Short communication

Flavonols are not essential for fertilization in Arabidopsis thaliana

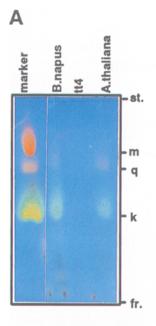
Bauke Ylstra^{1,2}, Mariëlle Muskens^{1,3} and Arjen J. Van Tunen^{1,*}

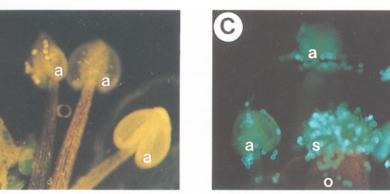
¹Department of Cell Biology, DLO-Center for Plant Breeding and Reproduction Research (CPRO-DLO), P.O.Box 16, 6700 AA Wageningen, Netherlands (* author for correspondence); ²Present address: Plant Gene Expression Center, USDA-ARS-UC-Berkeley, 800 Buchanan Street, Albany, CA 95710, USA; ³Present address: Amsterdam BioCenter, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands

Received 21 November 1995; accepted in revised form 25 July 1996

Key words: Arabidopsis thaliana, flavonoids, fertilization, pollen

Abstract


Flavonols are plant metabolites suggested to serve a vital role in fertilization of higher plants. Petunia and maize plants mutated in their flavonol biosynthesis are not able to set seed after self-pollination. We have investigated the role of these compounds in *Arabidopsis thaliana*. Like in all other plant species, high levels of flavonols could be detected in pollen of wild-type *A. thaliana*. No flavonols were detected in reproductive organs of the *A. thaliana* tt4 mutant in which the *chs* gene is mutated. Surprisingly, this mutant did set seed after self-fertilization and no pollen tube growth aberrations were observed *in vivo*. The role of flavonols during fertilization of *Arabidopsis* is discussed.


Abbreviations: CHS, chalcone synthase; TLC, thin-layer chromatography.

Chalcone synthase (CHS), the key enzyme in flavonoid biosynthesis, catalyses the condensation of 3 malonyl-CoA molecules with one coumaroyl-CoA molecule to chalcone. Chalcone is a central intermediate in the synthesis of flavonoids, a group of plant metabolites comprising anthocyanins, flavones, flavonols and isoflavonoids. Flavonols are detected in pollen of all higher-plant species tested so far, and promote tube growth in a wide range of species, including Cruciferae [9, 11]. Sedgley [7] has reported that the flavonol quercetin enhances tube growth of Brassica oleracea pollen. For maize and petunia it was demonstrated that mutants with blocked chs gene activity are self-sterile [4, 6, 11]. This sterility is due to an aberrant pollen tube growth, which could be restored by externally applied flavonols.

For Arabidopsis thaliana a chs mutant, designated tt4-1, was previously obtained by ethylmethane sulfonate (EMS) mutagenesis. RFLP mapping revealed that the TT4 locus on chromosome 5 coincides with the position of the chs locus [2, 8]. It has been reported that Arabidopsis contains only one chs gene and that tt4 would lack flavonols in vegetative tissues [2, 3]. However, the presence and role of flavonols in reproductive organs of Arabidopsis thaliana has not been studied.

To monitor the presence of flavonols in mature Arabidopsis thaliana and in the tt4-1 mutant cv. Landsberg erecta pollen, a thin-layer chromatography (TLC) analysis was conducted. The TLC procedure was performed according to van der Meer *et al.* [4] and compromises a hydrolysation step in order to concentrate the different glycones into one aglycone spot thereby enhancing sensitivity. The chromatography was performed in a HAc/37%HCl/H₂O solution (30:3:10) after which the plates were sprayed with 0.05% NH₃ and diphenyl boric acid 2-amino-ethyl ester, to further enhance the detection level. High levels of the flavonols kaempferol and quercetin were detected in pollen of *Brassica napus* and wild type *Arabidopsis thaliana*, but not of mutant *tt4* (Fig. 1A).

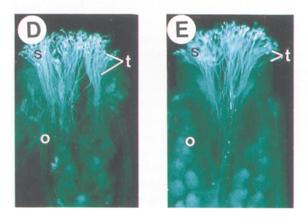


Figure 1. Analysis of flavonols and pollen tube growth in wild-type and mutant *tt4 A. thaliana* plants. To support an optimal fertility, plants were grown under controlled conditions, with 16 h of continuous light at 20 °C and 70% relative (RH) humidity decreasing in the night to 18 °C and 47% humidity. A. TLC analysis of A. thaliana, tt4 mutant and pollen extracts. A flavonoid extract from *Brassica napus* pollen was loaded for comparison. From left to right: marker, *Brassica napus* (B. napus), tt4 mutant, and wild-type A. thaliana. In addition to the RF values, the colours of the spots are indicative. B. Localization of flavonols in the reproductive organs of wild-type A. thaliana. C. Localization of flavonols in the reproductive organs of A. thaliana tt4 mutant. D. Pistil and pollen with tubes of wild type after 4 h of growth. E. Pistil and pollen with tubes of tt4 mutant after 4 h of growth. Abbreviations used: m, myricetin; q, quercetin; k, kaempferol; st, start; fr, front; a, anthers; o, ovary; s, stigma; t, pollen with tubes.

1156

To localize flavonols in reproductive organs, diphenyl boric acid 2-amino-ethyl ester was used as a histochemical stain. Therefore, complete flowers of wild-type and mutant *tt4* were incubated for ca. 5 min in a saturated solution of the ester with 0.01% triton [11]. Presence of flavonols was analysed under an UV microscope and appeared as orange fluorescence in petals, anthers, pollen and pistils of wild-type *A. thaliana* flowers. In contrast, no flavonols could be detected in any of reproductive organs of *tt4* (cf. Fig. 1B and 1C). It furthermore indicates that the *tt4* mutation blocks the synthesis of flavonols and that no other (iso-)enzymes are active in reproductive organs.

Surprisingly, despite the absence of flavonols, the fertility of the *tt4* mutant did not seem to be severely affected. The amount of seeds in 10 siliques per plant from 30 wild-type or 30 *tt4* mutant plants was determined. The average for wild-type *Arabidopsis* was 607 seeds per 10 siliques (standard deviation (SD) 86.8) compared with 518 seeds for the *tt4* 30 mutant plants (SD 109.1). This difference (15%) is significant but the reduction is not so drastic as observed for the petunia or maize flavonol mutants [4, 6, 11].

To investigate the fertility of the *tt4* mutant in further detail, pollen tube growth was precisely monitored *in vivo*. Therefore, mature closed flowers were emasculated and self-pollinated the following morning. After different time intervals of 0.5 h, 1 h, 2 h, 4 h, 10 h and 24 h pistils were harvested, transferred to 1 M KOH and incubated overnight at 60 °C. After rinsing pistils with water, they were placed on a microscopic slide glass in a 50% glycine, 0.05% aniline solution to stain callose plugs in pollen tubes that were visualized by UV light. The amount of pollen germinating and the velocity of tube growth in the *tt4* mutant was indistinguishable from wild type (Fig. 1D and 1E).

From the experiments described here we conclude that, in contrast to the petunia and maize flavonol mutants, *A. thaliana* does not require *chs* expression or the presence of flavonols for fertilization. It appears quite contradictory that both petunia and maize require flavonols for proper seed-set and *A. thaliana* does not. This discrepancy may be explained by differences in the physical distance pollen tubes have to bridge. In the sterile petunia *chs* mutant, T17.02, pollen tubes grew a few millimeters in absence of flavonols [11]. In line with our results Burbolis *et al.* [1] found recently that fertility in their *Arabidopsis thaliana tt4* mutant was unaffected. Styles of *Petunia hybrida* cv. W115 are 4 cm in length and therefore fertilization might not occur. Style length of *A. thaliana* is only a few millimeters which might enable pollen tubes from a flavonol mutant to reach the ovules. An alternative explanation would be that in *A. thaliana* other phenylpropanoids or components like (brassino-)phytosteroids can compensate for a lack of flavonols [3, 5, 12]. In order to test this hypothesis we are currently studying the role of flavonols during fertilization in other Brassicaceae.

Acknowledgements

Dr. de Vos is thanked for his help on TLC analysis, M. Aarts, M. Byzova and J Busscher for their help in growing and fertilizing *A. thaliana* and the Nottingham *Arabidopsis* Stock Center for seeds. This work was made possible by grant VBIOO.2356 of the Technology Foundation (STW).

References

- Burbulis IA, Iacobucci M, Sherley BW: A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in *Arabidopsis*. Plant Cell, in press (1996).
- Feinbaum RL, Ausubel FM: Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8: 1985–1992 (1988).
- Jiayang L, Tsai-Mei O-L, Raba R, Amundson RG, Last RL: *Arabidopsis* flavonoid mutants are hypersensitive to UV-B irra-diation. Plant Cell 5: 171–179 (1993).
- van der Meer IM, Stam M, van Tunen AJ, Mol JNM, Stuitje AR: Inhibition of flavonoid biosynthesis in petunia anthers by an anti-sense approach results in male sterility. Plant Cell 4: 253–262 (1992).
- Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV: Brassins: a new family of plant hormones from rape pollen. Nature 225: 1065–1066 (1970).
- Mo Y, Nagel C, Taylor LP: Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89: 7213–7217 (1992).
- Sedgley M: Flavonoids in pollen and stigma of *Brassica oler-acea* and their effects on pollen germination *in vitro*. Ann Bot 39: 1091–1095 (1975).
- Shirley BW, Kubasek WL, Storz G, Bruggeman E, Koorneef M, Ausubel FM, Goodman HM: Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8: 659–671 (1995).
- 9. Stanley RG, Linskens HF: Pollen Biology, Biochemistry and Management. Springer-Verlag, Berlin (1974).
- Ylstra B, Turaev A, Benito Moreno RM, Stöger E, van Tunen AJ, Vicente O, Mol JNM, Heberle-Bors E: Flavonols stimulate development, germination and tube growth of tobacco pollen. Plant Physiol 100: 902–907 (1992).

- 11. Ylstra B, Busscher J, Franken J, Hollman PCH, Mol JNM, van Tunen AJ: Flavonols and fertilization in *Petunia hybrida*: localisation and mode of action during pollen tube growth. Plant J 6: 201–212 (1994).
- Ylstra B, Touraev A, Brinkman AO, Heberle-Bors E, van Tunen AJ: Steroid hormones stimulate germination and tube growth of *in vitro* matured tobacco pollen. Plant Physiol 107: 639–643 (1995).

1158