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Abstract 

The equations governing the equilibrium of a finitely deformed elastic solid are derived from the Principle of 
Minimum Potential Energy. The possibility of the deformation gradient and the stresses being discontinuous 
across certain surfaces in the body - "equilibrium shocks" - is allowed for. In addition to the equilibrium 
equations, natural boundary conditions and traction continuity condition, a supplementary jump condition 
which is to hold across the surface of discontinuity is derived. This condition is shown to imply that a stable 
equilibrium shock must necessarily be dissipation-free. 

1. Introduction 

The  dif ferent ia l  equa t ions  governing  the equi l ibr ium of  cer ta in  f ini te ly de fo rmed  elast ic  
sol ids m a y  lose thei r  e l l ip t ic i ty  in the presence of suff ic ient ly  severe strains,  and  as a 
result ,  there m a y  arise de fo rma t ion  fields which are no t  " s m o o t h " ;  in par t icular ,  the 
de fo rma t ion  grad ien t  and  the stresses could  fail to be  cont inuous  across one or  more  
surfaces  - equil ibrium shocks  - in the  body  [1]-[7]. The  s tudy of  such p rob l ems  is 
mot iva ted ,  in par t ,  by  the fair ly c o m m o n  observa t ion  that  in cer ta in  highly de fo rmed  
duct i le  solids a smoo th  de fo rma t ion  field more  or  less ab rup t ly  gives way to one which 
is less smooth  and  involves na r row bands  of  highly local ized shear  de format ion ,  [8]. 

Cer ta in  features  of  the ma themat i ca l  p r o b l e m  here  are s imilar  to those associa ted  
with  the theory of  s teady,  i r ro ta t iona l  f low of  an inviscid,  compress ib le  gas [9]. There,  
the lack of  e l l ip t ic i ty  accompany ing  supersonic  f low of ten  leads to the presence of 
shocks  - surfaces of  d i scont inu i ty  of cer ta in  fluid proper t ies .  In  gas dynamics ,  cer ta in  
res t r ic t ions  ar is ing f rom the second  law of  t he rmodynamics  are  impose d  on  the change  
of  en t ropy  across  a shock, these condi t ions  be ing  re la ted  to the d iss ipat ive  charac te r  of  
the  shocks in the inviscid fluid. A n  ana logous  condi t ion  - a "dissipativi ty  inequal i ty"  - 

in the context  of  e las tos ta t ics  was der ived b y  Knowles  and  Sternberg  [3] and  Knowles  
[10] on  energet ic  grounds.  A t he rmodynamic  mot iva t ion  for this cond i t ion  was given in 
[10]. They p r o p o s e d  that  phys ica l ly  accep tab le  equi l ib r ium fields should  necessar i ly  
c on f o rm to this inequal i ty .  

Enlarg ing  the class of  admiss ib le  e las tos ta t ic  fields by  al lowing for equ i l ib r ium 

* The results reported in this paper were obtained in the course of an investigation supported in part by the 
National Science Foundation through Grant CME 81-06581. 
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shocks can often lead to a multiplicity of solutions to the relevant boundary-value 
problem. This is illustrated by the examples in [5] and [11] and is analogous to the 
well-known nonuniqueness occurring in the theory of quasi-linear hyperbolic partial 
differential equations [ 12]. In such circumstances, it is essential to introduce additional 
criteria which rule out physically inadmissible solutions from among the many solu- 
tions admitted by the differential equations. The dissipativity inequality alluded to 
previously plays such a role in finite elastostatics. However, while it does serve to 
disallow certain solutions as being unacceptable on energetic grounds, this condition 
does not in general rule out solutions which are unstable (see example in [5]). It is 
therefore of some interest to examine the possibility of imposing restrictions which are, 
in fact, stronger than the dissipativity inequality. 

Ericksen [ 11 ], in examining the equilibrium of a bar, successfully enforced a stability 
condition based on the classical energy criterion to single out a physically acceptable 
solution. Subsequently Abeyaratne [5] utilized this criterion in a similar manner in the 
study of the finite twisting of a tube, which in turn suggests the possible importance of 
such a criterion in general. Certainly solutions admitted by such a criterion would 
necessarily be stable (in the sense of minimizing the corresponding potential energy.) 

In this paper we examine the general issue of minimizing the potential energy 
associated with a weak solution - an elastostatic field involving equilibrium shocks. We 
derive, as necessary conditions, two jump conditions which are to hold across the 
shock. One of these is a statement of the requirement that the tractions are to be 
continuous across the shock-surface. The second turns out to be precisely the dissipativ- 
ity inequality with the inequality sign replaced by equality. It follows that a "stable" 
shock is required to be dissipation-free. 

There are several examples of problems in the calculus of variations which do not 
possess solutions in the class of "smooth"  functions but which do in an extended class 
of "piecewise smooth" functions. (For example, see Section 15 of [13].) In such an 
event certain jump conditions, Weierstrass-Erdmann corner conditions, must necessarily 
hold at the point of lack of smoothness (the "corners"). The dissipation-free condition 
derived here corresponds to one of these corner conditions. 

2. Basic equations. Equilibrium shocks 

Let ~ be the three-dimensional open region occupied by the interior of a body in an 
undeformed configuration. A deformation of the body is described by a sufficiently 
smooth and invertible transformation 

y = x + u ( x )  on ~ (2.1) 

which maps the domain ~ onto a domain ~P~.. Here y is the position vector after 
deformation of the particle which in the undeformed configuration was located at x, 
while u(x) denotes the displacement vector field. For the moment, u is assumed to be 
twice continuously differentiable on ~ .  The deformation gradient tensor F is defined 
by 

F = I + v u ,  d e t F > 0  on ~ .  (2 .2)*  

* Notat ion:  V u  is the tensor field with components  Oui/Ox j. div o is the vector field with components  
Ooij/aXy. WF(F ) is the tensor with components  OW/~F~y. Here we have used s tandard indicial notat ion 
and Cartesian coordinates.  
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Let o(x) be the nominal stress tensor field accompanying the deformation at hand. 
In the absence of body forces, the local conditions for force and moment equilibrium 
a r e  

d i v o = 0 ,  oF T= Fo r on R (2.3) 

provided that o is continuously differentiable on R .  The nominal traction vector s on 
the boundary of a sub-domain of the body is given by 

s = o n  ( 2 . 4 )  

where n is the unit outward normal vector. 
Suppose now that the body under consideration is homogeneous and elastic and 

possesses an elastic potential * W =  W(F): W represents the strain-energy density per 
unit undeformed volume. The nominal stress tensor is now given by 

o = W ~ ( F ) .  ( 2 . 5 )  

Finally, we suppose that the displacement field u and the nominal traction field s are 
prescribed on the portions 0R l, 0R2 of the boundary, where 0R = 0 R  1 U 0R 2 denotes 
the entire bourjdary of the region R ;  

u ( x ) = a ( x )  on 0R 1, s ( x ) = g ( x )  on 0 R  2, (2.6) 

and g being suitably smooth functions. 
Given fi, ~ and W, we are to determine the displacement field u(x) and the stress 

field o(x) in accordance with (2.2)-(2.6). 
The particular examples studied in [5] and [11] were shown to possess no solutions 

(of the requisite smoothness) to the problem formulated above. However, upon relaxing 
the degree of smoothness demanded of the field quantities it was demonstrated that 
solutions did exist. This need to relax the differentiability requirements was in turn 
related to a loss of ellipticity of the governing displacement equations of equilibrium, 
div Wv(F) = 0. 

We wish to focus attention on such "weak solutions" and will now require the field 
quantities to possess the classical degree of smoothness everywhere in R except on one 
or more regular surfaces within the body. Consequently, we allow for the possibility 
that there is a surface S in R such that o and F are continuously differentiable 
everywhere in R except on S and such that o and F suffer finite jump discontinuities 
across it. The displacement field u is presumed to be continuous everywhere in R .  Such 
a surface has been called an equilibrium shock [10]. 

On going through the usual arguments **, one finds from the global conditions for 
equilibrium that 

d i v o = 0 ,  oFT=Fo  r on R - S ,  

[ o ] _ + N = 0  on S. (2.7) 

The jump condition in÷(2.7) states that the nominal tractions are to be continuous 
across $. Here [f]+__=f-f where ] and ] are the limiting values of the quantity f 

* The dependence of W on F is, of course, restricted by the principle of material frame indifference, 
W(F) = W ((FrF)l /2) .  Further, W is assumed to be infinitely differentiable for every nonsingular tensor 
F. 

** See Chadwick [15], p. 114. 
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(presumed to exist) as a point on S is approached from each side, and N is a unit 
normal to S. 

Given the prescribed vector fields u, s, one is now to determine the displacement 
field u(x) and the stress field a(x) (having the required degree of relaxed smoothness) in 
accordance with (2.2), (2.4)-(2.7). Weak solutions of this form to problems in finite 
elastostatics have been determined in a number of specific examples [5]-[7], [11]. 

As illustrated by [5] and I11], enlarging the class of admissible stress and displace- 
ment fields in this way admits the possibility of multiple solutions to a given problem. 
Some of these solutions, though conforming to the appropriate differential equations 
and boundary conditions, may be unacceptable on physical grounds (such as instabil- 
ity). In such a situation it is essential to introduce additional criteria which rule out 
physically inadmissible solutions from among the many nominal solutions. One such 
criterion, a "dissipativity inequality" analogous to the entropy condition in fluid 
mechanics, was proposed by Knowles and Sternberg [3] and Knowles [10] on energetic 
grounds. They considered a quasi-static time dependent family of equilibrium states 
and showed that the rate at which elastic energy is being stored (in every subdomain of 
the body) does not exceed the corresponding rate at which work is being done if and 
only if 

[ W - F N . o N ] _  +>~0 on S. (2.8) 

Here the positive side of $ is taken as the side toward which $ moves in this quasi-static 
motion and N is the unit normal directed into the positive side. 

3. Variational formulation. An admissibility condition 

We now re-examine the formulation of the problem described in the previous section 
by making use of the Principle of Minimum Potential Energy. By admitting the 
possibility of equilibrium fields possessing the relaxed degree of smoothness described 
previously, we derive the equilibrium equations (2.7)1, the natural boundary condition 
(2.6)2, the traction continuity condition (2.7)3 as well as an additional jump condition 
which is to hold across an equilibrium shock. 

Given the vector fields ~(x), g(x) and the strain energy density W as described 
previously, the potential energy functional V(w) is defined by 

v<w)= f + w)dv -f ~'wdA x (3.1) 
a a ~  2 

for all functions w in some set ~. Here we are assuming that the loading on 0 ~  2 is 
dead, We suppose that the set of "admissible virtual displacements", t~, is the set of all 
vector-valued functions defined on ~ which obey the following requirements: 

(i) w(x) is continuous on ~ ,  
(ii) w(x) has continuous first and second derivatives in ~ except possibly along one or 

more regular surfaces, 
(iii) w(x) = ~(x) on 0 ~  r 
Since this limited degree of smoothness is all that is required of an equilibrium 
displacement field, it seems reasonable not to impose more severe smoothness require- 
ments on the virtual displacement w. Then from among all functions w in ~ we wish to 
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determine a function for which the functional V(w) has a weak extremum. 
We assume the existence of a function u(x) in ~ which extremizes V. Suppose that 

there is a regular surface ~ in @ across which the first derivatives of u suffer a finite 
jump discontinuity, while u is twice continuously differentiable at every other point. Let 
N be a unit normal to $. 

Now consider first the one parameter family of virtual displacements w 

w(x; {) = u(x) -~-,~u(x), - ' 1  <~' < ~1, (3.2) 

where ~t is a sufficiently small positive constant. Here the variation 8u(x) is assumed to 
be a twice continuously differentiable vector field on ~J~ with 8u(x) = 0 on the boundary 
0@~. Thus, for each c, w(x; c) is in ~. By assumption the associated family of potential 
energies l~(c) = V(u + ~Su) has a minimum at ~ = 0 so that necessarily 

d~cV ,=0 = 0 .  (3.3) 

On going through the usual arguments (see for example [15]) one finds from (3.1)-(3.3) 
that 

d i v W F ( l +  V u ) = O  on 6 A - S ,  

W r ( l + V u ) n = ~  on O@ 2, 

[ W F ( I + v u ) ] _ + N = 0  on $. 

(3.4) * 

In view of (2.4) and (2.5), these are precisely the equilibrium equations (2.7)~, traction 
boundary condition (2.6) 2 and traction continuity condition (2.7)3 respectively. 

The family of virtual displacements w(x; ~) defined by (3.2) possesses a discontinuity 
in its gradient Vw across the fixed surface $, i.e. S is independent of the parameter c. It 
is, of course, possible to choose other families of admissible virtual displacements 
w(x; c) which do not possess this feature, and it is natural to wonder whether such a 
choice would yield any further necessary conditions, in addition to those obtained 
above. Since, in any given boundary-value problem, the location of an equilibrium 
shock S in the body is not known a priori, one might expect such a "variat ion of the 
location" of S to yield information of interest. We now proceed to choose such a class 
of functions w(x; c) with w(x; 0) = u(x) and such that its gradient Vw is discontinuous 
across a variable surface $(c),  S(0) = $. This will lead to a field equation in ~ -  S and 
a jump condition on S, the former being essentially equivalent to (3.4)1 while the latter 
is an entirely independent condition. 

The displacement field u(x) which minimizes the potential energy V may be 
described parametrically by 

u = u ( ~ ) ,  x = ~  for ~ i n ~ .  (3.5) 

Now consider the one parameter family of virtual displacements w(x; ~) defined by 

w = u ( ~ ) ,  x = ~ + , B x ( ~ )  for ~ i n g ,  - ' 1  < ' < o n .  (3.6) ** 

Here the variation 8x(~) is a twice continuously differentiable vector field on ~ .  

* Here  n is the unit outward normal  to D R  whi le  N is a unit normal  to  S .  

** The analysis here is no more than a generalization of Section 2.6 of Pars [16]. Observe that the virtual 
displacement field chosen previously, (3.2), may be equivalently described by w = uGD+ cSu(~), x = ~. 
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Furthermore, for each value of c in (-~1, cl) we require the mapping ~-o x, (3.6)2, to 
be one to one. Finally suppose that 

8x(~) = 0 for ~ in 0R ,  

~x~_ ~ .  
d e t H > O ,  H~j-O~i-Sij+c (~) for ~ i n ~ ,  -IE1 <IE<~ 1 . 

(3.7) 

Consequently (3.6) defines a family of admissible virtual displacements. Moreover, by 
virtue of the properties of u (see paragraph preceding (3.2)), the gradient xT~w(x; c) is 
continuous in ~J~ except across the surface S(c) which is the image of $ under the 
mapping/~ -o x. Note that w(x; 0) = u(x) so that S(0) = S. 

In view of (3.1) and (3.7) the potential energy V(Q associated with (3.6) may be 
written as 

e(,)= V(w(x; ,))= f w(,+ vuW') detmv,- fo g(x).u(x)da . (3.8) 

We note that the volume integral in (3.8) is taken over the region @ since by virtue of 
(3.7) 1 the mapping x --* ~, the inverse of (3.6)2 , takes the region @ onto itself. In writing 
the area integral in (3.8) we have made use of (3.6), (3.7)1 which implies that 
w(x; c) = u(x) on O~J{. Keeping in mind that x7~u(~), and hence the integrand of (3.8), is 
discontinuous across the fixed surface S (--- S (0), we may differentiate (3.8) with respect 
to ¢ to obtain 

) d-~ OF/j. O~k O, 3* (det H) dv¢. (3.9) 

On using (3.7) and a standard formula to calculate OH-n/O,, 8(det H)/Oc, (for 
example see Chapter 1 of [14]), (3.9) leads to 

08xv 
d--~ ~Fij a~k -~-t--n ~kqmcjpnHnrn - H~-J1H~pl a~q 

+ WHqp I O~Xp I a~q ] det ndv~, (3.10) 

where cij k is the permutation symbol. Setting ~ = 0 in (3.10) gives 

OW au,(x) aSx,(x) 
d~ t=0 = W~pq OFii q OXp Ox o dvx' (3 .11)  

since we now have H =  1 and ~ = x .  The argument of W in (3.11) is 1 + XTu(x). The 
divergence theorem, (3.7)1 and (3.11) yield 

,--0 aFt; OXp 

which by assumption vanishes for all admissible variations 8x. Here N is the unit 
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norma l  to S which is d i rec ted  in to  its posi t ive side. Consequen t ly  it fol lows that  

g,'Spj ~ j  Ox~ 

~ [ ~w ~u, ] 
Oxj WSm OF U OXp = 0  on ~ -  S.  (3.12) 

The  equi l ib r ium equat ions  (3.4)2 ensure that  the field equat ions  (3.12)2 hold  auto-  
mat ica l ly ,  whereas  the con t inu i ty  of  t rac t ions  (3.4)3 al low the first of  (3.12) to be  
wr i t t en  as 

[ W 1 - F r o ] + _ N = O  on S .  (3.13) 

Here  we have set o = W v and  F = 1 + ~7 u. Equa t ion  (3.13) is a jump condition which 
must necessarily be satisfied if  the d i sp lacement  field u is to min imize  the po ten t i a l  
energy over  the assumed  class of  vi r tual  d isp lacements .  In  the t e rmino logy  of  the 
calculus  of  var ia t ions ,  the j u m p  condi t ions  (3.4)3, (3.13) are  the Weierstrass-Erdmann 
corner conditions (see * Sect ion 15 of  [13]). 

4. D i s c u s s i o n  

A n  elas tos ta t ic  f ield which involves equ i l ib r ium shocks must  necessar i ly  sat isfy the 
a p p r o p r i a t e  field equat ions ,  j u m p  cond i t ions  and  b o u n d a r y  cond i t ions  descr ibed  in 
Sect ion 2. I f  this field is also to min imize  the associa ted  Potent ia l  Energy of  the b o d y  it 
must ,  in addi t ion ,  con fo rm to the  We ie r s t r a s s -E rdmann  c o m e r  cond i t ion  (3.13). In  view 
of  the known  (and  conjec tured)  re la t ion be tween  the s tabi l i ty  of  an equi l ib r ium 
conf igura t ion  and  its role as a min imize r  of  the Potent ia l  Energy,  see pages  195-206 of  
[19], one might  require  that  all  phys ica l ly  admiss ib le  equ i l ib r ium shocks should  
necessar i ly  con fo rm to the add i t iona l  j u m p  cond i t ion  (3.13). 

W e  note  that  P = W 1 -  F r o  is the so-cal led e n e r g y - m o m e n t u m  tensor  and  (3.13) 
wr i t t en  as [P]__+N = 0, m a y  be in te rpre ted  as requing that  the " fo r ce  per  uni t  a rea"  (in 
the  sense of  Eshe lby  [17]) on  the shock-surface  S be zero. 

Next ,  t ak ing  the do t  p roduc t  of  (3.13) wi th  the  uni t  no rma l  N leads  to 

[ W -  F N ' o N ] _  + = 0 on $ .  (4.1) 

F r o m  this and  (2.8) we conc lude  that  a " s t a b l e "  equ i l ib r ium shock is necessar i ly  
dissipation-free. ** It  is no t  diff icul t  to show that  in view of  d i sp lacement  and  t rac t ion  
con t inu i ty  across  S,  (3.13) is in fact  equivalent  to (4.1). In  o rder  to show this, we no te  
tha t  the vector  cond i t ion  (3.13) is equivalent  to the three  scalar  cond i t ions  ob t a ined  by  

* Nemat-Nasser [18] has considered a variational approach to nonlinear problems with discontinuous fields. 
The primary interest in this study was in composite materials and consequently the surfaces of strain 
discontinuity (corresponding to the interfaces between the different material) were located at fixed 
positions with respect to the undeformed body. As a result he had $(c)= S throughout his analysis and 
does not arrive at the jump condition (3.13). 

** The analysis and results here are, of course, based on the assumption that the system here can be 
characterized by a potential energy functional and that this is given by (3.1). Additional effects, such as 
"surface energy" associated with the shock surface, would undoubtedly change the results. 
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taking its dot product with any three linearly independent vectors. For this purpose 
choose N, L 1 and L 2 where L~ (et = 1, 2) are two vectors tangent to S. Then, (3.13) 
leads to (4.1) and [FL~.oN]_ += 0. Since the continuity of displacements imply that 
[FL~] + =  0, it follows from (2.7)3 that the latter holds automatically. This establishes 
our claim. 

Calculations similar to those performed here may be carried out in the case of 
incompressible elastic materials. These result in the identical jump condition (4.1). 

In the special case of anit-plane shear the displacement vector only has a component  
in the x3-direction, u 3 = u(x I, x 2). If  the material is incompressible and has an elastic 
potential W depending solely on the first invariant I l of the deformation, W = IV(11), 
I~ = trFF T, one finds [20] that 

F~,O=8,~ #, F3~,=u,,~ t~ ,3=0,  F33=1,  

11 = 3 + ]Vul z, 

%p = [ 2 W ' ( / , )  -P ]8~O '  °3- = 2W'(I1)u'"' °t~3 --"'r'PU'a' 

O33 = 2 W ' ( I , )  - -p ,  p = 2W'(I1)  + dou + dox3 + dl. (4.2) * 

Consequently, the "dissipation-free condition" (4.1) reads 

lW(3+[~Tu[2)-2W'(3+[~Tu[2)(-~n)2]+=O on S, (4.3) 

where Ou/bn denotes the derivative of u in a direction normal to the cylindrical 
shock-surface S. Continuity of traction and displacements require 

[2W,(3+lVu[2l OU] + [ O u ] + =  an J-  = [ as J-  0, (4.4) 

respectively, with au/as being a tangential derivative of u along $. Consider a 
particular point on the shock-surface S and define the function ~(k)  at that point by 

(aul t (4.5) "~(k)=2kW' 3+k2+kas l  ], - o ¢  < k <  oo. 

This function is apparently a "stress response function" which in the special case when 
au/as = 0 reduces to the shear stress response function in simple shear. The jump 
condition (4.3) can now be written in the form 

faa~/an (k)dk=~(a~)(a~ aft) (4.6) 
~/a~ \an On On " 

resulting in the particularly simple interpretation that the area under the graph of ~(k) 
between k = a~/an and k = aft/an must equal the area of the rectangle which lies on 
the same base and has height ~(a~/an) ( =  ~(af/an)). i f  au/as happens to vanish at 
this point (as is for example the case in one dimensional or purely axi-symmetric 
problems) the graph referred to here is simply the "shear  stress-amount of shear" 
response curve of the material. We emphasize however that in general ~(k)  is not a 
function of the material alone but rather depends on the local orientation of the 
shock-surface as well. 

Alternatively, one may interpret the dissipation-free condition (4.3) in terms of the 

• d o, d I a r e  constants. 
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energy function l~ (k )  

( (au/2/ 
f V ( k ) = W  3 + k 2 + ~ - ~ s  ] }, - o o < k < ~  (4.7) 

defined at the particular point  on  S under  consideration. The first of  (4.4) now states 
that  the tangents to the curve l~ (k )  vs. k at k = a~/an and k = aft/an are parallel, 
while (4.3) goes on to require that they, in fact, coincide. 

Knowles and Sternberg [6] and Abeyara tne  [7] have examined the anti-plane shear 
deformat ion  field near the tip of  a crack for certain classes of  elastic materials which 
suffer a loss of  ellipticity at sufficiently severe deformat ion levels. In  these studies, they 
found deformat ion fields which involved equilibrium shocks issuing f rom the crack-tips 
[6] or  points  on the crack-faces [7] and terminating in the interior of  the body. It is not  
difficult to show that these equilibrium fields do not conform to the dissipation-free 
condi t ion (4.1) and therefore are presumably  unstable. 

Finally, it is interesting to note  that as a consequence of  (3.13) the J-integral  defined 
by  

J = f~( W1 - F r o ) N d  A (4.8) 

on some arbitrary closed surface Y. (containing points in 6A only) will vanish even if 2 
intersects a stable equilibrium shock. This would, of  course, not  be the case if the j u m p  
condi t ion (3.13) were no t  imposed. In fracture mechanics,  a c o m m o n  technique of  
determining the stress-field near the tip of  a crack is to perform an asymptot ic  
calculation in the vicinity of  the crack-tip and to subsequently utilize the J- integral  to 
determine the parameter  left undetermined by  the asymptot ic  analysis (Rice [21]). One 
would, of  course, not  be able to use this technique in the presence of  equilibrium shocks 
since, in general, the J- integral  no longer vanishes on a surface intersecting a shock. 
However,  we see here that if one were to admit  only equilibrium shocks which conform 
to the dissipation-free condi t ion (3.13), one could in fact use such a technique. 
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