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Abstract. The three Barnett-Lothe tensors S, H, L and the three associated tensors S(0), H(0), 
L(0) appear frequently in the real form solutions to two-dimensional anisotropic elasticity 
problems. Explicit expressions of the components of these tensors are derived and presented for 
monoclinic materials whose plane of material symmetry is at x 3 = 0. We use the algebraic 
formalism for these tensors but the results are derived not by the straight-forward substitution of 
the complex matrices A and B into the formulae. Instead, we find the product -AB-1 ,  whose real 
and imaginary parts are SL-1 and L 1, respectively. The tensors S, H, L are then determined 
from SL 1 and L-  1. For S(0), H(0), L(0) we again avoid the direct substitution by employing an 
alternate approach. The new approaches require minima1 algebra and, at the same time, provide 
simple and concise expressions for the components of these tensors. Although the new approaches 
can be extended, in principle, to monoclinic materials whose plane of symmetry is not at x3 = 0 
and to materials of general anisotropy, the explicit expressions for these materials are too 
complicated. More studies are needed for these materials. 

1. Introduction 

I n  a fixed r e c t a n g u l a r  c o o r d i n a t e  sys tem xi, i = 1, 2, 3, let u~ a n d  a~s be the  

d i s p l a c e m e n t  a n d  stress, respect ively.  T h e  s t ress-s t ra in  laws a n d  the  e q u a t i o n s  

o f  e q u i l i b r i u m  are  

aij = CijksUk,~, (1.1) 

C~ks u~.~j = 0, (1.2) 

in  wh ich  C~-;~ are  the  elast ic  stiffnesses, r epea ted  indices  im p ly  s u m m a t i o n  a n d  

a c o m m a  s t ands  for  d i f fe ren t ia t ion .  W e  a s s u m e  tha t  C;;ks are ful ly sym m et r i c  

a n d  pos i t ive  def ini te  such tha t  the s t ra in  energy  is posi t ive.  Let  

Q ,k(O) = C~:~n: (O)n~ (0), 

R ~ (0) = C~s~n s (O)m~ (0), (1.3) 

T,~(O) = C,s~,ms (O)m,(O), 

ni (0) = (cos 0, s in 0, 0), mi (0) = ( -  s in 0, cos 0, 0), 
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where 0 is a real parameter and, in matrix notation, 

N,(0) = -T-I (0)RT(0) ,  N2(0) = T- l (0 ) , ' [  
(1.4) ( 

N3(0) R(0)T-  '(0)RT(0) -- Q(0). J 

The superscript T stands for the transpose. Define the incomplete integrals 

S ( 0 )  1 fo ~ = - N1 (0') dO', 
7~ 

H(0) 1 fo g = -  N2(0') dO', (1.5) 

L(O) 1 f[ = - - N ~ ( 0 ' )  dO' ,  
7~ 

and the complete integrals 

S = S(~), H = H(~z), L = L(~r). (1.6) 

The three complete integrals S, H, L are the Barnett-Lothe tensors [1]. The 
other three incomplete integrals S(0), H(0), L(0) are the associated tensors. 
The dependence of S(0), H(0), L(0) on 0 will be indicated explicitly except 
when 0 = zr. They appear often in the real form solutions of anisotropic 
elasticity problems. For instance, in the problem of an infinite anisotropic 
material subject to a line force f and a line dislocation with the Burgers vector 
b0, the real form solution is [2, 3, 4] 

- 1  
u = - -  ( I n  r ) h  - S ( 0 ) h  + H ( 0 ) g ,  

7~ 

6 =-1 (ln r)g + ST(0)g + L(0)h, (1.7) 
7~ 

X 1 ~ F COS 0 ,  X 2 = r s i n  0 ,  

where g, h are real constants given by 

2g = Lbo - STf, 

2h = Sbo + Hf, 

and ~ is the stress function from which one obtains 

or,= = ~bi, , ~,, = -~bi. 2. (1.8) 
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It is interesting to note that the form of solution (1.7) remains valid if the line 
force and the line dislocation are applied at the origin of a composite space 
which consists of an arbitrary number of wedges of different wedge angles and 
materials [4]. In fact, (1.7) also applies to inhomogeneous anisotropic materi- 
als whose elastic stiffnesses depend on the polar angle 0 [5, 6]. Solutions to 
other anisotropic elasticity problems in which the Barnett-Lothe tensors and 
their associated tensors appeared can be found in [7-12]. 

The integrations in (1.5) require a numerical approximation except for 
certain anisotropic materials with special material symmetry. An alternate to 
the integral formalism is the algebraic formalism which we present briefly 
below. 

If we assume that [13, 14, 15] 

u = a f ( z ) ,  z = x~+px2, 

where p and a are constant and f is an arbitrary function of z, the equations 
of equilibrium (1.2) are satisfied if 

[Q + p ( R + R  ~) + p 2 T ] a =  0, 

Qik = Ci1~1, Ri~ = Cilk2, Tik • Ci2k2. 

(1.9) 

(1.10) 

We see that Q, R, T are Q(0), R(0), T(0) of (1.3) with 0 = 0. By introducing 
the new vector 

1 
b =  (R v + p T ) a =  - - ( Q  +pR)a ,  (1.11) 

P 

in which the second equality follows from (1.9), the stresses ~ij obtained from 
(1.1) can be written in the form of (1.8) where 6 is the stress function 

~ = bf(z). (1.12) 

The two equations in (1.11) can be recast in the standard eigenrelation 

N~ =p~, 

E ~ =  ~ ~ '  ~= ~ ,  

where N i are N; (0) of (1.4) with 0 = 0. There are six eigenvalues p~ and six 
associated eigenvectors (a~, b~), e = 1, 2 . . . . .  6. Since p~ cannot be real if the 
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strain energy is positive [13, 16], we let 

ps+3=fi~,  I m p s > 0 ,  e = 1 , 2 , 3 ,  

where the overbar denotes the complex conjugate and Im stands for the 
imaginary part. If  we introduce the 3 x 3 matrices 

A = [al, a2, a3], B = [b,,b2, bz], (1.13) 

where bs are related to a~ through (1.11), it can be shown that [1, 15] 

S = i ( 2 A B ~ - I ) ,  H = 2 i A A  r, L = - 2 i B B  ~, (1.14) 

I being the unit matrix, provided as and bs are normalized such that 

2a~, bs = 1, ~ not summed. (1.15) 

Equations (1.14) are the algebraic equivalents of the complete integrals S, H, 
L of (1.6). The algebraic equivalence of the incomplete integrals S(0), H(0), 
L(0) will be presented later on. 

It should be pointed out that S, H, L are related by 

HL - SS = I. (1.16) 

The matrices H and L are symmetric and positive definite while SL -1 and 
H-1S are anti-symmetric. More studies on the relationships between S, H, L 
and their structure and invariance properties can be found in [17, 18]. 

Other related tensors S(v), H(v), L(v), where v is the real wave speed, appear 
in the problem of steady state moving line dislocation and Rayleigh surface 
waves [15, 19-24]. The integral formalism for S(v), H(v), L(v) is again the 
complete integrals of (1.6) if, in leading to the integrals in (1.5), we replace 
Q(0), R(0), T(0) of (1.3) by 

Q(0, v) = Q(0) - pv 2 cos 2 0I, 

R(0, v) = R(0) + pv 2 sin 0 cos 0 I, 

T(0, v) = T(0) - -  p v  2 sin 2 0I, 

where p is the mass density. The algebraic formalism for S(v), H(v), L(v) is 
given by (1.14) if we replace Q of (1.10)1 by 

Q(v) = Q - pv2I. 
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One drawback with the integral formalism is that, except for special 
anisotropic materials, it is difficult to obtain the integrations explicitly in 
closed form. This is particularly so for the incomplete integrals. For the 
complete integrals, Chadwick and his co-workers have obtained S(v) for cubic 
materials [21] and for transversely isotropic materials [23] in which the axis of 
symmetry is in the (xl, x2) plane or the (x~, x3) plane. Recently, Chadwick 
and Wilson [24] obtained explicit expressions of S(v) for monoclinic materials 
for which the plane of symmetry is at x3 = 0. 

The algebraic formalism avoids the integration and is particularly suitable 
for the incomplete integrals. The expressions are explicit, but the formalism is 
not without drawbacks. Firstly, the expressions (1.14) tacitly assume that the 
6 x 6 matrix N is simple or semisimple, i.e., the eigenvalues p~ are distinct or, 
if there is a multiple eigenvalue, the eigenvectors span the six-dimensional 
space. Modifications required when N is non-semisimple can be found in [25]. 
This drawback however does not present much problem because one can 
always assume that the p~ are distinct during the algebraic calculation. If  the 
final results do not contain p~ explicitly, the problem of repeated eigenvalue 
disappears and the results apply to non-semisimple N also. If  the final results 
contain p~ explicitly and if Pl = P2, say, we can take the proper limit in the 
final results. Secondly, although the algebraic expressions are explicit, they 
require calculation of the eigenvalues p~, the eigenvectors as, b~, and the 
normalization factors of the eigenvectors. The hidden algebraic calculation in 
general demands an inordinate effort as manifested in the recent work for 
orthotropic materials [26]. 

In this paper we present explicit expressions for S, H, L and S(0), H(0), L(0) 
for monoclinic materials whose plane of symmetry is at x3 = 0. We adopt the 
algebraic formalism, but we have found a way to circumvent most of the 
complicated algebraic calculations. As it turns out, the algebraic calculations 
are minimal and the final results are rather concise. 

2. The eigenvalues and eigenvectors 

On using the contracted notation C,~b for Cij.ks , (1.9) for monoclinic materi- 
als with plane of symmetry at x3 = 0 becomes [19] 

Cll q- 2pC16 ~- p2C66 C16 q- p(C12 q- C66 ) q-p2C26 0 1 
C16 q-- p(C12 ~- C66 ) q-p2C26 C66 q- 2pC26 3ff p2C22 0 [a=O. 

0 0 C55 + 2pC4~ +p2C44_] 

(2.1) 

The eigenvalues Pl, P2, P3 are the roots of the determinant of the 3 x 3 matrix 
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on the left. Noticing that the imaginary part of  p~ is positive, we let 

P3 : ( - C 4 5  q- iq)C441, q = (C44C55 - C]5) 1/2. (2.2) 

Then Pl, P2 are the two roots with positive imaginary part of the quartic 
equation which can be written as, using the identities (A12) derived in 
Appendix A, 

S'11p 4 - -  2 s ] 6 p  3 q'- (S~6 q- 2S '12)p 2 - -  2S'26P d- S~22 : O. (2.3) 

In (2.3), 

/ - - 1  sij = sij - (si3s3~)s33 , (2.4) 

where s o. are the elastic compliances which are the inverse of the elastic 
stiffnesses Cab. 

For the matrices A and B of (1.13), we obtain a~ from (2.1) and h~ from 
(1.11)1. Following [14], however, we determine b~ first and then as as follows. 
From the 3 × 3 matrix shown in (2.1), it is readily seen that A has the 
structure 

• , (2.5) 
0 

where the * denotes a possibly non-zero element. In fact B also has the same 
structure. From (1.8), (1.12) and the fact that o-12 = 0"21 , we obtain [14] 

bl = - p b ~ ,  

which holds for matrials of general anisotropy. Therefore we can write B as 
(see Eq. (80) of  [14]) 

- - k i p  1 - k z p  2 0 1 
B = k I k2 0 ] ,  (2.6) 

0 0 k 3 

in which k l ,  k2, k3 are arbitrary complex constants to be determined by the 
normalization condition (1.15). 

We next turn to the matrix A. For  a3, we let 

I ° ] a 3 = k 3 0 . 

_ i q  -~ 



Barnett-Lothe tensors 149 

This satisfies (2.1) for p =p3 and, when substituted in (1.11)1 and on using 
(2.2), leads to b3 in (2.6). For a~ and a2, we let 

k ~ - (C66~-  2pC26q-p2Cz2) ] 
a -~ ~--~[ C16 q- p(C12 -~-o C66' -]- pC2~6 ], (2.7) 

where V(p) is a function o f p  to be determined. This satisfies (2.1) for p =P l  
or P2. Substituting into (1.11)~, we obtain bl o r  h 2 shown in (2.6) if we choose 

~(p) = (C16C26 - C12C66 ) -p(C12C26 - C16C22 ) -~-p2(C22C66 - C926). (2.8) 

It is shown in Appendix A that the components of  a in (2.7) can be rewritten 
as 

-(C66"b2pC26"-kp~C22)[]~(P)]-~ =s~2-s'~6P +s ' 11P2=  ¢(P)'  ~ (2.9) 

[C16 .q_ p(Cl  2 .q_ C66) .q_ p2C26][V(p)] -1 = st22P -1 _ s~ 6 .q_ S~lp = r/(p), J 
say. Therefore A has the expression 0] 

A =  q(p~) kztl(pz) 0 . (2.10) 

0 0 - i k 3 q  -~ 

The complex constants kl, k2, k3 are, using (2.6), (2.10) and the normalization 
condition (1.15), 

2k~2 [t/(P2) - P2 ~(Pz)] (2.11) 

- 2 i k ~ q  -~ = 1. 

We have thus obtained the matrices A and B shown in (2.10) and (2.6) in 
which k~, kz, k3 are given in (2.11). As we will see in the next two Sections, the 
new approaches to be employed do not require employment of kl and k2. 

The formulation presented here follows that of Stroh [14, 19]. Another 
formulation due to Lekhnitskii [16] would have produced the matrices A and 
B more directly [27]. However, Lekhnitskii's formulation does not produce 
the identities (1.14). It is interesting to point out that Stroh [ 14] was the first 
to obtain B in (2.6) and L-1 in the next section using an alternate formulation 
which, unknown to him, was identical to Lekhnitskii's formulation. 
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3. Explicit expressions for S, H, L 

With A and B given by (2.10) and (2.6) which are in the form of (2.5), it is 
easily seen that S, H, L of (1.14) also have the same structure (2.5). By 
substituting A and B into (1.14), each term contains the factors k~, k~, k~ 
which can be eliminated by using (2.11). This straightforward approach was 
employed in [26]. The algebra is unwieldy for orthotropic materials studied in 
[26] and is forbidding for the monoclinic materials considered here except for 

the $33 , H33 , L33 components. 
We outline the alternate approach below. First we observe the simplicity of 

the expression for B which has the simple inverse 

1 F-k~-I -p2k~ -~ 0 ] 
B -1 - - ~ [  k~ 1 p l k f  I 0 ], 

Pl 0 (p~ - p 2 ) k ~  ~ 
(3.1) 

and we have 

Fis'l~ Im(pl +P2) 

- A B  1 = [  S~2__S0~1/~1/~2 

S]lPlPl -- S~12 0 l 
iS]l Im[plP2(fil +fi2)] 0 ], 

0 iq ~ 

(3.2) 

where use has been made of the relations between the roots pl,p2 and the 
coefficients of the quartic equation in (2.3). The normalization factors 
kl, k2, k 3 drop out during multiplications. Hence the presence of kl, k2, k3 in 
A and B is redundant in computing - A B  1. Equation (3.2), with a different 
expression for (AB-1)22, was obtained by Suo' [27]. The imaginary part of 
Suo's result was in Stroh's first paper [14]. Next, since 

--AB-1 = _ _  (AB r)(BB r)  -1 

and using (1.14), we have 

_AB -1 = SL -1 + iL -1. (3.3) 

Therefore the real and imaginary parts of (3.2) are SL 1 and L -1, respec- 
tively. With SL-1 and L-1 so determined, we find L from L i and S from 

S = (SL-~)L. 

Finally, H is determined from (1.16) as 

H = L - l +  S(SL 1). 
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We now list below explicit expressions of  S, H, L. We have $33 = 0 and 

L33 = n~31 = q. (3.4) 

For  the remaining non-zero components, we use 2 x 2 matrices for 

S~¢, H~a, L ~ ,  (e, fl = 1 or 2). Therefore the matrices below are the "reduced" 
matrices which are obtained by deleting the 3rd row and 3rd column of  the 
original 3 x 3 matrices. We have, in the order the results are obtained, 

NL-1 = s lgIO l -101, L-l=s'lllbd del, 
S= "Ie --;1' 

:1, 

(3.5) 

where 

P l + P~ = a + bi, Plp2 = c + di, ~ 

e = a d - b c > O ,  g = ( s ' ~ 2 / s ~ l ) - c > O  , 

h = ( b e - d  ~) -1>0,  b>O,  g 2 h < l .  

(3.6) 

In the above, b > 0 because the imaginary part of Pl and p: are positive. 
Alternately, since L-1 is positive definite [15, 28, 29], from the expression for 
L -1 in (3.5) we conclude that b as well as e and h are positive as indicated in 
(3.6). The inequality gZh < 1 follows from the positive definiteness of H. A 
proof  that g > 0, which means $21 > 0 and $12 < 0, is given in Appendix B. 

It should be pointed out that a, b, c, d, e, g, h are all non-dimensional real 
constants. The relations between the roots Pl, P2 and the coefficients of the 
quartic equation (2.3) provide the following identities. 

a = s / 1 6 / s ~ 1 ,  2c + 2 2 , , , ; a + b = ($66  -t-,2S12)/Sll , 

a c  + bd = s~6 / S t l l ,  c 2 -~ d 2 = s t22 /S l l  . J 
(3.7) 

It is shown in [30] that the component (SL-1)21 is an invariant under rotation 
about the x3-axis. Hence S'ng is an invariant. It can also be shown that the 
traces of  L - I  and H in (3.5) are invariants. Therefore s'~l(b + e) and g2h are 
invariants. 
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4. Explicit expressions for S(0), H(0), L(0) 

In view of the fact that Ni(0) in (1.5) are periodic in 0 with periodicity ~, we 
have 

s (~  + 0) = s + s(0),  

H(~ + 0) = H + H(0), 

L(~ + 0) = L + L(0). 

It suffices therefore to consider S(0), H(0), L(0) for 0 <~ 0 ~< ~c. 
The algebraic equivalence of the incomplete integrals (1.5) can be shown to 

be [31] 

S(0) =-2 Re[A~P(0)B:~], 
7~ 

H(0) =-2 Re[A~F(0)AT] ' (4.1) 
7~ 

L(0) = __2 Re[B~F(0)BT] ' 

where Re stands for the real part and ~F(0) is the diagonal matrix 

• (0) = diag[ln ~1 (0), In ~2(0), in ~3 (0)], 
(4.2) 

~(0) = cos 0 +p~ sin 0. 

It is readily shown that S(0), H(0) L(0) also have the structure (2.5). For the 
$33(0), H33(0), L33(0) components, if we substitute A33 and B33 from (2.10) 
and (2.6) into (4.1) and eliminate k~ from (2.11)3, we obtain 

1 [ C55 C45 ] 
S33 (0) = ~ In cos z 0 + ~ sin 2 0 - 644 sin 20 , 

(4.3) 

q tan_l[, qs in0  1 
L 3 3 ( 0 )  : q2H33(O) : ~z C44  c o s  0 - -  C45 sin 0 " 

The remaining non-zero components are S~,a(O), H~,a(O), L~a(0), (~,/3 = 1 or 
2). For these components we will not employ the straight-forward approach 
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of substituting A and B into (4.1) and eliminating k~ 2, k~ from (2.11). We will 
present the results below first and then outline an alternate derivation of the 
results. It is understood that the matrices appearing below are the reduced 
2 × 2 matrices which are obtained by deleting the 3rd row and 3rd column of 
the original 3 × 3 matrices. We have 

S(0) = A(0)S + F+ (0)S+ + F_ (0)S_ + ~(0)I ,~  
/ 

H(0) = A(0)H + F+ (0)H+ + r _  (0)n_ ,  ~ 
/ 

L(0) = A(0)L + r+ (0)L+ + r_  (0)L_, j 

in which L_+, S_+, H_+ are the 2 × 2 real constant matrices listed below. 

=bh ,2 L_ = 
s ' .  I_~t - ' s '~ I_t~ - t 3  ' 

S+=ghbl-_  ~ bd]+I2(ca+g ) ~ ] '  

- b 

S - = g h  I i~ tt311+I2d 

H + = s ' n  ( 1 +  g2h)blb d 

q = 2e - ad, t~ = e - 2d~b- ~, 

ta = 2d - ab, t4 = 2cd - ae. 

- - b  ' 

;1' 
t~3 , FO 

(4.4) 

The functions O, A, F+ and F_ in (4.4) depend on 0 and are given by 

2nO(0) = ln(X 2 + Y2)~/2, ~ 

2nA(0) = tan-~(Y/X), J (4.5) 

4~tF+ (0) --- (~ cos v_ + A sin v_)/w_ ,'~ 

4nF_ (0) = (~ sin v_ -- A cos v_)/w_ , J  (4.6) 
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where 

X = COS 2 0 ÷ (W2+ COS 2V+ -- W 2 COS 2V ) sin 2 0 + a sin 0 cos 0, 

Y = sin O[b cos 0 ÷ (w~_ sin 2v+ - w 2 sin 2v ) sin 0], 

. I f W  [cos v sin 20 + (a cos v_ + b sin v ) sin 2 0]]. 
; ( = t a n h -  ~ ~ - - ~ - - . . . - S - - - 5  . . . .  - "  - -  .(, 

~. cos 0 + ( w + + w _ ) s i n  0 + a s i n 0 c o s 0  

-1 ( ~ ' -  [ sign v _ sin 2~0 _÷_ (a s_in v _-~b _co~s _v_~ _) si__n_ 2 O] ) 

A = t a n  l cosaO+(w2+_w2_)sin~O+asinOcosO ~" 

(4.7) 

The  new nota t ions  w+ and v+ are real constants  which are related to pl and 

P2 by 

Pl  ÷ P 2  -- 2w+ (cos v+ + i sin v+ ) = a + bi, ~ 

; pl-pa=2w_(cosv_ +isinv ), w_+>0.  
(4.8) 

We now outline the der ivat ion o f  the results presented above.  Not ic ing that  
the matr ices on the right o f  (4.1) are of  the fo rm shown in (2.5), (4.1) remain  
valid if  all matr ices are replaced by the reduced 2 x 2 matrices,  we rewrite the 
reduced diagonal  mat r ix  ~ (0 )  as 

l ln((~(2)I+½1n((1/(2)K, v (o)  =~ (4.9) 

_011. 
I in (4.9) is the 2 x 2 identi ty matr ix .  By setting 

ln(~, ~2) = 2 ~ ( ~  + iA), (4.10) 

in which (I) and A are real and using (4.9) and (1.14), (4.1) can be writ ten as 

1 
S(0) = A(0)S + - Re[ ln((1/ (2)AKB v ] + ~(0) I ,  

g 

H(0)  = A ( 0 ) H  + 1 Re[ ln ( (~ / (2 )AKA~] ,  
7~ 

1 
L(0) = A(0) L - - Re[ln((~/(2)BKBT].  

/~ 

(4.11) 
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We first determine ln(¢1 ¢2) and ln(¢1/¢2). With  ¢~ defined in (4.2), it is easily 
shown tha t  ln(¢1¢2) is given by (4.10) with • and A defined in (4.5). As to 

ln(¢1/¢2), we first write 

Pl = w+ (cos v+ + i sin v+ ) + w_ (cos v_ + i sin v ), 

P2 = w+ (cos v+ + i sin v+ ) - w_ (cos v_ + i sin v_ ), 

using the no ta t ion  of  (4.8). We then have 

In ¢ = ½ ln{cos 2 0 + (w2+ + w2_) sin 2 0 + a sin 0 cos 0 

+ w  [cos v sin 20 + (a cos v_ + b sin v _ )  sin 2 0]} 

( (w + sin v + _ w_ sin v_ ) sin 0 ~), 
+ i r a '  n -  l~..cos ~ 7 (w~ c-~; ~7 ~- w--_- co~ v-7)--sin O~ 

in which the upper  sign is for  (1 and the lower sign is for  ¢2. Mak ing  use of  
the identities 

1 l + y  
5 In - -  = t a n h -  1 y, 

1 - y  

tan i Yl - t a n -  1 Y2 = t a n -  1 Yl - Y2 
1 + YlY2' 

one can verify tha t  

In (¢1/¢2) = • -{- iA, 

where )~ and A are defined in (4.7). 
We  next  consider the matr ix  p roduc t s  AKB r, AKA r and BKB r in (4.11). A 

s t ra ight - forward  subst i tut ion of  A and B into the products  would lead to an 
extremely compl ica ted  algebra.  This is because the normal iza t ion  factors  kl  2 
and  k22 appea r  in the process which have to be el iminated using (2.11). An 
al ternate  app roach  is to observe tha t  

B K B ~ =  (BKB-1)(BB~),) 
A K B T =  (AB 1)(BKBr) ,  (4.12) 

AKA ~- = ( A K B r ) ( A B  - 1) T. 
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We see that the only unknown is BKB-1 which can be shown to be 

1 Pl --P2 --(P~ +P2) 

cosv_-is inv_ Ia+b2i 2 ( c + d i ) ~  

2w_ - -(a + bOA" 

In this calculation, the normalization factors k~ 2, k~ drop out during multipli- 
cations. With BB r given in terms of L in (1.14)3, BKB r is readily calculated 
from (4.12)1. Equations (4.12)2, (4.12)3, in that order, produce AKB r and 
AKA r when AB-~ of  (3.3) is employed. This completes the description of the 
derivation of  S(0), H(0), L(O). 

For a given value of argument, the arctangent is not unique. The value of 

arctangent in (4.3)3, (4.5)2, (4.7)2 is determined uniquely as follows. In the 
(x, y) plane, we let the denominator and numerator in the argument of 
arctangent represent, respectively, the x and y coordinates. If  (x, y) is in the 
first, second, third or fourth quadrant, the value of arctangent is in the range 
(0, ~r/2), (~/2, ~), (re, 3z~/2) or (3~/2, 2~), respectively. 

Three special cases of the results obtained here should be noted. In the first, 
when 0 = z~, F_+ (0) and ~(0) vanish while A(0) = 1. Equations (4.4) reduce to 
(1.6). 

The second special case is when Pl =P2 which means, by (4.8)3, w_ = 0. If  
we take the limit w_ = 0 in (4.6), we have 

sin 20 + a sin 2 0 
4~F+ (0) = cos a 0 + w2+ sin 2 0 + a sin 0 cos 0 '  

b sin 2 0 
= 

4~F_ (0) cos20+wZ+sinZO+asinOcosO. 

(4.13) 

Alternately, it can be shown that F_+ of (4.6) are related to Pl, P2 by 

ln(~l/~2 ) = 2~( F + - i F _ ). (4.14) 
P~ -- P2 

Taking the limit P2 = P~ on the left and equating the real and imaginary parts 
on both sides of the equation also leads to (4.13). Equation (4.14) is more 
convenient in evaluating F+ and F_  when Pl and P2 are nearly equal. 

The third special case is when the material is orthotropic with its planes of  
symmetry at the coordinate planes. We then have s'~6 = s;6 = 0. From (3.7), 
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a = d = 0 a n d [ 2 6 ]  

C = - -  (S ;2 /SI l l  ) 1/2 = __ ( C l l / C 2 2 )  1/2, 

b 2 = [2(s~lsi2)l/2 + 2s'lz + S;6] (S]1  ) --1 

: [ ( C l  1 C22)  1/2 .~_ C l  2 .~_ 2C66] [ (C11  C22)  1/2 __ C12] (C22  C66)  - 1, 

in which the second equalities for c and b 2 follow from (A12). Explicit 
expressions for Pl, P2 can be obtained and the results reduce to that presented 
in [26]. 

5. Discussions and concluding remarks 

The alternate algebraic approach employed here for S, H, L is to find the 
matrix product - A B - 1  whose real and imaginary parts are SL 1 and L 1, 
respectively. A different product, iAB -1, is the inverse of the impedance 
matrix which is a positive definite Hermitian [15, 20, 22]. As shown in the 
paper, SL-1 and L-1 are the bases for computing S, H, L. For the monoclinic 
materials studied here, SL-1 has only one independent component while L-1 
has four. Therefore there are a total of five independent components for S, H, 
L. For general anisotropic materials, the same approach can be taken to find 
SL -1 and L -1. Since SL -1 is antisymmetric and hence contains three 
independent components while L i contains six, there are a total of nine 
independent components for S, H, L for general anisotropic materials. This 
conclusion agrees with that in [32] where a different argument was followed. 

For the problem of an interface crack in an anisotropic bimaterial, the 
stress singularities at the crack tip depend on L -1 and SL -1 only [33]. In 
particular, whether the displacement at the crack surface is oscillatory or not 
depends on SL -1 in the two materials [30, 33, 34]. For the crack problem 
therefore all we need is L -1 and SL -1, not S, H, L. For the monoclinic 
materials considered here, (SL-1)21 is the only independent non-zero compo- 
nent of SL -1. It is shown in [30] that (SL-1)21 is invariant with rotation 
about the x3 axis and that whether the crack surface displacement is oscilla- 
tory or not depends on whether (SL-1)21 in the two materials are different or 
not. The oscillatory phenomenon does not depend on the individual orienta- 
tion of the two materials. 

When d - - 0 ,  the matrices H and L are diagonal while the diagonal 
components of S vanish. From (3.6)2, the vanishing of d implies that Pl and 
P2 have the form 

Pl = P le  i~, P2 = - P z  e ;a, 0 < 6 < r~, 
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where 6, Pl, P2 are real and positive. Hence 

PlPl = - P l P 2  = c, 

and ¢ is a negative quantity. Equations (3.7)1,3,4 then provide the condition for 
the vanishing of d: 

S/26(S ~1) 1/2 ~- --S'16(St22) 1/2. ( 5 . 1 )  

Therefore, when (5.1) holds, H and L are diagonal while the diagonal 
components of S vanish. It is shown in Appendix A that (5.1) is equivalent to 

C ~ / 2  t- t-,1/2 
26,~11 ~ ~ 1 6 ~ 2 2  . 

Although the expressions for S, H, L remain valid when p~ =P2, the 
expressions for S(0), H(0), L(0) require a limiting process when p~ = p~. One 
does not have to solve the quartic equation (2.3) to find out ifp~ =P2. When 
Pl =P~, the quartic equation has the form 

s ~ ( p  _ p~)2(p _fi~)2 = 0. 

If we expand the product on the left, compare the coefficients of each t e ~  
with (2.3) and use (3.6)~,2 and (3.7), we obtain the conditions for p~ =p~: 

S;6 (S ]  1 )1/2 = S~6(S;2)1/2,  ~ 

2 s ~ [ ( s ~ s 2 z ) ~ / ~ _ s ~ ]  , , , 2 f (5.2) . . . .  = S l lS66  - -  (S16) • 

Again, (5.2)~ can be shown to be equivalent to 

C ~ /~  ~ ~ / 2  26~11 ~ ~ 1 6 ~ 2 2 .  

We see that (5.2)~ differs from (5.1) only in sign. This implies that d = 0 and 
Pl = P~ cannot co-exist unless C~6 and 626 both vanish, which is the case for 
orthotropic materials with planes of  symmetry at the coordinate planes. In the 
latter case, (5.2)~ reduces to 

2[(s]~ s~2) ~/2 _ s~2] - s~ 6 = 0 .  

Employing (A12), one sees that this is equivalent to 

(Cll C22) 1/2 ~ C~2 - 2C66 = 0, 

which is the condition for p~ = p~ for orthotropic materials [26]. 
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Finally, if d ¢ 0, one can re-orient the coordinate axes xl, x2 such that 
d = 0. If  x~* is the new coordinate system which is obtained by rotating the xi 

coordinate system about the x3-axis an angle 0o, we have 

X *  ---= ~'~X, 

~ cOS0o sin0o i ]  
o [_7Oo cosOoo " 

It is shown in [35] that S* referred to the x~* coordinate system is 

S * =  ~ S ~  r. 

It we substitute S from (3.5), we find that the diagonal components of S* 
vanish if 

2d 
= . (5.3) tan 200 b - e 

Consequently, at the orientation 0o given by (5.3), H*, L* are diagonal while 
the diagonal components of S* vanish. The orientation 0o has an interesting 
physical meaning in relation to line forces and line dislocations in the infinite 
anisotropic material [32]. 

Appendix A 

Using the contracted notation 

0"11 -~ 0-i~ 0-22 ~ 0"2~ 0"33 ~ 0"3~ 

0"23 ~ 0"4~ 0"31 ~ 0"5~ 0"12 ~ 0"6~ 

~11 ~ ~1~ /~22 ~" /~29 ~33 ~ ~3~ 

2'~23 = 84, 2,%~ = es, 2e12 = e6, 

the stress-strain laws for the anisotropic elastic material can be written as 

~ = C~:, ( A I )  

in which ~ and ~ are 6 x 1 column matrices and C is the 6 x 6 symmetric 
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matrix of  elastic stiffnesses. The inverse of  (A1) is 

~ = s~ ,  ( A 2 )  

sC = Cs = I, (A3) 

where s is the 6 x 6 symmetric matrix of  elastic compliances. 

For  the two-dimensional deformation considered here, e3 = 0 and the third 
equation of (A2) can be solved for a3 in terms of aj, j ~ 3. Substituting 0- 3 so 

obtained in the remaining five equations of  (A2), we have 

~;o = s,~0, ( A 4 )  

in which ~0, ao are 5 x 1 column matrices obtained from t;, a by deleting the 

e3, a3 components  while s' is the 5 x 5 matrix whose components s;j are 
defined in (2.4) with i, j va 3. Likewise, if we ignore the third equation in (A1) 

and noticing that e3 = 0, we have 

¢~o = CO~O, (A5) 

where C O is the 5 × 5 matrix which is obtained from C by deleting the third 

row and third column. Equations (A4) and (A5) imply that 

s 'C ° = COs ' = I. (A6) 

Thus s' and C O are the inverses of  each other. Since the strain energy is 

½(~o) T~o = ½(~0) ~s,~0 > 0, 

s' is positive definite [29]. F rom (A6), C O is also positive definite. 

Equation (A6) and the positive definiteness of  C O and s' are properties of  

the elastic constants. Their validity should be independent of  whether e3 

vanishes or not. An alternate proof  without assuming e3 = 0 can be obtained 
as follows. I f  we replace the third column and third row of Cij by zero 
elements, we have 

C~j = Cij  - -(~i3C3j - Ci3 O3j -~ (~ i3 C33 (~3j, 

where 6;j is the Kronecker  delta and i,j = 1, 2 . . . . .  6. Using (2.4) and (A3), 
it can be shown that 

0 ~ 
Ci jS jk  = (~ilc --  (~i3(~3k • 
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This is equivalent to (A6) because the third column and third rows of C}, s~j 
0 t and the product Cifi~k contain only zero elements. The positive definiteness of 

C o follows from the fact that it is a principal minor of C which is positive 
definite. The positive definiteness of s' follows from (A6). 

For monoclinic materials with the plane of symmetry at x3 = 0, C3~, C4~, 
( j  = 1, 2, 3) and Ci6, (i = 4, 5) vanish. We rearrange the rows and columns of 
C O in the form [36] 

Cll C12 C16 0 0 7 

-I 
C12 C22 C26 0 0 

0 0 c o = _q6__o _c_~6__0 _c_66__0 -~4-4---d4; 
0 0 0 C45 C55 j 

I C 0 I (A7) ~ , 
0 C2 

say. Similarly, the 5 x 5 matrix s' is rearranged as 

S~I Si2 S"16 0 O~ 

o [: o,] 
Sz=  S]6 if;6 S;6 0 0_1 = . . . . . . . . . . . . . .  ~ . . . .  ~ 

0 0 0 $44 $45 ] S2 

o o o si~ ~;sJ 

With the rearranged C ° and s', (A6) remains valid and hence 

, } C~s~ = s[ C~ = I, 

/ ~ 
C~s~ = saC~ = I. 

Moreover, since C ° and s' are positive definite, so are C~, C~, S'l, s;. 
Let ~ be the adjoint of C1 so that 

C ~  = JI,  J = det C1 = (det s'~) -~ 

It follows from (Ag)l that 

~ = Js '~ .  

From (A10)I and 

Ell  = C22 C66 -- 

~22 = Cll  C66 - 

~66 = Cll  C22 - 

~12 = C16C26 - 

~16 = C12 C26 -- 

~ = C~C16-  

(A8) 

(A9) 

(A10) 

(A l l )  

(A11), the explicit expressions of the components of ~ are 

C~6 = JS'll , 

C~6 = Js;2, 

C~2 = Jst66' (A12)  

C12C66 = Js]2, 

C16C22 = Js'16 , 

C~1 C26 = Js;6. 



162 T.C.T. Ting 

Equations (A12) are needed in reaching (2.3). Similarly, if ~ is the adjoint of 
! st, we have 

t ~t 
s i s 1  = J - q  

and, comparing with (A9)2, 

~ = J-1C~. (A13) 

Equation (Al l )  provides s] in terms of the components of C~ while (A13) 
gives C~ in terms of the components of s~. 

With (A12), 7(P) of (2.8) can be written as 

~](p)  = J[s~12 - -  s'16 p -+- s l i p 2 ] .  

One can then show that, making use of (A13) and (2.3), 

(s'~ - s]6 + S'l~pz)~(p) = -(C66 + 2pC26 +pZCz~), 

(S~2 p I ~ S~ 6 + s~ap)~(p) = C~6 + p (C~  + C66) +p2C~6. 

This is (2.9). 
We next show that the conditions 

s~6(s'~)~/~ = ~ s]6(s~)~/~, (A14) 

which appear in (5.2)~ and (5.1), are identical to 

C ~ /2  ~ ~/~ (A15) 2 6 ~ 1 1  ~ ~ ~ 1 6 ~ 2 2  • 

First, it can be shown that, using (A12) and (A10)2, 

~ 2 ~ ~ 2 / 
( $ 2 6 )  S l l  - -  ( S 1 6 )  $22  = J -2 (C~6Cl l  - C f f 6 C 2 2  ) .  

Therefore (A14) and (A15) are equivalent if we can prove that S~6S~6 and 
C 1 6 C 2 6  have the same sign. To this end, we obtain from (A12) 

j 2  , t C16C26[CllC22 + C~ 2 C12(C22C16C~1 + CllC26C~1)] S 1 6 S 2 6  ~ ~ 

= C16C26[(C11 C 2 2 ) 1 / 2  ~ C 1 2 ]  2,  
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where use has been made of  (A15). Therefore S~6St26 and C16C26 have the same 
sign. This completes the proof. 

Finally, for orthotropic materials we have C16 = C26 = 0, and using (A12) 
and (A10)2, it can be shown that 

[(CllC22)1/2 .q_ C12] 1 = (s~1st22)1/2 .~_ s~2. (A16) 

On choosing the positive sign, the component (SL-1)21 is given by the 
expression on the left [30] or on the right [27]. 

Appendix B 

We will show that S~1 > 0 and S12 < 0, i.e., g of  (3.6)4 is positive. 
First, we show that g ¢ 0. If  g --0,  we have from (3.6)4 that 

c =s~2/S~l. 

If  we obtain a from (3.7)1, d 2 from (3.7)4, b 2 from (3.7)3 and use (A13), 
equation (3.7)2 leads to 

C22 C66 - C226 = 0, 

which violates the positive definiteness of C. Hence g ~ 0. It should be pointed 
out that if g were zero, the tensor $ would vanish identically. 

Next, suppose that there exists a monoclinic material for which g < 0. Let 
C (+), C (-) denote the elastic constants of  monoclinic materials for which g > 0 
and g < 0 ,  respectively. We know that C (+) exist because g > 0  for the 
particular case of orthotropic materials [26]. Consider the following one 
parameter family of  monoclinic materials 

C(~L) = ZC (+) + (1 -- 2)C(-), 

where 0 ~< 2 ~< 1 is a real parameter. If  C (+), C ( ) are positive definite, so is 
C(2) and hence C()L) is admissible. Since g is continuous in C [37] and C().) in 
2, g(2) is continuous in 2. If  g(0) < 0 and g(1) > 0, there exists a 2 in the 
interval (0, 1) for which g(2) = 0. This means that there exists a monoclinic 
material with positive definite C for which g = 0. This is in contradiction with 
the earlier conclusion that g ¢ 0. Hence g cannot be negative. By ( 3 . 5 ) 4  , 

$21 > 0 and $12 < 0. 
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