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1. Introduction

In the polar decomposition
F=RU=VR, RR"=RR=1, (1.1)

where F is the (invertible) deformation gradient tensor, U and V are, respectively, the
(symmetric) right and left stretch tensors, R is an orthogonal tensor and I is the
identity tensor, one faces the problem of determining U, ¥ and R in terms of F. The
superscript T in Eq. (1.1) stands for the transpose. Using the right and left Cauchy -
Green tensors C and B defined by

U*=C=F'F, V)*=B=FF", (1.2)
we have

U=C'?,

R=FU", (1.3)

V=B"?=RUR".

The problem reduces to the determination of U and U™! in terms of C.

There are several ways of determining U and U~! in terms of C, (see [1-3], for
example). Notice that U and U~! are special examples of isotropic tensor functions of
C. Using the representation theorem for isotropic tensor functions [4] together with the
diagonalization of a symmetric tensor, we present an alternate way of determining U,
U~! and other more general isotropic tensor functions in terms of C. Since U and U™!
are very simple functions of C, one can determine them easily without recourse to the
representation theorem and the diagonalization. This is shown in Sections 2 and 3. In
Section 4 we treat U and U™! as isotropic tensor functions of C. In doing so, we show
that U and U~ can be represented by lower order powers of C when U has a repeated
eigenvalue.

2. Determination of U

Let A, (i=1,2,...,7n) be the eigenvalues of U in the n-dimensional space. The
eigenvalues of C are A2, (i=1, 2,..., n).
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2a. Two-dimensional space

Using the Cayley-Hamilton theorem, we have

Ul-1r,U+1,I=0, (2.1)
where

Iy=A+A,, H;=\A, (2.2)
are the principal invariants of U. Since U? = C, we have

U=1;'(1I,I+C). (2.3)

This agrees with the U obtained in [2] * and (3.3) of [3].
2b. Three-dimensional space

Again,'from the Cayley-Hamilton theorem we obtain
U-1,U*+11,U~ I, I=0, (2.4)
where the invariants are given by
In=A +2A,+A,,
Iy =AM+ A5+ A5, (2.5)
HI,=ANAGA,.
If we multiply (2.4) by U,
U*-1,U° + IT,U* - III,U =0, (2.6)

and eliminate U> between (2.4) and (2.6), we have, after replacing U* and U? by C?
and C, respectively,

U= (I,dl,— I1,) " { I 0+ (12— 1T, ) C — C? ). (2.7
It can be shown that (2.7) is identical to (3.7) in [3].

2c. Four- and higher-dimensional space

In the four-dimensional space, we have
U*- 1, U+ I,U* - I,U + I =0, (2.8)

where I, 1I,,... are the principal invariants of U. Two more equations are obtained
by multiplying Eq. (2.8) by U and U?Z. By eliminating U> and U> between the three
equations and replacing U2, U4, U® by C, C?, C?, one obtains U in terms of I, C, C?
and C°.

A similar procedure can be used to determine U in a higher-dimensional space.

* U on page 55 of (2] has a different expression from (2.3) presented here because I, and IJ,, are replaced in
terms of /- and II. The minus sign inside the parentheses containing C on page 55 of [2] should be a plus
sign.
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2d. Repeated eigenvalues

Let U be in a three-dimensional space and let
AL #EA, =, (2.9)

Then, the representation given by Eq. (2.7) is not unique. In fact Eq. (2.3), which was
derived for two-dimensional U, applies to three-dimensional U when (2.9) holds. We
will return to this point in Section 4.

If A, =X, =X, =A, say, it is not difficult to show that U=AI, C=NI.

A similar reduction can be made for U in a higher-dimensional space with repeated
eigenvalues.

3. Determination of U ~1.

3a. Two-dimensional space

If we multiply Eq. (2.1) by U~! and substitute U from (2.3), we obtain
U= (1,11,) {(12-11,)I-C}. (3.1)

3b. Three-dimensional space

We multiply Eq. (2.4) by U™, replace U2 by C and U by (2.7). We then have
U™t =115 (1, - 11y) {1012 = 11, (13 + 11y)| 1
— [, +1,(12 - 211,)| € + 1,C?}. (3.2)

3c. Remarks

It can be shown that Egs. (3.1) and (3.2) are identical to (4.1) and (4.2) of [3],
respectively. For U™! in four- and higher-dimensional spaces, a procedure similar to
the one in deriving (3.2) can be employed. For the cases of repeated eigenvalues, the
discussion in Section 2d applies here also.

4. Isotropic tensor functions

A tensor-valued tensor function G(C) is isotropic if the relation [4]

0G(C)Q" = G(QCQ"), (4.1)
holds for all orthogonal tensors Q. Q may be, but need not be, the orthogonal tensor R
defined in (1.1). It is not difficult to show that C™, where m is an integer, is isotropic.
Consequently, tensor power series in C are isotropic tensor functions. In particular, if
we define

1

2!
sinC=C—%C3+..., (4.2)
In(I+C)=C-1iCc*+1iC3...,

eC=I+C+=C*+ ...,

€S, sin C and In(J + C) are isotropic tensor functions.
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To show that C'/? is isotropic, we use the relation:
(@CVmQT)" =(QC"Q7)(QC/"QT)...(QC/"QT)
=Q(C"/™)"Q" = eCQT, (4.3)

or

oc'/mQ" = (gcE™) . (4.4)
Hence C'/™ where m is an integer is an isotropic tensor function. Notice that if G(C)
is isotropic, so is G~ !(C). Therefore, C~/" is isotropic. Hence, U= C'/? and
U~'= C~ /2 discussed in Sections 2 and 3 are isotropic tensor functions of C.

The representation theorem [4] states that G(C) is 1sotropic if and only if it has a
representation (we consider three-dimensional space here)

G(C)=¢01+¢1C+¢2C2, (4-5)

where ¢,, ¢,, ¢, are functions of the invariants of C. Since the invariants of C and U
are related [3], ¢, ¢, and ¢, can be expressed as functions of X}, A,, A;or [, II,
and I1I,. .

The fact that C is symmetric and positive definite suggests that we may diagonalize
C by

P'CP= A2, (4.6)

where P is an orthogonal tensor formed by the eigenvectors of C while the components
of A form a diagonal matrix whose diagonal elements are A;, A, and A,. If we
pre-multiply Eq. (4.5) by P7, post-multiply by P and make use of Egs. (4.1) and (4.6),
we obtain

G(A*) = ¢ I + ¢, A* + ¢, A%, (4.7)
For G(C)= C'/?, (4.7) can be written in full as

g(A)) =0+ o/A1 + 271,

g(N%) = o+ X5 + 6,0, (4.8)

g(X5) =0+ &7 + 9,03,
where g(A*)=A\. For G(C)= C~'/%, €€, sin C and In(I + C), we have g(A*)=A"1,
e, sin A2 and In(1 + A?), respectively.

Equation (4.8) has a unique solution for ¢,, ¢,, ¢, when A, are distinct. For
G(C)=C"?, g(A?)=A and we have,

do=AMAA5 (A, + A, + )[4 +A) (A, +A) (A +A)] 7!
= I, 011, (I, I, — 1I,)"",
dr = (R 2%+ A+ A0+ A0+ ) [ + A +A)(A; +A)] 7!
= (15 - HU)(IUHU_ IIIU)_]’
¢ = — [(7\1 F A A+ A)(A5+))] e —(Iylly - IHU)_I-
(4.9)
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Equation (4.5) then reproduces Eq. (2.7). If A, # X, =A;, one may consider Eqgs. (4.8),
and (4.8), only since (4.8), is identical to (4.8),. We then have a one-parameter family
of solutions for ¢,, ¢;, ¢, and the representation given by (4.5) is not unique. A
particular representation in which C 2 is not present can be obtained by setting ¢, =0
in (4.8), and (4.8), to obtain

-1
do=MA (A +Xy)
dr=(\+2) 7 (4.10)
$,=0.

Equation (4.5) now reproduces (2.3) for U in three-dimensional space when A, # A, =

A

One may reproduce Egs. (3.1) and (3.2) for U™' by the present approach. It should
be pointed out that in using the approach of this section the eigenvectors of C are not
needed. Only the eigenvalues of C or U are needed.

Finally, consider the function G(C)=(C+ cI)~' where ¢ is a function of the
invariants of C. This function is isotropic. Setting g(A*)= (A’ + ¢)”! in Eq. (4.8) we
have

b0 = [(RN + AN + N303) + (A + X3+ Wy) e+ 2| K
= (IIC+ Iec+ cz)K_‘,

dr= —[(B+N+2)+c] k! (4.11)
=—(I.+c)K ',
¢, =K',
where
K=(AR+c)(A+c)(Wy+¢)
=1+ Hqc+I.c*+c . (4.12)

With (4.11) and (4.12), Eq. (4.5) reproduces (2.2) in [3].
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