supports a residual stress field that is also a smooth function of position, then 
the mechanical response of the residually stressed body is expected to be smooth 
throughout the body. By smooth mechanical response we mean that if the body is 
subjected to a smooth surface traction field, the resulting deformation will also be 
smooth. It is also physically well motivated to assume that if a portion of the body 
is excised and unloaded, as discussed in Section 3.2, the resulting deformation is 
smooth and the unloaded part will support a new residual stress field that is also 
smooth. 

In the absence of an explicit constitutive equation for the residually stressed 
material, we cannot substantiate the above ideas more concretely. However, we 
cannot assume a specific constitutive equation for use in the following proof and still 
obtain the general result that we seek. Therefore, the above assumptions must rest 
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on our intuitive understanding of the influence of the residual stress on the effective 
elastic properties of the material in the residually stressed configuration. 

From this point of view we state mathematical requirements for the existence 
of a stress free configuration of the material at a point in a residually stressed body. 
Of course, these conditions do not hold for every residually stressed body. At the 
end of this appendix we discuss how the derivation can be handled when these 
conditions hold only in finite subregions of a residually stressed body. 

THEOREM. Let 790, be part of an elastic residually stressed body, as defined in 

Section 3.2, such that for all e < L where -C > O, the stress ~r and the properties of 
the natural material in 790, are both C 1 functions of position p in 790,. In addition, 

o 

let the deformation f~-I from 790, to T¢~ be a C2 function of position p in 79o,, and 
o 

let T~ in ~ be given by a constitutive equation of the form* 

o o 0 

T'~ = ~(T,F~-I), (A.1) 

o 0 

where F ~- 1 _ Vf~- 1, and where the response function ~ is once-differentiable with 

respect to both T and ~ ~1. Then 

o 

lim TP~(~) = 0. (A.2) 
e- - -~0  

Proof. Each region ~ is a residually stressed body by definition, and therefore 
o 

T'~ satisfies equations (2.4) and (2.5): 

o 

div T~ = 0, 
o o 

T~ = (T~) T, (A.3) 

o 

T~n' = O, 

where n' is the outward unit normal to 0g~. By Signorini's mean stress theorem 
o o 

[31], the volume average of T~, denoted by T~c/(g~), is given by 

~ ( ~ , ) _  1 fTz 1?~,(q)dV 

_ 1 [L ( q - q ) ®  ('i':n')dA- l'rz ( q - ~ ) ®  (div "i'•)dV] 

* This assumption is motivated by constitutive equations previously derived for residuaUy stressed 
and initially stressed bodies [ 11,13-17], under assumptions more specific than those made here. Note 

o o 

that since the surface tractions Tn on O"Po, are non-zero, 7~o, is an initially stressed body. Indeed, it 
O t 

is reasonable to assume that the residual stress T ,  at a point in R ,  depends in a smooth way on the 

initial stress T at the corresponding point in "/to,. and on the deformation at that point. 
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o 

where V(T¢~) is the volume of 7¢~ for a given e. From (A.3), T~(Td,) = 0 for all 
e < g, and in rectangular Cartesian coordinates, the components of the mean stress 

O 

(or equivalently, the mean values of the components of T~) are given by 

o o 1 fT~ o [TtM(n~)]ij ' = { [T~(q) l i j }M-  V(T~)  , [T'~(q)]ij dV = 0 (A.4) 

for all ij. By the mean value theorem there exists at least one point q0 in 7¢~ such 
that 

o o 

T' T' [ ~(qo)]iJ = {[ ~(q)]ij}M = 0. (A.5) 

O O 

Based on the physical arguments discussed above (i.e., T, f~-l, and the properties 
of the natural material are all smooth functions of position in P0,), it is well 

o 

motivated to assume that T~(q) is a smooth function of position in 7"¢~. Therefore, 
o 

T I [ ~(q)]ij is bounded in each T¢~: 

o 

T' I[ e(q)]ijl < M, M E Real, 

O 

T'  for all ij. In addition, since the Cartesian components [ ~(q)]ij must have both 
positive and negative values in 7"¢~ in order that (A.4) hold for each e, we know 
that 

O 

max [T~(q)]ij/> 0 

and (A.6) 

O 

T' min[ ~(q)]ij ~< 0. 

0 O 

We establish with the following arguments that max [T ~ (q) ]q and min [T ~ ( q)]ij 
approach the same value as e approaches zero. From (A.1), 

o o o 1 o o 
~TqT' e - Do~(T ,F[  )[(VpT) F~] + 

T 

o 0 0 0 

+ D~1~(T, F [ 1 )[(VpF~l )F~], (A.7) 

o o 0 o 

where D°~(T'F~'I)T and D~I~(T ,F~I  ) are derivatives of the tensor-valued 
o o 

function ~ with respect to T and F~ -1, respectively. These derivatives exist by 
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o o 

r r 

Fig. 11. Physical components of the residual stress as a function of radius in a hollow elastic 
cylinder that is composed of two press-fit hollow elastic cylinders (adapted from Fig. 3.6.1 of 
[321). 

assumption (see Footnote p. 35), and therefore are bounded. As e approaches zero, 
o 

both T and the properties of the natural material in P0, become increasingly uni- 
o 

form functions of position in P0~ (see Section 3.2). Hence, the deformations fe 
O o 

and f [1 become increasingly homogeneous as e approaches zero. Therefore, Fe 
o 

approaches a constant as e approaches zero, and l i m ~ 0  VF [1 = 0. From these 
arguments and equation (A.7) it is clear that 

o 

IVqT'e(q)l < G, G C Real, 

and therefore that 
O 

m a x  IVq[T'e(q)] j[ G, (m.8) 

for all e < ~, and for all ij. Hence, if de is the diameter of a sphere that encloses 
~ for a given e, 

o O 

(max[T'~(q)]ij- min [T'~(q)]ij) ~< deG (A.9) 

for each e. Then, since lime~0 V(T~e) = 0, and since the dimensions of -Re 
O 

must remain finite, lime-~0 de = 0, and from (A.9), l ime_0(max[T ~(q)]i j-  
o o O 

T ~ min[ e(q)]iJ) = 0 as well. That is, max [Te(q)]ij and min[T~(q)]ij approach the 
same value as e approaches zero, and that value is zero by (A.5). Finally, since Re 

O 
! - -  

reduces to a point at ~ as e approaches zero, l in~ .o  [Te(q)]i j = 0 for all ij, and 
o 

therefore lime--.oT~(~) = 0. 

Discussion 
0 

Recall that our initial assumptions were that T and the properties of the natural 
material are smooth functions of position throughout/30, and therefore in any part 
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790, of/30 as well. In some residually stressed bodies, however, these assumptions 
hold only in subregions of the body. We explore this situation with the following 
qualitative example. 

Consider the residually stressed body composed of two concentric, thick-walled 
hollow cylinders that are both composed of the same elastic natural material. 
Suppose that the outer cylinder is press-fit around the inner cylinder to produce 
the residual stress, and that the cylinders are fused together at the interface to form 
a continuous body. The tangential residual stress is discontinuous at the interface, 
as shown in Fig. 11 [32, pp. 97-98]. Consider the neighborhood 790, of a point 
located on the interface between the two cylinders (Fig. 11). If 790, were removed 
and unloaded, the resulting region Re (Fig. 3) would contain a surface through 

o o 

the point ~ -- f~-l(ff) across which the stress T~, is discontinuous. This is true for 
all neighborhoods 790, of this point ff as e approaches zero. Hence, equation (A.2) 
does not hold for this part 790,, and the constitutive equation for the point ff in the 
residually stressed body cannot be derived as in Section 3. However, the interface 
can be approached from both sides with infinitesimal neighborhoods 790, to derive 
the constitutive equation for points within each subregion. 

In this example, the properties of the natural material are smooth throughout the 
residually stressed body, but the residual stress is not. The results are very similar 
for the case where the constituent cylinders are composed of different natural 
materials. 
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