
Journal of Elasticity 15 (1985) 319-323 
© 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands. 

Determination of C 1/2, C -1/2 and more general isotropic 
tensor functions of C 

T.C.T. T I NG 
Department of Civil Engineering, Mechanics, and Metallurgy, University of Illinois at Chicago, P.O. Box 4348, 
Chicago, IL 60680, USA 

(Received January 3, 1984) 

1. Introduction 

In the polar decomposition 

F f R U =  V R ,  R R  T = R T R = I ,  (1.1) 

where F is the (invertible) deformation gradient tensor, U and V are, respectively, the 
(symmetric) right and left stretch tensors, R is an orthogonal tensor and I is the 
identity tensor, one faces the problem of determining U, V and R in terms of F. The 
superscript T in Eq. (1.1) stands for the transpose. Using the right and left Cauchy - 
Green tensors C and B defined by 

U 2 = C = F T F ,  V 2 = B = F F  T, (1.2) 

we have 

U =  C 1/2, 

R = F U - ' ,  ~ (1.3) 
V = B 1/2 = R U R  T. ] 

The problem reduces to the determination of U and U-1 in terms of C. 
There are several ways of determining U and U -1 in terms of C, (see [1-3], for 

example). Notice that U and U-1 are special examples of isotropic tensor functions of 
C. Using the representation theorem for isotropic tensor functions [4] together with the 
diagonalization of a symmetric tensor, we present an alternate way of determining U, 
U-1 and other more general isotropic tensor functions in terms of C. Since U and U-1 
are very simple functions of C, one can determine them easily without recourse to the 
representation theorem and the diagonalization. This is shown in Sections 2 and 3. In 
Section 4 we treat U and U-1 as isotropic tensor functions of C. In doing so, we show 
that U and U-~ can be represented by lower order powers of C when U has a repeated 
eigenvalue. 

2. Determination of U 

Let ~'i, ( i =  1, 2 . . . . .  n) be the eigenvalues of U in the 
eigenvalues of C are ~2, (i = 1, 2 . . . . .  n). 

n-dimensional space. The 
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2a. Two-dimensional  space 

Using the Cayley-Hamilton theorem, we have 

V 2 - I v U +  I l v l =  O, 

where 

I v =  XI + X2, I I v =  A1A2 

are the principal invariants of U. Since U 2 = C, we have 

U =  I u ' (  I I u I  + C ).  

This agrees with the U obtained in [2] * and (3 .3)  of  [3]. 

2b. Three-dimensional  space 

Again, from the Cayley-Hamilton theorem we obtain 

U 3 - I v  U2 + I I u U -  I I I u l  = O, 

where the invariants are given by 

I U = X 1 + A 2 + A. 3 , 

I I  U = ~ l ~ 2  + ~2~k3 + ~ 3 ~ 1 ,  

I I I  U = ~1A,2~3. 

If we multiply (2.4) by U, 

T. Ting 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

U 4 - I v U  3 + I I v U  z - I I I v U  = O, (2.6) 

and eliminate U 3 between (2.4) and (2.6), we have, after replacing U 4 and U z by C 2 
and C, respectively, 

U =  ( I v l I  U - I I I  v ) -  ' { I v I I I v I  + ( I 2 - I I  U ) C  - C 2 }. (2.7) 

It can be shown that (2.7) is identical to (3.7) in [3]. 

2c. Four- and  higher-dimensional space 

In the four-dimensional space, we have 

U 4 - I v U  3 + I I v U  2 - I I I v U  + I I I I v l  = O, (2.8) 

where I v ,  I I  v . . . .  are the principal invariants of U. Two more equations are obtained 
by multiplying Eq. (2.8) by U and U 2. By eliminating U 3 and U 5 between the three 
equations and replacing U 2, U 4, U 6 by C, C 2, C 3, one obtains U in terms of I ,  C, C 2 
and C 3. 

A similar procedure can be used to determine U in a higher-dimensional space. 

* U on page 55 of [2] has a different expression from (2.3) presented here because I v and I1 v are replaced in 
terms of I c and 11 c.  The minus sign inside the parentheses containing C on page 55 of [2] should be a plus 
sign. 
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2d. Repeated eigenvalues 

Let U be in a three-dimensional space and let 

)~1 ~ )~2 = ~3" (2.9) 
Then, the representation given by Eq. (2.7) is not unique. In fact Eq. (2.3), which was 
derived for two-dimensional U, applies to three-dimensional U when (2.9) holds. We 
will return to this point in Section 4. 

If ~,~ = h 2 = )~3 = ~ ,  say, it is not difficult to show that U = )~I, C = X21 .  

A similar reduction can be made for U in a higher-dimensional space with repeated 
eigenvalues. 

3. Determinat ion  of  U - i. 

3a. Two-dimensional space 

If we multiply Eq. (2.1) by U-1 and substitute U from (2.3), we obtain 

U- ' = ( I v l I  v ) - '  ( ( 12 - I I  v ) I - C }. (3.1) 

3b. Three-dimensional space 

We multiply Eq. (2.4) by U -1, replace U 2 by C and U by (2.7). We then have 

U - l =  III~ l ( l v I I v  - I I Iv  ) -  l ( [ I v l I  2 v - I I Iv  ( I 2v + IIv  ) ] l 

- [  I I I  U + I v (  I~ - 211 u )] C + IvC2} . (3.2) 

3c. Remarks 

It can be shown that Eqs. (3.1) and (3.2) are identical to (4.1) and (4.2) of [3], 
respectively. For U-1 in four- and higher-dimensional spaces, a procedure similar to 
the one in deriving (3.2) can be employed. For the cases of repeated eigenvalues, the 
discussion in Section 2d applies here also. 

4. lsotropic  tensor  funct ions 

A tensor-valued tensor function G ( C )  is isotropic if the relation [4] 

QG( C ) Q  T= G(  QCQT) ,  (4.1) 

holds for all orthogonal tensors Q. Q may be, but need not be, the orthogonal tensor R 
defined in (1.1). It is not difficult to show that C " ,  where m is an integer, is isotropic. 
Consequently, tensor power series in C are isotropic tensor functions. In particular, if 
we define 

} e C f I + C + ~ . . C  + . . . .  

1 3 (4.2) s i n C = C - - ~ . C  + . . . .  

l n ( l  + C )  -- C -  ½C 2 + - ~ C  3 . . . .  

e c, sin C and I n ( / +  C) are isotropic tensor functions. 
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or  

To show that C 1/2 is isotropic, we use the relation: 

( QC1/mQT)  m _  ( QC1/ , ,Qr)(  QC1/ , ,Qr)  .. . ( QC1/,,,Qr) 

= Q ( c i / m ) ' Q  T = QCQ T, (4 .3 )  

Qc1/mQT = ( QCQT ) Wm. (4.4) 

Hence C 1/m where m is an integer is an isotropic tensor function. Notice that if G(C)  
is isotropic, so is G-I(C) .  Therefore, C -1 /"  is isotropic. Hence, U = C  1/2 and 
U-1 = C-1/2 discussed in Sections 2 and 3 are isotropic tensor functions of C. 

The representation theorem [4] states that G(C)  is isotropic if and only if it has a 
representation (we consider three-dimensional space here) 

G( C) = Oo1 + o1c  + o2c 2, (4.5) 

where 00, 01, 02 are functions of the invariants of C. Since the invariants of C and U 
are related [3], 00, 01 and 02 can be expressed as functions of X1, X2, X3 or Iv, II  v 
and "II1 v. 

The fact that C is symmetric and positive definite suggests that we may diagonalize 
C by 

p T c p  = A 2, (4.6) 

where P is an orthogonal tensor formed by the eigenvectors of C while the components 
of A form a diagonal matrix whose diagonal elements are ?'1, ~'2 and ~3- If we 
pre-multiply Eq. (4.5) by pT, post-multiply by P and make use of Eqs. (4.1) and (4.6), 
we obtain 

G ( A  2 ) = 0o1+ 01A 2 + 02 A4. (4.7) 

For G ( C ) =  C 1/2, (4.7) can he written in full as 

g(X~) = Oo + o;x~ + o2x~, 

g(X~) = Oo + o , x ~  + o2x~, (4.8) 

g(X~) =Oo+ o,x~ + +2x~, 

where g(~2) = ~. For G ( C ) =  C -1/2, e c, s inC  and l n ( l +  C), we have g(~2)__ ~- l ,  
e x2, sin ~2 and ln(1 + ?d), respectively. 

Equation (4.8) has a unique solution for ~o, 01, 02 when ?~i are distinct. For 
G(C) ~- C 1/2, g(~2)  _ ~ and we have, 

00 = ~klX2~k3(Xl -]- X2 @ X3) [ (Xl  -I- X2) (X 2 + X3)(~k 3 -Jr- ~kl) ] -1 

= s u I n ~  ( s j i ~  - m ~ ) - ' ,  

0, = (x~ + x~ + x~ + x,x2 + x~x~ + x3x, ) [ (x ,  + x2)(x2 + x~)(x~ + x,)] -1 

= (s~ - n ~ ) ( i j s ~ -  m u ) - ' ,  

0~ = - [ ( x ,  + x 2 ) ( x ~  + x ~ ) ( x ~  + x , ) ]  - '  = - ( ~ , ~ I S ~ -  m ~ ) - '  

(4.9) 
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Equation (4.5) then reproduces Eq. (2.7). If h t 4= h 2 = X 3, one may consider Eqs. (4.8) 1 
and (4.8) 2 only since (4.8)3 is identical to (4.8) 2. We then have a one-parameter family 
of solutions for qb 0, ¢kl, ~2 and the representation given by (4.5) is not unique. A 
particular representation in which C 2 is not present can be obtained by setting q52 = 0 
in (4.8)1 and (4.8)2 to obtain 

~0 = ~l~k2(Xl -I- ~2 ) -1 ,~  

q51 (X, + X2)-1 '  / (4.10) 

qb 2 0. 

Equation (4.5) now reproduces (2.3) for U in three-dimensional space when ~ ~ ~2 m. 

~k 3 • 
One may reproduce Eqs. (3.1) and (3.2) for U -1 by the present approach. It should 

be pointed out that in using the approach of this section the eigenvectors of C are not 
needed. Only the eigenvalues of C or U are needed. 

Finally, consider the function G ( C ) = ( C +  c l )  -1  where c is a function of the 
invariants of C. This function is isotropic. Setting g(2k 2) = (~2 + c ) - t  in Eq. (4.8) we 
have 

= + x2x  + + + X )c+ K-'] 
= ( I I  c + Icc + c 2) K - ' ,  

'1  = - [(2~] + X~ + h2) +c ]  K - '  (4.11) 

= - ( I c + c ) K  - 1 ,  

ep2 = K -1  ' 

where 

K = ( X  ~, +c ) ( X~  +c) (X~ + c) 

= I l i  c + I l c c  + I c c  2 + c 3. 

With (4.11) and (4.12), Eq. (4.5) reproduces (2.2) in [3]. 

(4.12) 
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