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1. Introduction 

In the absence of  incompatibilities (non-elastic strains as, e.g., caused by 
thermal stresses, plastic deformation, electrical and magnetic processes), the 
strain equations of  compatibility for a continuous elastic body take the form 

V x E x V = 0 (I) 

(strain tensor E symmetric), and in the absence of body-forces the stress 
equations of equilibrium are 

v - s  = o ( i i )  

(stress tensor S symmetric). It is well known that both pairs of equations can 
be satisfied a priori, namely (I) by deriving the strain E from the displace- 
ment vector u according to 

E = (Vu + uV)/2, (I*) 

and (II) by deriving the stress S from a symmetric stress function tensor A 
according to 

S = V x A x V. (II*) 

The second representation (II*) dates back to Beltrami (1892), the first (I*) 
comes from Cesaro (1906). 

It was also Cesaro who showed that, for simply-connected bodies, the 
eqs. (I) are necessary and sufficient conditions for the existence of  a single- 
valued displacement field u. For multiply-connected bodies, however, this is 
no longer true: here discontinuities of  the displacement may occur, caused 
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by dislocations and disclinations respectively, "hidden" in the elastic con- 
tinuum (Volterra's "distorsioni" (1907); cp. Zastrow (1985)), 

Similarly, every solution of (II) admits the representation (II*), if and only 
if the elastic body under consideration is simply-bordered (Rieder (1960)). In 
the general case of a multiply-bordered continuum, (II*) can at most 
represent totally self-equilibrated stress fields (Gurtin (1963)), i.e., stress 
fields not only obeying (II), but also with the resultant force and moment 
vanishing on every closed surface contained in the body. 

Thus in both approaches, the topology of the region Q covered by the 
elastic body plays an important role. This truism was already stressed, even 
if in a more general context, by Maxwell (1873, art. 18-22) in whose 
terminology multiply-connected regions (in modern topology characterized 
by thefirst Betti number bl ) and multiply-bordered regions (denoted by the 
second Betti number b2) were called "cyclic" and "periphractic" respectively. 

The present paper makes use of the well-known duality between the 
displacement and the stress function method. But we will already note here 
that the formal analogy applies only up to a certain point. This is due to a 
basic difference (apart from the different tensor rank and level of  inte- 
gration) between the two approaches: whereas the displacement field u, 
defined by (I*), is determined by three start functions, the stress function 
approach (II*) works with six independent components. Since stress func- 
tion tensors of the form A =. Vv + vV yield no stresses ("zero-stress fun- 
ction tensors"), one may impose certain gauges on A and thus adapt its form 
to the problem at hand. Gauges in Cartesian coordinates were 
already established by Maxwell (1870) and Morera (1892) (and later by 
Blokh (1964)), coordinate-invariant gauges by Schaefer (1953), Kroener & 
Marguerre (1954, 1955) and Blokh (1964) (for an extensive bibliography see 
Truesdell (1959), Gurtin (1972)). 

The advantage common to the cited invariant formulations is the fact that 
the stress function tensor .4 becomes biharmonic (AAA = 0). The corre- 
sponding displacement fields u(.4) are closely connected with the displace- 
ment functions of Galerkin (1930) and Papkovich (1932) (dating back, 
essentially, to Boussinesq (1885); for details see Stippes (1966, 1967) and 
Gurtin (1972)). The completeness of the latter has been shown, e.g., by 
Gurtin (1962), Pecknold (1971) and Gurtin (1972), usually by means of the 
Stokes-Helmholtz decomposition u = clgrad~b ÷ c2curlv. Completeness 
proofs for the stress function method (II*) were given for simply-bordered 
regions by Guenther (1954) and Truesdell (1959). For multiply-bordered 
regions, completeness proofs were put forward by R~ieder (1960) and Gurtin 
(1963), based, as mentioned above, on the concept of  totally self-equilibrated 
stress fields (cp. also Carlson (1967)). 
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The present paper aims at completing the afore-mentioned works in two 
respects: (a) Our results enable us to make not only a qualitative analysis, 
but also a quantitative statement (in terms of  an equation) about the relation 
between the topology of  the elastic body under consideration and the 
number of  those strain and stress fields which are not  representable as 
derivatives of  displacements and stress functions. (b) Algebraic topology, 
i.e., applying algebraic methods to study certain questions about topological 
spaces and mappings, has become a standard branch of  modern mathemat- 
ics (see, e.g., Goldberg (1962), Spivak (1974)). For the purpose of  this paper, 
de Rham's cohomology  turns out to be the most appropriate mathematical 
tool. Besides its distinct definition of  the Betti numbers, it offers the advan- 
tage of being applicable to arbitrary open regions of  the R3; therefore our 
results are generally valid, without any restrictions on the regularity of the 
boundary or on the boundedness of  the elastic body. 

2. Mathematical preliminaries: some remarks on tensor analysis and 
algebraic topology 

We follow Gurtin's (1972) scheme of notation and use lightface letters for 
scalars (~b, 2). Boldface letters stand for pth-order tensors, namely minus- 
cules for vectors (v, w) and majuscules for second-order tensors (V, W). 
Both the symbolic notation and the indicial notation are used: we write vi 
and V~ resp. (p subscripts) for the components of v and V resp. in the 
underlying Cartesian coordinate frame r~, r2, r3. I is the second-order 
identity tensor, corresponding to Kronecker's delta 6~ in indicial notation, 
and 8 is the Levi-Civita-tensor, in indicial notation euk. Summation and 
differentiation conventions are employed as usual: summation over repeated 
subscripts is implied, and subscripts preceded by a comma denote partial 
differentiation with respect to the corresponding Cartesian coordinate 
(Vj, i = OiVj). All subscripts range over the integers 1, 2, 3. 

We write V r for the transpose of  the second-order tensor V, sym{ V} and 
skw{ V} denote the symmetric and the skew part of  Vresp., and tr{ V} is the 
trace of  V. Analogously to the vector differential operators divv, curly a n d  
grad~b, the corresponding tensor differential operators are defined by 

D i v V =  V .  V = V r . v  = h _~ hj = Vej,,, (2.1) 

Curl V = V x V = - (V r x V) r = W ~ ~ i  = girs ~ssj, r ,  (2.2) 

Gradv = Vv = (vV) r = G ~ Gij = vj, i. (2.3) 
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Following Kroener ' s  nota t ion  (1954, 1960) (and differing f rom Gurt in ' s  
(1972)), we write for  the latter Div, Curl  and G rad  in order  to indicate that  
they range one tensor-order  higher than the operators  div, curl and grad. We 
will also adopt  Kroener ' s  abbreviat ion Defy  (in Gurt in ' s  nota t ion ~7v) for  
the symmetric par t  of  Gradv ,  

Defy  = s y m { G r a d v }  = (Vv + vV)/2  = U ~ (vj, i + vu)/2 = U u 

(2.4) 

(read: "de fo rma to r  of  v") ,  and Kroener ' s  opera tor  Inc V (read: " incompat i -  
bility o f  V"), 

IncV = V x V × V = W ~ W,j = - - ~ i r s ~ j t u V s u , r t  . 

The definitions (2.1)-(2.3) yield the well-known identities 

(2.5) 

and for the opera tor  Inc the following two identities hold: 

Inc Defy  = 0, (2.8) 

D i v I n c V  = 0. (2.9) 

F o r  our  later considerations, we will summarize some basic definitions o f  
algebraic topology (in part icular  de Rham cohomology;  for  details, we refer 
to the standard works of  Goldberg (1960), Spivak (1974)). O f  special import- 
ance for the following are the concept  o f  the quotient space and the definition 
of  the first and second Betti  numbers. 

Let ~ ,  ~ denote  two vector spaces, and • a linear mapping • : ~ ~ ~ .  
The image of  • (Im{O}) is the set o f  all vectors w e ~ which can be 
represented as w = ~(v)  for  some v e 3e-. The kernel of  • (Ker{O}) is 
defined as the set of  all v e 3e- with O(v) = 0. Obviously,  • is onto,  if and 
only if Im{O} = ~ ,  and • is one to one, if and only if Ker{O} = {0}. - As 
an example, let us consider a system of  linear equat ions v ~ w = L • v; 
then Im{O} is the set o f  all vectors w e ~ for which the inhomogeneous  
system w = L • v admits a solution, and Ker{~} is the set o f  all vectors v 
with L • v = 0, i.e., the homogeneous  solutions of  the system. - Now,  the 
identities (2.8), (2.9) (and analogously (2.6)-(2.7*)) can be written in the form 

Im {Def} = Ker  {Inc}, (2.10) 

Im {Inc} = Ker  {Div}. (2.11) 

curl grad~b = 0, Curl G r a d v  = 0; (2.6), (2.6*) 

div curly = 0, Div Curl V = 0; (2.7), (2.7*) 
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For  two vector spaces ~//", f ~ with ~/U c ~ ,  we call two vectors vl ,  
v2 ~ ~ t~ equivalent, if(v1 - v2) e "/V. By [v] we denote the class of  all vectors 
in ~ which are equivalent to v. Obviously,  the set o f  all classes [v] forms 
again a vector space, the quotient space of  V with respect to #~, denoted by 
~/r/~Cr. Practically speaking, the construction of  a quotient  space serves the 
purpose of  excluding all inessential properties of  the objects under con- 
sideration. E.g., we will discuss the quotient  space Ker{Inc}/Im{Def},  since 
we are interested in those strain tensor fields E which, while fulfilling the 
compatibil i ty equat ion IncE = 0, are not representable as E = Defu. - 
With the concept  o f  the quotient  space, the linear mapping (I): ~e ~ ~ ~¢r 
gives rise to a subsequent  linear mapping 

{}: ~ / K e r { O }  ---} W ,  (2.12) 

defined by ~([v]): = ~(v).  It is easily proved that then Ker{~} = {0}, i.e., 
is one to one. 
Let co now be a differential form of  degree k on a manifold ft. By dkco we 

denote the outer  derivative of  co; dkco is a differential form of  degree k + 1. 
Poincare 's  lemma for differential forms then states that dk+ldkco = 0 for 
any co and k (Spivak (1974), Goldberg  (1962)). In the language of  linear 
mapping,  this identity takes the form 

I m { 4  ) c Ker{4+l  ). (2.13) 

The k-th de Rham cohomology vector space of  f~ is defined as the quotient  
space* 

A~ k(fl) = Ker{dk+, }/Im{dk}. (2.14) 

The dimension of  o~k(f}) is called the k-th Betti number bk(~) and is a 
topological  invariant o f  f~ (see Goldberg  (1962)). For  an open region f~ of  
R 3, we have the special cases 

~91 (~"~) = Ker{curl}/Im{grad}, (2.15) 

Ac~2(n) = Ker{div}/Im{curl}; (2.16) 

only these two cases will be of  interest in the following. 

* One might suspect that  Jf~(f]) depends on the smoothness assumptions made for the 
differential forms under consideration. But this is not the case (see Goldberg (1962)); therefore 
minimal differentiability properties, i.e., the existence of all occurring differentials, are suf- 
ficient in the present context. 
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3. On the integrability of the strain tensor 

The following considerations are divided into three groups: we first consider 
the relation between displacement u and strain E for simply-connected 
regions f~ and the integral of  Cesaro; the structure of  its kernel then leads 
us to a linear mapping which carries E to two tensor fields E x V and 
E + (E x V) × r the discussion of  which forms the main part. This finally 
reveals the relation between the compatibility and integrability of  the strain 
tensor field E and the topology of  f~. 

3.1. Integrable and non-integrable strain tensor fields 

An elastic body is an open region f~ e R 3 (not necessarily bounded). Given 
a displacement vector field u on fL the corresponding (linear) strain tensor 
field E = E r is defined as 

E = Defu. (3.1) 

F rom (2.8) it follows that  the homogeneous equations of  compatibility 

IncE = 0 (3.2) 

are then identically fulfilled. It was Cesaro (1906) who proved that, for 
simply-connected regions fL the converse is also true: given a symmetric 
tensor field E with IncE = 0, there is a vector field u with E = Defu, i.e., 
E is integrable (for a modern p roof  see Tran-Cong (1985)). 

For  a multiply-connected region f~, however, there will generally exist 
fields Ewi th  IncE = 0, which are not representable in such a way, i.e., which 
are non-integrable. In order to determine the variety of  these non-integrable 
strain fields, it is first necessary to define under what relation two non- 
integrable strain fields El, E2 are said to be " o f  the same type". We will call 
them equivalent, if a vector field u exists from which their difference can be 
derived according to (EL -- E2) = Defu; in other words: we will consider 
two non-integrable strain fields El, E 2 as "essentially identical", if we can 
obtain E2 by adding an integrable strain field to EL. With g(f~) denoting the 
space of  all strain fields under this equivalence relation, it then holds that 
(cp. (2.10)) 

g(f~) = Ker{Inc}/Im{Def).  (3.3) 

We have thus reduced the investigation of  all possible non-integrable strain 
fields E to the determination of  the quotient space (3.3) and its dimension. 
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According to Cesaro's theorem, for any strain tensor field E = Defu on f~, 
the corresponding displacement vector field u can be represented (up to a 
rigid body displacement) in the form 

. ( r )  = ~ ~ -  {E(~) + (e(~) x ¢ )  x (~ - '9} 

where ~ is a fixed reference point. It follows directly that the vanishing of  this 
integral for any closed path ~ in f~ is a necessary condition for the integra- 
bility of  E. Therefore, a non-integrable strain field E will generally yield a 
non-vanishing Burgers vector 

b(r) = ~ (~u/~s) ds 

for closed paths cg in fL The integral b(r) can be decomposed into 

b(r) 

with 

$ =  

and 

d = 

= /~ + d × ( r -  8) (3.4) 

+ ~e d~" {(E(~) + E(~) x fT) x (P -- 8)} 

- ~.  d ~ .  {~(~)  × ¢). 

/~ is called the dislocation, d the diselination of E around the path c~ (for a 
closer discussion see Zastrow (1985)). 

The kernels of  the two integrals d and /~ respectively are given by the 
tensor fields 

~ ( r )  = E(r) x V, BE(r) = E(r) + (E(r) × V) × r. (3.5) 

From the assumption (3.2) IncE = 0, we obtain 

CurlD e = 0, CurlB E = 0 

(for (3.6b), 

(3.6a), (3.6b) 

use eq. (A1) of  the Appendix and tr{E x V} = 0 because 
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E = Er). This enables us to define a linear mapping 

q~: Ker{Inc} --, ~1(~)3 x ~1(~'~)3, (3.7) 

E ~ ([De], [Be]) (3.7*) 

(the symbol "x"  means the Cartesian product  of  two vector spaces, and a 
tensor field is conceived as a collection o f  three vector fields). By discussing 
the properties of  this mapping, the next section will prove that  dim{8(f~)} = 
661 (f~). 

3.3. Compatibility and integrability o f  E 

We will first prove that  the tensors D E and B e respectively are gradient 
tensors if  E is representable as E = Defu and vice versa, i.e., that  for the 
mapping • (3.7), we obtain the relation 

LEMMA I: 

Ker{O} = Im{Def}.  (3.8) 

Proof." With E = Defu the definition (3.5) gives 

D e = (Vu + uV) x V / 2  = (Vu) x V / 2  

= Grad(u x V/2), (3.9a) 

B E = (Vu + uV)/2 + ((Vu + uV) x V) x r/2 

= Grad(u - (Vu - uV)" r/2) (3.9b) 

(for (3.9a), use the identity (2.6"), and for (3.9b) see eq. (A2) of  the Appen- 
dix); hence (according to (2.15)) 

[D e ] = 0, [B E ] = 0. (3.9a*), (3.9b*) 

Now let us assume, on the contrary,  

De = Gradv,  B E = Gradw. (3.10) 
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The corresponding tensor E is, according to (3.5), 

E = B E -  D e x r  = V w -  (Vv) x r  

= V ( w -  v x r )  - v x l ,  

and thus, because E = E r and v x I is skew symmetric,  

E = sym{V(w - v x r)} 

= Def(w - v x r). (3.11) 

This enables us, according to (2.12), to define a subsequent mapping ~ o f  
the quot ient  space Ker{Inc}/Im{Def},  

(~: ~(~'~) ~ ~ l (~r ) )3  X o'~l(~')) 3 , (3.12) 

[E] ~ ([De], [BE]). (3.12") 

is one to one. The  following lemma II will complete our  proof.  

LEMMA II: ~ is also onto. 

Proof'. Given two tensor fields D, B with CurlD = CurlB = 0 (cp. (2.15)), 
we define 

E = s y m { B -  D x r } ,  (3.13) 

according to (3.11). It  then holds that  

D e = E x V  = D + Gradv ,  (3.14a) 

B e = E +  ( E x V )  x r  = B +  Gradw (3.14b) 

(for the p r o o f  and the expressions v, w see section A3 o f  the Appendix);  
hence 

[D e ] = [D], [B e ] = [B]. (3.14a*), (3.14b*) 

It  has finally to be shown that  the strain tensor  E according to (3.13) is 
compatible:  indeed (3.14a) yields Cur lD e = Curl(D + Gradv)  = 0 and 
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thus Curl(E x V) = IncE = 0. Therefore (3.12) changes into 

~([E]) = ~(E)  = ([De], [BE]) 

= ([O], [B]). (3.15) 

as required. We can now summarize our results and establish 

THEOREM I: The vector space 8 (0 )  is isomorphic to ~ 1  (0)3 x ~ (0) 3, i.e. its 
dimension is 

dim{¢(O)} = 6bl (0). (3.16) 

4. On the integrability of the .stress tensor 

As this chapter is structured in a similar way to the previous one, we will 
denote corresponding equations with corresponding equation numbers 
(e.g., eq. (4.3) is formally analogous to eq. (3.3)). 

4.1. lntegrable and non-integrable stress tensor fields 

We call a stress tensor field S (on the open region O e R 3) integrable, if it 
can be derived from a second-order tensor A = A r according to 

S = IncA. (4.1) 

A is called the stress function tensor (Beltrami (1892); cp Truesdell (1959)). 
According to (2.9) the homogeneous equations of  equilibrium 

DivS = 0 (4.2) 

are identically fulfilled. For simply-bordered regions O, the stress tensor S 
(with DivS = 0) is always integrable (cp. Trans-Cong (1985)). For multiply- 
bordered regions 0,  however, this is no longer true (Rieder (1960), cp. 
Gurtin (1963)). In order to get a survey of  all possible non-integrable states 
of  stress on 0,  we will, as in the analogous geometrical case (cp. (3.3)), 
investigate the vector space (cp. (2.11)) 

5°(0) = Ker{Div}/Im{Inc}. (4.3) 
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It will be shown that its dimension equals the sixfold of  the second Betti 
number b 2 (~). 

4.2. The integral o f  Peret t i -Guenther 

Given the stress field S, the resulting force f acting on a surface 6 a in ~ is 

f = + 

(n is the outward normal to Sf, and da the element of  area); and the resulting 
moment th is calculated from S according to 

= - f~. h df i*  {S(~)  x (F - ~)} 

where ~ is a fixed reference point (Peretti (1949), Guenther (1954)). The 
integral rh can be decomposed into 

th = m(r) - f x (r - ~) (4.4) 

where 

re(r)  = - f ¢ h d ~ - { S ( ~ ) x ( ~ -  r)} .  

The analogy of  (4.4) and (3.4) is obvious: the resulting moment vector lh 
corresponds to the dislocation vector/~, and the resulting force vector f to 
the disclination vector d. 

It was Rieder (1960; cp. Gurtin (1963), (1972)) who observed that a 
necessary condition for the integrability of  S is the vanishing of re(r) for any 
closed surface 5e in ~ (in Gurtin's notation (1963), S is then a totally 
self-equilibrated stress field). Therefore, a non-integrable stress field S will in 
general yield a non-vanishing moment vector m(r)~ ~ 

Now the integrals (4.4) vanish identically, if the stress S = Inca itself 
becomes zero; for a simply-connected region, this means that the stress 
function tensor A is representable as A = Defy: 

S = Inca = I n c D e f v  = 0. 

By applying Stokes' theorem, the surface integral re(r) can be transformed 
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into the contour  integral 

re(v) = - ~ d~.  {A(~  + (a(,-) × ~ )  × (~ × ,.)} 

= -- ~ (Ov/Os) ds, 

where the "generat ing" vector v(v) is obtained from A according to 

~(v) = ff d~. {A(~) + (A(~) × ~ )  x (~ - v)}. 

This is, of  course, again Cesaro's integral (the "zero-stress function tensor" 
with S = Inca  = Inc Defy  = 0 corresponds to the compatibility con- 
dition IncE = Inc Defu = 0), and the analogy to Section 3.2 is complete. 

Now we proceed in the same way as in the geometrical case and consider 
the kernels of  the two integrals ~h and f respect ively  from (4.4): 

FS(v) = S(v), MS(v )  = S(v) x v. (4.5) 

Since we assumed equilibrium ((4.2): DivS = 0), the tensor fields F s and M s 

possess the property 

DivF s = 0, D ivM s = 0 (4.6a), (4.6b) 

(of course, F s was only introduced to lay stress on the analogy to the 
geometrical case; for (4.6b), see eq. (A4) o f  the Appendix). We define the 
linear mapping 

~ :  Ker{Div} ~ 3~2(f~) 3 x ~¢~2(f~)3, (4.7) 

S ~ ([FS], [MS]) (4.7*) 

and will prove in the following that  dim{SP(f~)} = 662(f~). 

4.3. Equil ibrium and  integrability o f  S 

The tensors F s = S and M s = S x r are solenoidal, if  and only if  S is 
representable as S = Inca:  
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(4.8) 

Proof'. From S = IncA we obtain 

F s = S = V x A x V  = C u r l ( A x V ) ,  

M s = ( V x A x V )  x r  = Curl(A + (A xV)  x r )  

(4.9a) 

(4.9b) 

(for (4.9b), use eq. (A1) of  the Appendix and tr {A x V} -- 0 because 
A = A t ) .  Hence 

[F s] = O, [ M  s ] = 0. (4.9a*), (4.9b*) 

I f  we assume, on the other hand 

F s = S = CurlV, M s = CurlW, (4.10) 

the corresponding stress tensor field S is 

S = V x ( W -  V x r )  x V -  t r { V } I x V  

(see eq. (A5) o f  the Appendix); since S = S r and tr { V } I  x V is skew 
symmetric, it follows 

S = Inc(sym{W - Vx r}). (4.11) 

Therefore the mapping • of  the quotient space Ker{Div}/Im{Inc} 

9: se( )  e2(f )3 x  e2(f )3, 

IS] ([rs], [MS]) 

can be defined, and • is one to one. 

(4.12) 

(4.12*) 

+ L e m m a  III is equiva lent  to Gur t i n ' s  result  (1963): a t heo rem on  solenoidal  fields (see 
Go ldbe rg  (1962), G u r t i n  0972) )  s ta tes  tha t  for a vector  field v on t), d ivv  = 0 implies 
v = curlw, if  and  only  if  ~ n da  • v = 0 for every closed surface 6~ in ~ .  Ana logous ly ,  
S a Ker{W}, if and  only if~ n d a "  S = 0 and  ~ n d a -  (S x r) = 0 for  every closed surface 
in f~, i.e., if  the  s tress  t ensor  field S is totally self-equilibrated (cp. Section 4.2). 
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LEMMA IV: T is also onto. 

Given two tensor fields F, M with DivF  = D i v M  = 0 (cp.(2.16)), it can 
indeed be shown that  there always exists a stress field S with [F s] = IF], 
[ M  s] = [M]. But at this point,  the formal  analogy between the geometrical  
and the statical case breaks down, and we have to use a different approach:  

(a) In order  to obtain the equivalence [S] = [F], let us first consider a 
tensor field S ~ = F + V x G with G = R r.  The symmetry o f  S a is secured, 
i f R  is chosen in such a way (see Section A6 o f  the Appendix)  that  tr{R} = 0 
and V" R = - ~ ' -  skw{F}. 

(b) But when thus defined, the stress tensor S a can generally not  yield 
the desired second equivalence [ M  s] = [S ~ x r] = [M]. Therefore  S a has 
to be completed by a solenoidal field S b = V x U, and hence 
M s = S ~ x r + (V x U)  x r. Compar i son  with eq. (A1) o f  the Appendix 
prompts the choice of  U = (S a x r - M )  r. Indeed S b = V x U can, like S ~, 

always be symmetrized by a suitable choice o f  (S" x r - M ) ,  (note that M 
is only determined up to an arbi t rary  solenoidal field), and we now obtain 
M s = M + V x W, hence the desired result [ M  s] = [M]. Let  us therefore 

define 

S = S ° + S  b 

with 

S ~ = F +  V x R  r, 

and 

S b = - V  x ' ( M  - S a x r) r. (4.13) 

First, we have to show: 

COROLLARY: e and M can a lways  be chosen in such a way  that  S a and S b are 

s ymme t r i c .  

According to (4.13) the skew parts of  S ° and S b respectively are 

skw{S o} = + s k w { V  × R + skw{ }, 

skw{S b} = - - s k w { W x ( M -  S ~ x r ) r } .  
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As shown in Section A6 of  the Appendix, S ~ and S b become symmetric, if 

tr{R} = 0, V ' R  = - 5 " ' s k w { F } ;  

t r { M -  S~xr}  = 0, V . ( M -  S~xr )  = 0. 

In contrast to the other three conditions, the last one is identically fulfilled: 
V.  M = 0 and V • (S a x r) = 0 (according to eq. (A4) of the Appendix). 
The first three can alway's, without loss of generality, be satisfied (see A6). 

P r o o f  o f  L e m m a  IV:  It now holds that 

(a) F s = S ° + S b = F +  V x { R  r -  ( M -  SOxr)  r} 

= F + V x V ,  

and hence 

[F s] = 

(b) M s 

[F]. 

= S x r  = S a x r  - ( V x ( M -  Saxr)r)xr 

can be transformed according to eq. (A1) of the Appendix i n t o  

M s = S ~ x r  - V x ( ( M - S a x r ) r x r )  

- t r { M -  S a x r } l +  ( M -  S ~xr) ;  

if we choose tr{M - S a x r} = 0 (as above), we obtain 

M s = M -  V x ( ( M -  S ~ x r )  r x r )  

= M + V x W ,  

hence 

[ M  s] = [M]. 

With (4.14a*) and (4.14b*), the mapping (4.12) changes into 

~([S]) = W(S) = ([FS], [MS]) 

= ([F], [M]); 

and we can summarize our results in 

(4.14a) 

(4.14a*) 

(4.14b) 

(4.14b*) 

(4.15) 
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TREOREM II: The vector space 5e(f~) is isomorphic to jcgz(f~)3 x ~2(f~)3, i.e. 

its dimension is 

dim {Se(O)} = 6b2(f~). (4.16) 

5. Conclusions and examples 

Theorems I and II respectively can be interpreted in the following way: 
I. For  any elastic body fL there exist 6bl (f~) non-integrable strain fields 

E~, E2, • • . ,  E6b, on f~ such that  any strain field E with IncE = 0 can be 
represented in the form 

E = Defu + ~ e ; E ; .  (2 = 1 ,2  . . . .  , 6b l )  
2 

where the coefficients e~. are unique, and u is unique up to a rigid body 
displacement. 

II. Analogously, for any elastic body ~,  there exist 6b 2 (~) non-integrable 

stress fields $1, $2, • • • , $662 on f~ such that  any stress field S with DivS = 0 
can be represented in the form 

S = IncA + ~s ;S ; .  (2 = 1 , 2 , . . . , 6 b 2 )  
2 

where the coefficients s;. are unique, and A is unique up to an arbitrary 
"zero-stress function tensor".  

The geometrical meaning of  the Betti numbers bl(f~) and b2(f~) can be 
illustrated as follows: the second Betti number  b 2 (~'2) characterizes multiply- 
bordered regions f~ ("periphractic" in Maxwell 's terminology (1873)) and 
denotes the number  of  connected surfaces 5 e of  fL diminished by one.* For  
a s imply-bordered  body, we have bR(f2) = 0, i.e., there are zero non- 
integrable stress fields S; for a ball with 1, 2 . . . .  holes, there are in in 
general 6, 12, . . . independent non-integrable stress fields. 

The first Betti number  bl (f~) describes the connectedness of  the region f~ 
("cyclic" in Maxwell 's terminology (1873)) and denotes the number  of  
topologically independent closed loops cg in f~ which are not  shrinkable to 
a single point. For  a s imply-connec ted  body f~ (bt = 0), there are no 
non-integrable strain fields E, and one obtains Cesaro's theorem. 

* In particular cases, considerable mathematical difficulties may arise in counting the number  
b2 (f~) of connected surfaces 5 ~ (e.g., if some surfaces are degenerate), or in deciding (for bl (f2)) 
whether two closed loops are "topologically independent" or not (cp. the loops cg 5, % of 
Fig. 3). Such problems are avoided by using the distinct definitions of de Rham cohomology. 
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Fig. 1. Hol low torus  (b~ = 2) with  the two independent  closed loops cg~ and  ~2. 

Fig. 2. Hol low torus  (bj = 2) with  the two cut  surfaces ~'~ and  ~¢2- 

For a full torus (b] = 1), there is one such closed loop (oK]: cp. Fig. 1 
and 2), for a hollow torus (b] = 2) two, as shown in Fig. 1. 

The corresponding 6 • 2 = 12 non-integrable strain fields are generated 
by (1) cutting the torus open along a surface (e.g., d~ or d2) perpendicular 
to the loop (¢gl or cg2), (2) by translating ("dislocation") or/and rotating 
("disclination") the two lips of each cut relative to each other, and (3) by 
cementing the two lips together again (Volterra's "distorsioni" (1907); 
cp. Zastrow (1985)) (see Fig. 2). 

Whereas the strain field E in the deformed torus is still single-valued, 
continuous and compatible (IncE = 0), the displacement vector u will now 
show a discontinuity across the surface with every closed circuit. 

An example for a region f~ with b~ (f~) = 4 is the connected sum of two 
hollow tori. Figure 3 shows the 4 independent closed loops ~ - ¢g4. 

Here we have 6 . 4  = 24 independent non-integrable strain fields, 
generated by the operations (1)-(3) described above. The two loops c~ 5, ~6 
drawn in Fig. 3 are examples of  topologically non-independent closed loops: 
~5 is topologically equivalent to the sum of Cg~ and ~3, and cg 6 is topologically 
equivalent to a loop which is shrinkable to a point. 
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Fig. 3. Connected sum of  two hol low tori  (b~ = 4) with the 4 independent c|osed loops 

%-~4. 

Appendix 

For the calculation of the corresponding formulae of Sections 3 and 4, we 
will mainly use indicial notation. The following transformations are based 
on the identity 

F.jklF.jm n : (~km~ln - -  (~kn(~lm 

and on the expansion 

(Vqrh)., = V/j.,r h + V/qSh, 

for the product of  an arbitrary second-order tensor V~j and the position 
vector rh. 

A1. By means of these two formulae, it can easily be shown that 

Whk = e, hijF.kmn(Vjmrn),,  

= ~ h ( j ~ k m n V ] m , i -  ((~hk~im - -  (~hm(~jk)V.im 

: ehij•kmn Vjm,i - -  5hk Vjj -Jr- Vkh , (A1) 

or in symbolic notation respectively 

W = V x ( V x r )  = ( V x  V) x r -  t r { V } l +  V r. (AI*) 
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A2. P r o o f  o f  eq. (3.9b): ((Defu) x V) x r = (V(Vu - u V ) )  • r/2: 

Hij = ejktekm,(Um,i + ui . , , ) , ,r t /2 

= ((ut, i + ui,t)j -- (uj, i + u i j ) , t ) r t /2  

= (u t j  - -  uj,t),,rt/2 (A2) 

(the t ensor  W = (Vu - uV)/2 = skw{Gradu}  is the r o t a t i o n  tensor  (see, 

e.g., G u r t i n  (1972)). 

A3. P r o o f  o f  eq. (3.14a): D e = ( s y m { B  - D x r}) x V = D + Vv: 

2 D ~  = 8jkt(B,k + B k i -  (SkmnDim q- eim, Dk, , )r , ) , t ;  

with  e~rsB,j,r = 0 a nd  hence  B,j,r = Brj~ (and  co r r e spond ing ly  for  D,j), it 

fol lows tha t  

2 D ~  = 8 j k l B i k . l -  (Dis , sT j  - -  D~y.sr, - -  2D~j) --  (6oD, ,  - -  Dij)  

= ejk, B , k . ~ -  (Ds,.~rj - -  D,j.ir, - -  2D;:) --  (6ijD,,  - Dij)  

~-  8jklBlk.i-{- (Dur  , - -  D,,r:),~ + 2Dry 

= 2vj.i + 2Dtj. (A3) 

W i t h  this result,  a similar  subsequen t  ca lcu la t ion  yields eq. (3.14b): 

B ~ = E + D e x r  . . . . .  B + V(v x r ) .  

A4. P r o o f  o f  eq. (4.6b): V • M s = V -  (S  x r) = 0: 

M S ,  i = g, j k l ( S i k r t ) , i  

= 8jkISt'k.irl + ejklStk = 0 (A4) 

because  o f  Sik.~ = 0 and  the s y m m e t r y  Stk = Skt. 

A5. P r o o f  o f e q .  (4.11): S = Inc(sym{ W - V x r}): 
W i t h  S = V x V = - V r x V, it fo l lows tha t  

M s = V x W  = S x r  = ( V x V )  x r  

= V x ( V x r ) -  V r +  tr{V}1 
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(see eq. (A1)); hence 

S - V r x V  = ( V x  W -  V x ( V x r )  - tr {V}I)  x V  

= I n c ( W -  V x r )  - t r { V } l x V .  (A5) 

A6. P r o o f  that  S" and S b respectively according to eq. (4.13) can always be 
symmetrized: The skew part  o f  S a = F + V x R r has the general form 

skw{S a} = e a v  ' ~- - I  x v .  

The double  inner product  with e ~ ehij yields 

~ { s  o } 2vh = ehijeijtV ' = ~"" skw . 

On the other  hand, the calculation of  ~. • skw{V x R r} yields 

ehij@irsR~s,r - -  ejrsRi,,r)/2 = R i h , i  - -  R s s , h .  

Thus the tensor S" becomes symmetric,  if 

(1) V ' R  = - ~ ' ' s k w { r } ,  

(2) tr{R} = 0. 

Now R can always, wi thout  loss o f  generality, be chosen in such a way that  
both  conditions are fulfilled: indeed it is always possible (see, e.g., Spivak 
(1974)), for  a given vector field v, to find a tensor  field V satisfying (1) 
v = Div V (one tensor rank lower, this corresponds to the determinat ion o f  
a vector field w with prescribed divergence ~b = divw). - F o r  (2), consider 
R* with tr{R*} # 0. We c a n  choose a vector field v with V" v = tr{R*} 
and take R = R* + V x (1 x v ) / 2 .  Then comput ing o f  tr{R} yields 

Rss = R *  --  esjk~kstVt,j/2 

= Rs* ÷ (Vk,k - -  OkkVt, t ) /2  

t r { R * } -  V ' v  = O. 

The corresponding p roo f  for the symmetry o f  the second stress tensor S b 
follows the same lines. 
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