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Abstract. Existence and uniqueness results are established for weak formulations of initial-boundary 
value problems which model the dynamic behavior of an Euler-Bemoulli beam that may come into 
frictional contact with a stationary obstacle. The beam is assumed to be situated horizontally and may 
move both horizontally and vertically, as a result of applied loads. One end of the beam is clamped, 
while the other end is free. However, the horizontal motion of the free end is restricted by the presence 
of a stationary obstacle and when this end contacts the obstacle, the vertical motion of the end is 
assumed to be affected by friction. The contact and friction at this end is modelled in two different 
ways. The first involves the classic Signorini unilateral or nonpenetration conditions and Coulomb's 
law of dry friction; the second uses a normal compliance contact condition and a corresponding 
generalization of Coulomb's law. In both cases existence and uniqueness are established when the 
beam is subject to Kelvin-Voigt damping. In the absence of damping, existence of a solution is 
established for a problem in which the normal contact stress is regularized. 
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1. Introduction 

Problems involving contact and friction phenomena have received a great deal of 
attention in recent years and by now there is a considerable body of engineering 
literature devoted to this subject. In contrast, there are relatively few general mathe- 
matical results available in this area, due to the substantial difficulties encountered 
in establishing existence results for initial-boundary value problems that model 
these phenomena. Moreover, in both cases, most of the existing literature deals 
with static situations, or, occasionally with a sequence of static problems, which 
arise from the time discretization of an evolution problem. Modelling and mathe- 
matical analysis of such problems can be found in Duvaut and Lions [5], Moreau 
et al. [22], Kikuchi and Oden [11], and Telega [32], and the references therein 
(see also Curnier [4]). There are, however, some recent results on quasistatic and 
dynamic behavior in Andersson [1], Telega [33], Klarbring et al. [15], and Oden 
and Martins [24]. 

* The work of the last two authors was supported in part by Oakland University Research 
Fellowships. 
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The classic approach to modelling the frictional contact of elastic bodies 
employs Signorini's nonpenetration condition and Coulomb's law of dry friction. 
But, as has been pointed out in [5, 14, 15, 24, 32, 33] and elsewhere, there are 
both physical and mathematical difficulties associated with the presence of these 
conditions in models of dynamic contact phenomena. From the physical point of 
view, unilateral contact conditions seem unrealistic except for very smooth sur- 
faces, as they assert that there is no mutual penetration of the contacting bodies. 
Mathematically, the Signorini--Coulomb conditions lead to initial-boundary value 
problems for which the existence of solutions has only been shown in some special 
cases, e.g., ([8], [9], [23] and the references in [21]). The work of Duvuat and 
Lions [5, Chapter In] especially illustrates the mathematical difficulties that may 
be encountered in handling dynamic problems in this area, even in situations where 
the friction bound is treated as a prescribed function. 

In an effort to overcome these difficulties, which are often reflected in the behav- 
ior of numerical solutions obtained from algorithms that are based on these two 
conditions (see, e.g., Raous et al. [27]), some investigators have introduced alter- 
native models for the contact interface. Oden and Martins [24], for example, have 
proposed a model where the contact interface has a normal compliance character- 
ized by a power-law relationship between the normal pressure and the penetration. 
A similar generalization of Coulomb's law was also proposed. The computational, 
theoretical and experimental justification for these conditions has been developed 
in a series of papers (see, e.g., [10, 14, 15, 16, 21, 25, 34]) and there is by now a 
considerable body of work devoted to this topic. 

In the present paper we incorporate these normal compliance conditions into a 
model for the dynamic vibrations of an Euler-Bernoulli beam that is in frictional 
contact with an obstacle. The model takes into account both horizontal and vertical 
displacements of locations along the beam. Well-posedness results are obtained for 
a weak formulation of an initial-boundary value problem containing a constitutive 
relation that includes Kelvin-Voigt damping. More surprisingly, we can also show 
the existence and uniqueness of a problem that employs the Signorini-Coulomb 
conditions and Kelvin-Voigt damping. In both cases it possible to separate the 
problem of finding the horizontal displacement from the problem of finding the 
vertical displacement. The horizontal displacement problem is solved first and then 
the normal contact stress so obtained enters the friction functional in the vertical 
displacement problem. It is this latter fact that presents the greatest mathematical 
difficulties, particularly in the problem involving the Signorini--Coulomb condi- 
tions, where the normal contact possesses minimal regularity. Nevertheless, we can 
show the existence of a weak solution to the vertical displacement problem, using 
a crucial fractional Sobolev space estimate derived from the Fourier transform 
and interpolation. In the absence of damping we can also show the existence of a 
solution to an Euler-Bemoulli beam problem that employs the Signorini-Coulomb 
conditions and a regularized normal contact stress. 
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Figure 1. The reference configuration and the deflected beam. 

We can now describe the remaining sections of this paper. Section 2 contains a 
description of the models and statements of the main results. Section 3 is devoted 
to establishing the well-posedness of a vertical displacement problem for a vis- 
coelastic beam with a prescribed distributional friction bound. The proof uses such 
classic techniques as Galerkin approximation, convex regularization, interpolation, 
and compactness. By using this result the proofs of the main results are completed 
in Section 4. 

2. The Models and Statements of Results 

In this section, we present models for the dynamic evolution of a viscoelastic beam 
in frictional contact with a rigid obstacle. The beam is attached to a wall as its left 
end, but its right end is free to come into frictional contact with a rigid obstacle 
situated some distance to the right. The physical setting is depicited in Figure 1. 

We assume that the area-center of gravity of the beam in its (stress free) reference 
configuration coincides with the interval 0 ~< x ~< 1. We let g > 0 denote the initial 
gap between the end x = 1 and the obstacle. ForT > 0, we set f~T = (0, 1) × (0, T), 
and let u = u(x , t )  and v = v ( x , t ) , ( x , t )  E ~T represent the horizontal and 
vertical displacements of the beam at location x and time t. 

Let aN = aN(X, t) be the contact pressure at (x, t) and let aT = aT(x,  t) be the 
shear stress at (x, t). Then the equations of motion in nondimensional units take 
the form 

utt  -- ( O ' N ) x ( x , t )  = k ,  (2.1) 

Wtt - (~YT)x (X , t )  ---- f ,  (2.2) 

where f and k denote the vertical and horizontal applied forces, respectively. Here 
we have normalized the equations so that the coefficients of the acceleration terms 
are 1. We take for our constitutive relationships the Kelvin-Voigt viscoelasticity 
laws 

tYN(X , t )  ~-- aUx(X ,  t )  q- ClUxt(X , t ) ,  ( x ,  t )  E aT,  (2.3) 
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and 

(2.4) 

Here a is the coefficient of elasticity and c I and c 2 represent the viscosities in the 
horizontal and vertical directions, respectively. To complete the model we must 
include appropriate initial and boundary conditions. The initial conditions take the 
form 

u(x,O) = uo(x), ut(x,O) = ul(x),  0 ~ < x ~ < l ,  (2.5) 

V ( x , O ) = v O ( X ) ,  Vt(~7,0)=Vl(~),  0 ~ X ~  1, (2.6) 

where u0, ul ,  v0 and vl are prescribed functions. Since we suppose that the beam 
is rigidly attached at its left end, we set 

u(0, t) = 0 (2.7) 

v ( 0 , t ) = 0 ,  v , ( 0 , t ) = 0 ,  0 4 t ~ T .  (2.8) 

For the boundary conditions at the free end we consider several alternative 
conditions. For the horizontal displacement the first of these is the classic Signorini 
nonpenetration conditions 

u(1 , t )  <~ g, trN(1,t) ~< O, and 

a N ( 1 , t ) ( g - - u ( 1 , t ) ) = O ,  O ~ t ~ T .  (2.9) 

As was previously mentioned there are both physical and mathematical difficulties 
associated with the inclusion of this condition in mathematical models of fric- 
tional contact. Consequently, following [14] and [21], we shall also consider the 
alternative normal compliance condition 

aN(1 , t )=--CN(U(1 , t ) - -g) '~  N, O<~ t <<. T, (2.10) 

where c N and mN are two positive constants, and (u(1, t) - g)+ = max{u(1, t) - 
g, 0} represents the positive part of the function u(1, t) - g .  We note that in both (2.9) 
and (2.10) that when there is no contact, i.e., when u(1, t) < g, then aN( l ,  t) ----- 0. 
However, (2.10) permits the contacting end to penetrate the obstacle, i.e., it permits 
u (1 , t )  > g. (2.9) may be thought of as a limiting case of (2.10) as CN tends to 
infinity and for this reason it is typical to choose CN large (see, e.g., [16]). 

For the vertical displacement problem we assume that the sum of the moments 
acting on the free end is zero, i.e., 

vxx(1,t)  + c2vxxt(1,t) -- O, 0 <. t <. T, (2.11) 
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and we also include a friction law of the form 

I T(1,t)l h(t), (2.12) 

i f laT(1 , t ) l  = h(t)  then vt(1 , t )  = - -AaT(1, t ) ,  forsomeA /> 0, (2.13) 

i f l a z ( 1 , t ) l  < h(t)  then vt(1, t )  = 0, (2.14) 

for 0 ~< t ~< T. Physically, the function h(t) may be thought of as a friction bound 
and the conditions (2.12)-(2.14) interpreted in the following way: when the shear 
stress aT equals +h,  then the shear will be in the direction opposite to the slip, and 
when the shear is strictly less (in absolute value) than the friction bound, then the 
end sticks to the obstacle. 

The function h can be chosen in at least three different ways. One way is to 
treat h as a prescribed function. With this choice, equations (2.2), (2.4), (2.6), 
(2.8), (2.11)-(2.14) become an independent model for the transverse vibrations 
of a viscoelastic beam in frictional contact with a rigid obstacle. In Section 3 of 
this paper will show that such problems have weak solutions provided h is in 
H-~(0,  T), for some 0 < e < ~. A second way of treating h is to let 

h(t)  = - # a N ( 1 , t ) ,  0 <<. t <~ T,  (2.15) 

where # is a positive constant, called the coefficient of friction. With this choice, 
the conditions (2.12)-(2.15) constitute the classic Coulomb law of dry friction. Of 
course this law may be used in combination with either the Signorini condition 
(2.9) or the normal compliance condition (2.10). However, in the latter case, we 
may also allow for a more general h of the form 

h(t)  CT(U(1,t) mT = - g ) +  , 0~<t~<T, (2.16) 

where c T and m T  are two positive constants which may be chosen independently 
of CN and raN. This completes our description of the various boundary conditions 
we will consider. 

The alert reader will have noticed that equations (2.1), (2.3), (2.5), (2.7), and 
either (2.9) or (2.10) constitute an initial-boundary value problem for the horizontal 
displacement u that can be solved independently of the vertical displacement v. 
Indeed, problems of this type have already been considered in [12, 13, 17, 20, 21, 
28] and we will use those results in Section 4 of this paper. The main interest in 
this paper thus lies in the vertical displacement problem which will be treated in 
Section 3. 

Now, as is well known, a friction law of the form (2.12)-(2.14) imposes a 
regularity ceiling which, generally, precludes the existence of classical solutions 
to problems containing this boundary condition. Thus, it is natural to consider 
weak, or variational inequality, formulations of the above equations. We will give 
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tWO such formulations in this section. Toward that end we introduce the following 
spaces and notation. (For definitions of any unexplained notation we refer the 
reader to [18] or [19]). 

Let H = L2(0, 1) ,E = {w E Hi(0, 1)" w(0 )=  0} and V = {w E H2(0, 1) • 
w(0) = w'(0) = 0}. Clearly we have 

V c_ E C_ H = H'  c_ E '  c_ V', 

where E ~ and V t are, respectively the topological duals of E and V. 
Our first formulation incorporates the normal compliance condition (2.10) and 

the generalized Coulomb condition (2.15) and so it is convenient to introduce 

jN(U,W)=CN (u (1 , t ) -9 ) '~Nw(1 , t )d t ,  (2.17) 

the 'normal compliance' functional, and 

/0 j T ( u , w )  = cT (2.18) 

the 'friction' functional. Note that if m N )  1 and m r  ) 1, then both functionals are 
defined and convex on L2(0, T; E) x L2(0, T; E) but that, unlike jN(u,  "), jT(u, ") 
is not Gfiteanx differentiable. 

We can now give our first weak formulation, which is obtained in the usual way 
by multiplying (2.1)-(2.2) by suitable test functions and integrating by parts. 

DEFINITION 2.1. A pair of functions (u, v) E L2(0, T; E) x L2(0, T; V) is said 
to be a weak solution to (2.1)-(2.8), (2.10), provided that 

ut e LZ(O,T;E),  utt e L2(O,T;E'), u(.,0) = uo, ut( ' ,0) = u1,(2.19) 

vt E L2(0,T;V), vtt e L2(0,T;V'),  v ( . , 0 )=  vo, v,(.,0) = vi, (2.20) 

and for each ~ E L2(0, T; E) and w E L2(0, T; V) 

fooT(utt, ~o) dt + a foT(u=:, cPx) dt+ 

/o Io +Cl ('axt , ~o~:) dt + jm(u, ¢p) -- (k, ¢p) dt, (2.21) 

fo /o (vtt, w - vt) dt + (v~ ,  w ~  - v~,:t) dt+ 

Z +c2 (vxxt, w ~  - v~t )  dt+ 
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(2.22) 

In the integrands contained in (2.21) and (2.22), (., .) denotes respectively the 
duality pairing between E and E t and between V and V / while in both cases (., .) 
denotes the inner product in / / .  

We have the following existence and uniqueness result for the above problem. 

THEOREM 2.2. Let el /> 0, a > 0, and C 2 7~ O. Let k, kt E L2(0, T; El), f E 
LZ(~T), u0 E E, v0 E V, Ul, Vl E //, and m u  >_. 1, mT >/ 1. Then there exists a 
unique solution to problem (2.19)-(2.22), provided that in the case when Cl = O, 
the requirement in (2.21) that ut E L2(0, T; E)  is replaced by ut E L2(0, T; H). 

As previously indicated, the unique solvability of (2.19) and (2.21) when el = 0 
is established in [21, Theorem 4.1 ]. However, the proof given there can be modified 
in obvious ways to obtain the result for Cl > 0. The unique solvability of (2.20) 
and (2.22), is proved in Section 4 by using the result of Section 3. 

We have, in addition, the following stability result. 

THEOREM 2.3. Let (Yi, zi), i = 1, 2, be two solutions to (2.19)-(2.22) corre- 
sponding to initial data (Yio, Y~I) E E x H and (zio, zil) E V × H and applied 
forces (f i ,  ki) E L2(f~T) × Lz(f~T). Then there is an absolute constant C > O, 
and a constant C1 > 0 which only depends boundedly on the norms of  the data for  
the horizontal problem, such that 

The proof of this theorem is given in Section 4. 
Our second formulation incorporates the Signorini condition (2.9) and the fric- 

tion law (2.12)--(2.14). For this purpose it is convenient to set 

We also recall the scale of Hilbert spaces of distributions H~(0, T), ~ E (-:-~, oo), 
as defined in [19, Vol. I] and introduce, for E 1> 0, the functional 

where h E H-~(0, T) and (., .)_~,~ denotes the duality pairing between H~(0, T) 
and H-~(O, T). 
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The variational formulation of the problem with Signorini and Coulomb bound- 
ary conditions is as follows. 

DEFINITION 2.4. Let e >/ 0, and suppose h E H-*(0,  T). A pair of functions 
(u, v) E L2(0, T; K)  × L2(0, T; V) is said to be a weak solution to (2.1)-(2.9), 
(2.11)-(2.14) provided that 

ut E L2(O,T;E) ,  uu E L2(O,T;E') ,  u( . ,O)= uo, ut( . ,O)= "al, (2.23) 

vt E L2(0, T;V),  vtt E H-e (O ,T ;V ' ) ,  v( . , 0 )=  vo, vt(.,0) = vl, (2.24) 

and for each ~a E L2(0, T; K)  and w E He(0, T; V), 

T(utt, ~ -- u) dt + a (u:c, ~x - ux) dt 

T 

/oo ]o (u~t, ~ - u~) dt >1 

+c2 (v~t,  w ~  - v~x~) dt 

J(v ) 

>1 for ( f ,  w - vt) dr. (2.26) 

We have the following existence and uniqueness result. 

THEOREM 2.5. Let Cl ) 0, a > 0, and e2 > 0. Let k E L2(f~T) , f  E 
L2(~r) ,  uo E K,  vo E V and ul, vl E I I .  I f  h = - # a N ( l ,  .), where # is a 
positive constant and aN is given by (2.3), then there exists a unique solution to 
problem (2.23)(2.26), provided that in the case when el = 0 the requirement in 
(2.23) that ut E L2(O, T; E) is replaced by ut E L2(O, T; It).  

Once again the solution to the horizontal problem (2.23) and (2.25) can be 
found in [12], [131, or [28] for the case when el = 0 and in [171 for the case when 
cl > 0. Hence, the main interest lies in establishing the solution to the vertical 
displacement problem (2.24) and (2.26). This will be done in Section 4. 

Finally, we consider a problem which causes the standard Signorini--Coulomb 
conditions without Kelvin-Voigt damping. This is the kind of model for frictional 
contact most frequently employed in engineering applications, despite the diffi- 
culties discussed in Section 1. In this setting we find it necessary to introduce a 
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positive regularization operator, i.e., an operator R : L2(0,  T) ~ / /2(0,  T) such 
that R(u) >>. 0 if u >t 0 and such that there exists an absolute constant C > 0 so 
that 

IIR( )IIHL(O,T) CIIvlIL=(O,T) 

for each u E L2(0,T). Here H2(O,T) = {w E H2(0,T)  : w(0) = 0}. One way 
to construct such an operator is by using the convolution with a positive C ~ kernel 
(see, e.g., [2] or [7]). 

We now have the following result. 

THEOREM 2.6. Let cl = ¢2 = 0 and a > O. Let k E L2 (QT), f C H 1 (0, T; H), uo 
e K,  u 1 e H ,  V 0 e H4(0, 1), and v 1 e V with v0(0) = v~(0) = v~'(1) = v~"(1) -- 
O. lf h -~ R(-#aN(1, .)), where # is a positive constant and t7 g is given by (2.3), 
then there exists a solution to problem (2.23)-(2.26). Moreover, v can be chosen 
so that v E WI'~(O, T; V) and Vn C L°°(O, T; H). 

The proof of this theorem will also be given in Section 4. 
We conclude this section by sketching what results can be obtained for a qua- 

sistatic formulation of the problem with Signorini-Coulomb conditions and no 
damping. In this formulation we omit the acceleration and damping terms from 
(2.1)-(2.4). Consequently, the problem for u becomes a pure boundary-value prob- 
lem and by formally integrating (2.1) twice and using the boundary conditions 
(2.7) and (2.9) we arrive at the following explicit representation for u: 

{/o' } u(x,t)  = x min g , -  yk(y,t)  dy 

/o' /o -x  (1 -  y)k(y,t)dy + ( z -  y)k(y,t)dy. (2.27) 

Thus the calculation 

h(t) ~- --#O'N(1, t) = --#U~(1, t) 

= - # ( m i n { g , - f o l y k ( y , t ) d y } + f o l y k ( y , t ) d y )  

shows how h inherits its regularity properties from k. Similarly, by formally inte- 
grating (2.2) four times and using the boundary conditions (2.8) and (2.11) we 
obtain the following expression for v: 

v(x, t)  = (1/6)(x 3 -  3x2)v~zx(1, t) 

-~- ~X foX4 ~xl3 ~i f(xl,t)dxldx2dx3dx4. (2.28) 
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This expression implies that vlies in Hi(0, T; 114(0, 1)) provided f E 111(0, T; 11) 
and v~zx(1, t) E / / l ( 0 ,  T). It also implies that to achieve this degree of regularity 
the single initial condition v0 must satisfy the compatability condition 

///?//// v0 = ( 1 / 6)(x 3 - 3x2)v~"(1) + f (x l ,  0) dxl dx2 dx3 dx4. 
3 2 

Now differenting (2.28) we obtain 

vt = ( 1 , t ) =  (-1/3)v~:~xt(1,t)+ f t ( x l , t ) dx ldx2dx3dx4 .  
3 2 

By using this equation in combination with the friction conditions (2.12)-(2.14) 
and the initial value v~"(1) it is possible to obtain vx~(1, t) as the solution of a 
first order quasivariational inequality. Once v~z~(1, t) is obtained then (2.28) gives 
v. For an exact statement of the results and the hypotheses required we refer the 
reader to [29] and [30]. 

3. Solution of the Vertical Displacement Problem 

The purpose of this section is to establish the following theorem. 

THEOREM 3.1. Let c2 > 0. Let f E L2(f~T), v0 E V, Vl E 1t, let 0 < e < 1/8, 
and let h be a nonnegative distribution in H-~(0, T). Then there exists a unique 
v E WI'°°(0, T ; / / )  N L~(0,  T; V) N [N6>oW2'(3/2)-~(f~T)] which satisfies 

v(., 0) = vo, vt(', 0) = vl, (3.1) 

V z x t  E L 2 ( ~ T ) ,  (3.2) 

vtt E H-~(O,T;  V'),  (3.3) 

and such that for all w E 11~(0, T; V), 

/o /o" T( vtt, w - vO dt + ( v ~ ,  w ~  - v:,~t ) dt 

// +e2 (v:,xt, w ~  - v ~ t ) d t  + J(w)  - J(vt)  

/o" ) (f, w - vt) dr, (3.4) 

where J(z )  : (h, [z(1, ")l)-~,e, and (., ")-~6 denotes the duality pairing between 
/ /-~(0,  T) and 11~(0, T). Moreover, ,the following stability result holds: if zl, i = 
1,2 are ~olutions in W2'I+~(f~T) of (3.2) and (3.4) corresponding to initial data 
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(zi0, Zil) E V x H and applied forces fi E 52(~T), then there is an absolute 
constant C > 0 such that 

IlZl - 

c ( l l f l -  f2llL=(aT) + [IZ~'o- Z~'OIIH + I lZll-  z21lln). (3.5) 

The proof of Theorem 3.1 will proceed in several stages, but the general idea 
is to use Galerkin's method to establish solutions to finite-dimensional versions of 
(3.4) in a setting where h is a nonnegative element ofL 1 (0, T) and the functional J 
has undergone a convex regularization. We then establish apriori estimates which 
give us sufficient compactness to be able to pass to the limit and establish (3.4). 

So we begin by assuming that h is a nonnegative element of LI(0, T). In this 
case, the functional J is given by 

f0 T J(z) = h(t)lz(1,t)ldt. 

As was previously indicated, the functional J is not Gateaux differentiable and so 
we introduce the convex resularization Jm of J given by 

f0 T Jm(z) = h(t)¢m[Z(1,t)]dt, 

where, for each positive integer m, the function Cm is defined by 

{1 1- (1/2m), l/n, 
•m(8) = ms2~ 2, 1/0. 

Note that the G~lteaux derivative of the functional J,n is given by 

{J~(z ) ,w}= h(t)¢~[z(1,t)]w(1,t)dt,  

where {., .} denotes the duality pairing on the boundary. We now proceed to create 
a sequence of finite-dimensional versions of (3.4) using Jim. To this end, we select 
a sequence {z,~} in C~(0 ,1)  with zj(O) = z~.(0) = 0 such that {Zn} is an 
orthonormal basis for H whose linear span is strongly dense in V. Consequently, 
we may find am,j and bin, j such that if 

m m 

VOm = ~ am,jZj and Vlm= ~ bm,jzj, 
j-----1 j=l 

then 

Yore ~ vo strongly in V, (3.6) 
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V i m  - '+ Vl strongly in / / .  (3.7) 

Define the linear subspace WT,m of He(0, T; V) as the set of all functions of the 
form ~ i ~ l  Cjzj, where (¢1 , . . . ,  era) varies over all elements of He(0,  T) m. We 
note that WT,~ C_ WT,m+I, m = 1,2, 3, .... Consider now the problem of finding 
a function v~ of the form 

m 

v.~(~,t) = ~ ¢j(t)zj(~), (~,t) e at ,  
j=l  

for which 

+h¢~[vmt(1, .)]w(1,.) = (f, w), (3.8) 

for all w E WT,m, and which also satisfies the initial conditions 

v . , ( . ,  o) - vo.~, ~ . . ( . ,  o)  = v~., .  (3.9) 

Problem (3.8)--(3.9) is equivalent to a system of second-order ordinary dif- 
ferential equations for the coefficients e l , . . . ,  c,~, which, as a consequence of 
Theorem 2.1.1 of [3], has a solution that exists on some interval [0, tin]. The esti- 
mate (3.11) that we will obtain below together with Theorem 2.1.3 of [3] will show 
that these solutions in fact exist on [0, T]. 

Now it follows from (3.8) that vmt E Wtm,,~, and so we may set w = v,nt in 
(3.8) to obtain 

ld(Hv~"("t)JJ2H2 + I]v'~"(" t)[J2) + e211vm'~("t)lJ2H 

+h(t)~b'[v~-(1, t)]vm(1, t) 

= (f(.,t), v~,(.,t)). 

Integrating this equation from 0 to t > 0 yields, for all t E [0, tin], 

l(]]Vm-c(',t)][2H + []Vmzx(',$)[]~)+ C2fo t folv2mxx~.dxdr 

+ fo ~ he'[vine(I,  .)]v,,~(1, .) dr  
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l f t  / 1  2 d x d r  ' 
<. C,~ + 2 Jo ao v~ .  

where 

Cm 1 2 = ~(IIfIIL=(~T) + IlVlmll~z + IIv~'~II2)" 

Observing that {C~} is a bounded sequence and that s¢~(s)  /> 0, for all s E 
( -oo,  ~ ) ,  we conclude from (3.10) and Cauchy's and Gronwall's inequalities that 
there exists a constant C > 0, depending only on f, v0, Vl and T, such that 

IlVr~t(', t)ll~/ "4-IIv,~==(', t)ll~ + 2c211 vm==~llLZ (a~) ~< C, (3.11) 

Yt E [0, T], Y m  = 1,2, 3, .... Therefore, the sequence {V m } is uniformly bounded 
in WI'°°(0, T; H) N HI(0, T; V). However, this elementary estimate does not 
provide sufficient compactness to allow us to pass to the limit in m and obtain 
(3.4). In order to do this we need to establish further estimates. The next lemma 
will assist us in this endeavor. 

LEMMA 3.2. Let ¢ E L2(-oo, c~ ) N L °° ( -oo ,  ~ ). For each e E [0, 1], C defines 
a bounded operator Me : H - ~ ( - o o ,  oo) --+ H - ~ ( - o o ,  c¢), with operator norm 
not exceeding 

C~ max {[l¢[ILoo(-oo,~), II¢llL=(-oo,oo)}, 

and which agrees with pointwise multiplication by ¢ on L 2 ( - o % ~ )  and 
Ll ( -co ,  c~) NH-1 (-cx), oo). 

Proof. We suppose first that E = 1 and ¢ E C ~ ( - o o ,  oo). Then, by [6, 
Theorem 9.3.5], multiplication by ¢ in S ~ defines a bounded operator M~ of 
/ / - 1 ( _ ~ ,  ~ )  into H - l ( - c ~ ,  oo), with operator norm not exceeding 

F C (1 + I~l)-ll~(~)l d8 < Cll~llL=(-oo,oo), 
OO 

(3.12) 

where q~ denotes the Fourier transform of ¢. For a general ¢, we find a sequence 
{ ¢,~ } _c C~ ° ( - 0% oo ) with { Cn } bounded in L oo ( _ 0% c~), and for which Cn ~ ¢ 
strongly in L2(-oo, oo), as well as pointwise almost everywhere on (-c~, oo). We 
may thus define Me as the uniform limit of Me,, and conclude, by (3.12), that the 
operator norm of M~ does not exceed a constant multiple of I1¢11L2(-~,~). We also 
deduce from the strong and pointwise convergence that Me agrees with pointwise 
multiplication by ¢ on L2(-c~, oo) and on Ll( -oo,  0o) N / / - l ( - c ~ ,  oo), and 
hence maps H°( -o% cx~) = L2(-oo, 0o) into L2(-oo, oo) with operator norm 
II¢llL~(-oo,oo). That M~ maps H-* ( -oo ,  oo) into H-* ( -oo ,  oo) with the desired 
operator norm estimate for e E (0, 1) now follows by interpolation [19, vol. I, 
Theorem 1.5.1 and Remark 1.7.5]. This completes the proof of Lemma 3.2. 
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Before proceeding further we point out the following consequence of Lem- 
ma 3.2. Let h be a function integrable on (0, T) and denote by ho the function 
on ( - ~ ,  ~ )  which agrees with h on (0, T) and which vanishes outside of (0, T). 
Then for each e 6 [0, 1], the H-~(0,  T)-norm of h is equivalent to II h01]-~. Hence, 
in what follows, we identify the H-~(0,  T)-norm of h with IIh01l-= for e E [0, 1]. 

LEMMA 3.3. Let c2 > 0. For each 6 > 0, {vm} is a bounded sequence in 
wZ, (3 /Z) -6 (~T)  . 

Proof. Extend h and f to (0, +oo) and (0, 1) x (0, +oo), respectively, by 
defining them to be 0 for t > T. Extend vm to (0, +oo) by observing that the 
system of ordinary differential equations (3.8)-(3.9) can be solved on (0, +oo) so 
as to agree with vm on [0, T]. Let v* denote the even extension of vm in t, i.e. 

j" v,~(~,t),  t >~ o, 
V~n(X~t) 

v ~ ( z , - t ) ,  t < o. 

Then 

Vmt -- odd extension of Vmt in t, (3.13) 

Vmtt* = 2Vim60 + even extension ofvmu int,  (3.14) 

where 60 is the Dirac functional concentrated at t = 0. 
Let ¢ be a fixed element in the span of {zl . . . ,  zm}. Then by (3.8), (3.13), and 

(3.14), 

f o r t  6 
respectively. 

Set 

g~ = h*%b~[sgn (.)v~t(1 , -)], 

and let w 6 C~ ° ( - o o ,  oo) satisfy 0 ~< w <~ 
( -oo ,  - 2 )  U (T + 1, +oo). Then by (3.15), 

+ 2~o(v~m, ¢) + ( : ~ ,  ¢") 

+ c2(sgn(')Vmxzt,¢") + h*¢~m[Sgn(')v~t(1,')]¢(1) 

= (f*, ¢), (3.15) 

( - o c ,  ~ ) ,  where h* and f* are the even extensions in t of h and f ,  

1,w - 1 on ( - 1 , T ) , w  - 0 on 

V* ((~0 ,~)~, ¢) = (J,,*. ¢) + (~,:*., ¢) 

: (~'%, ¢) + ~o[(:*, ¢) - 2~o(v~m, ¢) 

-gm¢(1) - (v~:~, ¢") - c2(sgn ( . ) v ~ t ,  ¢")]. (3.16) 
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For a function g, we let .~ denote its Fourier transform in t, i.e., 

0(x,,)= v/~71 f f  t)e. ~ oog(x , dt, s E (-oo,  oo). 

We take the Fourier transform of (3.16) to obtain 

15 

" * ~ { r w t v *  1" , ~ tt  -zs([WVmt] ,¢) = ([wf*]~,¢) + ,t mtJ , ¢ ) -  ([WVmx~] ,¢ ) 

-c2([w sgn (.)v*x~t] ~, ¢") 

-2(vim, ¢) - (Wgm)~¢(1), (3.17) 

where we have used the fact that wSo(t) = 5o(t) since w(0) = 1. 
Next, let 5 > 0 and, for each s C (-oo,  oo), choose 

¢ = i sgn(s)(1 - X ( _ ] , l ) ( s ) ) l s l - 2 a ~ ( . , s )  

in (3.17), where X(- 1,1) denotes the characteristic function of the interval ( -  1, 1) 
and the bar over (WVmt)(., 8) denotes the complex conjugate. We then integrate the 
equation which results over -oo < s < oo to obtain 

fill) 1 f01 
]*l 1-26[(WV*t)"~] 2 dx ds 

1 

= i s g n ( s ) l s [ - 2 6 ( w f * ) ~ ~ ~ d z d s  
D1 

+i fN~>l fo 1 sgn(s)lsl-2'(Jv~t)~(wv~t)~ dxds 

--i f[s[)l fO 1 sgn(s)lsl-z6(wva~o~)~(wv~t)~ dec d s  

-czi  f fo 1 sgn (s)lsl-26(w sgn (.)v,~x~t)~(wv~xxt) "" dxds 
S l s l ) l  

-2 i  9~s[)I ~01 sgn(s)ls[-25Vlm(~OV*t)'~ dxds 

-i flsr~>l sgn (,)J,l-26(~og.,)~D%(1, .)]~ d, 

= Ira1 +" + Ira6. (3.18) 
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We now proceed to estimate the first five terms on the right-hand side of (3.18). 
In what follows C will denote a constant whose value may change from line to line 
but which is always independent of m. It follows from (3.11) for T sufficiently 
large, the fact that the Fourier transform is an isometry of L a ( - o e ,  oo), and the 
Schwartz inequality, that {lm 1}, • • •, {Im4} are all bounded with respect to m. (Note 
that in estimating {Ira3} and {Im4} we have made crucial use of the presence of 
the viscosity term in (3.11)). 

In the modulus of the integrand in [mS, we factor I~1-2~ as I~l-<z/21-alsl<Z/21-6, 
group the first and second factors with Vim and twv* ~~ respectively, and then ~, m t ]  , 

use the H-boundedness of {Vl~} to obtain, via the Cauchy inequality, that 

lfls fol lsll-281(wv*t)~l 2 dx dS. IIm51.<c+~ t>.~ 

It is this estimate which requires the inclusion of the decay factor Is[ -26 in the 
choice of ¢ above. Now since {WVmt } is bounded in L2((0, 1) x ( - o c ,  00)), there 
is a constant C such that 

lsk<l~O 1 1811-u61(wv~t)~l u dx d8 

F/o' ~< I (~v ; . )~ l  2 dx ds ~< C. 

Using this fact and the estimates obtained thus far in (3.18) we arrive at 

' Z  1 Isll-281(aav~d~l = d0c d8 
oo 

F N 8* c + 2 I(cogm) II[~ovm,(1,-)] laB. 
oo 

(3.19) 

We now wish to estimate the integral on the right-hand side of (3.19). We begin by 
observing that it follows from the Schwartz inequality that it does not exceed 

II~ogm I1-. I1~%(1, ")11-, (3.20) 

with a = ~ - (¼)`5 > 0. Now we apply Lemma 3.2 with ¢ : Cm = w ¢ ~  
[sgn (.)v~t ( 1,.)] and use the fact that I¢ '1  ~< 1 to conclude that, for all ,5 sufficiently 
small, 

II~gmll-~ < CIIh*ll-~ max{ll¢~llL+(-~,~), I1¢~11L:(-~,~)} 
<~ CIIhlIH-=(O,T), Vm---- 1,2,3,.. . ,  (3.21) 
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where the second inequlity in (3.21) follows from the remark after the proof of 
Lemma 3.2 and the fact that (h*)~ is twice the real part of h0. Using (3.19)-(3.21) 
and Cauchy's inequality with e we have that, for each ~ > 0, there exists a constant 
C,  > 0 for which 

f_~ fol ,sll-2'l(wv~t)~12 dx ds 

c ,  + Vm = 1 ,2 ,3 ,  . . . .  (3.22) 

Now let Q = (0,1) × ( - ~ ,  c~) and note by (3.11) that {wv~} is bounded in 
W 2,1 (Q). w e  can thus add the square of the W 2,1 (Q)-norm of w v m to both sides 
of (3.22) and conclude that, for each 71 > 0, there exists a constant C n > 0 such 
that 

* 2 II~vmllw=,(3/2)-,(Q) <~ Co + (3.23) 

Now we apply Theorem 4.2.1 of [19, vol. II] to find C > 0 such that 

II( v*t)(1, ")11  (3.24) 

Hence by choosing r I sufficiently small, we conclude from (3.23) and (3.24) that 
{~vv~ ) is bounded in W2,(3/2)-6(Q), and so {vm) is bounded in W2'(3/2)-8(f~T). 
This concludes the proof of the Lemma. 

Returning to the proof of Theorem 3.1, we can now conclude from (3.11) and 
Lemma 3.3 that there exists 

vcWI'C°(O,T;H)f'qHI(O,T;V)N [~>oW2'(3/2)-'(QT)] 

such that, after passing to a subsequence, 

Vm ~ v, weak* inWl'°°(O,T;H)N HI(o,T; V), (3.25) 

Vmt(1, ") ~ vt(1, "), weakly i nH~(0 ,T ) ,  (3.26) 

provided t~ = ~ - (3)~ > 0. Note that for such a we have that H~(0,  T) embeds 
compactly in L2(0, T), [19, vol. I, Theorem 1.15.1]. Thus we may suppose that 

Vmt(1, ") ~ vt(1, "), pointwise a.e. on (0, T). (3.27) 

Next, note that it follows from (3.8) that 

(Vmu, w - v,~t) + ( v , ~ ,  w ~  - v m ~ )  + c2(v,~zt, w ~  - v , ~ t )  
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+hetm[Vmt(1,')](w - vmt)(1, .) 

= (f ,  w -  v~t), Vw E WT,ra. (3.28) 

Now it follows from the convexity of Jm that for all z, w in the domain of Jm, 

J m ( w ) -  Jm(z) >t ( J ~ ( z ) , w -  z 1. (3.29) 

If we now integrate (3.28) over (0, T)  and use (3.29) we obtain 

-- foT(vmt, wt) d t+ fol[Vmt(x,T)w(x,T)  - Vlm(X)W(x,O)ldx 

-½(]lvmt(.,T)ll 2 -Ilvlmll 2 )  + [T(v,,::~, w:~z)dt 
Jo 

_½(livings(. T)II 2 . 2 -IIv0~llH) 

f0 T +c2 (Vm~:xt, wxx - Vmxxt) d t+ Jm(w) - Jm(v,nt) 

// >1 (f ,  w - vmt) dt, Vw C WT,m fq HI(~T). (3.30) 

Now le tp  be a fixed positive integer and take w E WT,p N Hl(~2T) in (3.30). 
We now pass to the limit in m in the various terms in (3.30) so as to establish (3.4). 
By (3.25) we may pass to the limit in the first and fourth terms on the left of (3.30), 
and in the term on the right-hand side. (3.25) and the weak lower-semicontinuity 
of the norm in L2(ftT) also yield 

/0 /0 (vxx~, wx~ - v~x~) at >~ l ~  ( v . ~ ,  ~,x~ - ~,m~,) dr, 

and so we may pass to the limit in the sixth term on the left of (3.30). We observe 
next that Iem(S) - I s l l  ~< I /m,  whence by (3.27), em[Vmt(1,')] ~ Ivt(1,')l, 
pointwise a.e. on (0, T). Hence, by Fatou's lemma, 

fo T J(vt) = hivt(1,.)ldt 

lim ~0 T <. ~ h~m[Vmt(1,')]dt 

lira 
-- "~ Jm(vrat), (3.31) 

and so we may pass to the limit in the seventh and eighth terms on the left of (3.30). 
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We next prove that vxx(', T) and vt(., T) exist as elements of H, and that 

v ~ ( . , T )  ~ v~( . ,T) ,  and (3.32) 

vmt(. ,T)-+ vt(. ,T),  weaklyinH. (3.33) 

Once (3.32) and (3.33) have been established, (3.6), (3.7), and the weak lower- 
semicontinuity of the norm will allow us to pass to the limit in the second, third 
and fifth terms on the left of (3.30). This will complete passage to the limit in all 
the terms in (3.30). 

To establish (3.32) we note that it follows from (3.11) that there exists r E H 
such that 

Vmx~(', T) --+ r, weakly in H, (3.34) 

and (3.25) implies that 

vm(., T) --+ v(., T) strongly inH. (3.35) 

Then a standard argument shows that r = v~(. ,  T), and hence (3.32) holds. 
Establishing (3.33) is more involved. We begin by observing that for each 

measurable subset E of (0, T), 

fEhl¢~[vmt(1 , t ) ]d t<~fEhdt  , Vm = 1,2,3, . . . ,  

and hence {h¢~[vmt(1,')]} is relatively weakly compact in LI(0,T). Since 
Lemma 3.2 implies that this sequence is bounded in H-*(0, T), it follows that 
there exists e C H-~(0, T) N LI(0, T) for which 

h¢~m[V,~t(1,')] ~ g, weaklyinLl(O,T). 

Integrating (3.8) and (0, T) and passing to the limit in the equation which results, 
we conclude that, for all w E {z E tJpWT,p: z(., T) = z(., 0) = 0} fq HI(f~T), 

/0 /0 /0 - ( v .  wOdt + (v=~,w~x)dz + c2 (v~t ,w~x)dt  

+ e (l,t) d t =  (f,m) dt, 

from which it follows that 

vu + v~:x~ + c2v~x t  = f in Z~'(f~r). 
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Thus, by (3.11), vtt 6 L2(0,T; H-2(0, 1)), and so 

v, 6 C([0,T]; H-2(0, 1)). (3.36) 

But it follows from (3.11) and (3.25) that, for all ¢ 6 C~°(0, 1), 

ess sup[(vt( . , t) ,¢)[ <~ C[[¢[[H, 
t~[0,T] 

and so, by (3.36), [<vt(.,T),¢)[ <<. ClI¢IIH, from which it follows that v t ( . ,T)  
defines on element of H. By (3.25), we have 

lirn fo T fo i w (x )¢ ( t ) vm , ( x , t ) d sd t  

Z /o ' = w ( x ) ¢ ( t ) v t ( x , t ) d x d t ,  

for all ¢ £ LI(O, T), w 6 H. In particular, setting ¢ = (1/rl)X[T_n,T] for 0 < r I < 
T, it follows that 

' ; / o  l i m ; j T _ n f 0  v , u ( x , t ) w ( x ) d x d t  1 T 1 = - v t ( x , t ) w ( x ) d x d t ,  
m ~ _ r  I 

and hence 

lim lim 1 fT f o l v m t ( X , t ) w ( x ) d x d t  

-"m'/( /o' - - vt(x, t )w(x)  dx dt. (3.37) 
n--.o r I -n 

We now wish to interchange limits on the left-hand side of (3.37) and evaluate the 
limit on the right hand side. For this purpose we need the following lemma. 

LEMMA 3.4 Let w be in the span o f { z 1 , . . . ,  zp}. Then the set 

{/o ) v . ~ ( ~ , . ) ~ ( ~ )  d~: m >~ p 

is uniformly equicontinuous and hence relatively norm compact in C[O, T]. 
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Proof. Choose s and t in [0, T] with s < t. It follows from (3.8) that 

/o l[vmT(X,t ) -- Vmr(X,S)]w(x)dx = Vm~,r(x,7")w(x)dT"dx 

/5o = f ( x , r ) w ( x ) d x d r  

o~stL I - Vmzx( s ,1 - )w t ' ( x )dxdv  

LVo - c2  vm~ ,~ .~ (x , r )w" ( z )dzdr  

-w(1)f'h¢'~ [vm, (1, .)] dr. 

Since f E L2(f~T), the first term on the fight tends to zero as s - t ~ 0, inde- 
pendently of m. It follows from (3.11) and the Schwartz inequality that the second 
and third terms are dominated by CIIw"llHV/t - 8. Since [¢'~[ ~< 1, the last term 
is dominated by ]w(1)[ fs t h dr. Therefore 

0 

as t - s ---, 0, independently of m. This completes the proof of the Lemma. 

Returning to (3.37), we find upon passing to a subsequence that for each w in 
the linear span of {zn} ,  there exists q E C[O, T] for which 

L 1 w ( x ) v m t ( x ,  .) --+ q, strongly C[O, T]. dx in 

Since we already have that 

L' /0' w(X)Vmt(X, ')dx---+ w ( x ) v t ( x , . ) d x ,  weak* in L°°(0,T) ,  

it follows that 

L l w ( x ) v t ( z , . ) d x  = q e C[0,T]. 

This is sufficient to conclude that 

1 i. io" io' lim - l w ( x ) v t ( x , t ) d x d t  = w ( x ) v t ( x , T ) d z .  
v--*o r I -7  
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The uniform convergence also allows us to interchange the limits on the left-hand 
side of (3.37), and so we conclude that 

/o' /0' lira vmt(x ,T)w(x)dx = vt(x ,T)w(x)dx.  

Since the linear span of {zn} is dense in H, (3.33) follows. We have now shown 
that we can pass to the limit in all terms in (3.30) for a fixed w C Wr,p Cl HI(f~T). 

Thus (3.4) holds for all w E (UpWT,p) Cl Hi(at). The density of (UpWT,p) Cl 
Hi(at) in He(0, T; V) will yield (3.4), for all w E II~(O, T; V), provided we 
show that 

vtt E H-~(0, T; V'). (3.38) 

In order to establish (3.38), we integrate by parts and pass to the limit in (3.8) to 
conclude, with the aid of (3.33), that 

/0 • /0 /0 (vtt, w ) d t =  ( f , w ) d t -  (v~z, wxz)dt 

--C2 3foT(vxxt, w x z ) d t -  ~oTgw(1,.)dt, (3.39) 

Vw E tApWT,p. Therefore, for each ¢ in the linear span of {z,~}, 

(vtt(.,t),¢) = ( f ( . , t ) , ¢ ) - ( vx z ( . , t ) , ¢ " )  
(3.40) 

-c2(vxxt(', t), ¢") - £(t)¢(1), 

for a.e. t E [0, T]. It follows from (3.40), the fact that//2 (0, 1 ) embeds continuously 
into C[0, 1], and the strong density of the linear span of {z,~} in V, that the function 

t (v.( . ,  t), ¢), t e (0,T),  

is an element o f / / -~ (0 ,  T) for all ¢ E V. This implies that (3.38) holds and 
hence (3.4) holds. We also note that the / / -e  (0, T; W)-norm of Vtt does not exceed 
c(1 + IIhlIH-~(O,T)) for some C > 0. 

We now check that the initial conditions (3.1) hold for v. That v(., 0) = v0 is 
immediate from (3.6), (3.9), (3.25), and the boundedness of the trace operator from 
//l(f~T) into/ / .  To see that vt(., 0) = Vl, we observe that a simple modification 
of the argument used to verify (3.33) shows that vt(., O) E t l  and 

VXm = v,~t(',O) ~ vt(',O), weakly in // ,  

whence by (3.7), vt (., 0) = vl. This completes the proof of the existence assertion 
in Theorem 3.1 in the case where h is assumed to be in Ll(0, T). 
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Turning to the general case, we now assume that h is a nonnegative distribution 
in H-e (0 ,T) ,  for some e C [0, 1/8). Then by ([19, Vol. I, Remarks 1.7.4 and 
1.12.5.]) there exists a sequence of nonnegative functions {hn} in C°°[0, T] for 
which 

hn -* h strongly in H-~(0,T).  (3.41) 

By the version of Theorem 3.1 which has just been established, for each n, there 
exists a function vn such that for all w E H~(0, T; V), 

) dt 

+c2 foT( v,~xt , wx~ -- vnx~t ) dt 

+ h~lw(1, t ) ldt-  h,~lv,.(1,t)ldt 

) (f, w - v,u) dt, (3.42) 

and for which 

= v o ,  = 

{vn~(. ,T)} and {v~t(.,T)} are bounded in H, 

{v~} is bounded in W1'OO(O,T;L2(O, 1)) f) HI(O,T;H2(O, 1)) 

fq 

{v~tt) is bounded in H-*(O,T;W). 

We may thus find 

v e WI'OO(O,T;H)f3 HI(O,T;V) N 

which satisfies (3.1)-(3.3) and for which 

Vn -~ v weak* 

1 

in WI'~°(O,T;H)fq HI(O,T; V) 
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and 

v~tt ~ vtt weakly in H-~(0, T; W). 

Consequently, we may pass to the limit in the second and third terms on the 
left-hand side of (3.42) and in the term on the right. 

To pass to the limit in the first term on the left-hand side of (3.42), we integrate 
it by parts and observe that our previous reasoning will allow passage to the limit 
in the expression which results, provided that an appropriate version of Lemma 3.4 
holds for the sequence {v~t}. But if we choose w E C~(0, 1), then our previous 
argument with (3.40) used in place of (3.8) shows that the set 

{/0' } n =  1 , 2 , 3 , . . .  

is uniformly equicontinuous on [0, T], and this is sufficient for our purposes. 
It only remains to pass to the limit in the fourth and fifth terms on the left side of 

(3.42). We first deduce from [19, vol. I, Theorem 1.10.2] that, for each (~ E [0, ½), 
the H ~(0, T)-norm of [vnt(1, .)[ does not exceed the H~(0, T)-norm of v,u(1, .). 
Using the boundedness of the sequence {v,u(1, .)} in H~(0, T) for ~ E (0, ~) 
and the compactness of the embedding of H~(0, T) into He(0, T) for a > e, we 
conclude, after passing to a subsequence, that 

Iv,u(1,.)[ ~ Ivt(1,.)[, strongly in He(O,T) .  

This, together with (3.41), suffices to pass to the limit in the fourth and fifth terms 
on the left of (3.42). Thus v satisfies (3.4). This concludes the proof of the existence 
assertion contained in Theorem 3.1. 

Finally, we establish the stability assertion of Theorem 3.1, which will also 
establish the uniqueness. We begin by observing that if v E W2'I+e(~T) satisfies 
(3.2), then vt E He(0, T; V). Now fix t E [0, T], let X(o,t) denote the characteristic 
function of the interval (0, t), and recall that X(o,t) is a multiplier of H~(0, T) for 
all a E [0, ½) ([31, Th 6.1 l(b), p. 162]). Then, for each solution v of (3.2) and (3.4) 
in W2'I+e(~~T) and for each w E He(0, T; V), we have that (w - vt)X(o,,) + vt E 
H~(0, T; V). We may thus replace w in (3.4) by this function to conclude that 

fo /o' ( v r . , w -  v . ) d r  + (v . z ,  w x . -  vx**) dr 

~0 t +c2 (Vxx~, W~x - V~xr) dt 
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/0 ) ( f ,  w - vr) dt, Vw E He(0, T; V). (3.43) 

Now let zi, i = 1,2 be solutions in W 2, l+e(f~r) of (3.2) and (3.4) corresponding 
to applied forces f i  C L2(f~T) and with initial data (zio, Z/I) E V × / / .  Letting 
v = Zl,W = z2~-,f = f l  in (3.43), and then v = z2, w = zt .~,f  = f2 in (3.43), 
adding the resulting inequalities, and setting z = Zl - z2, we obtain 

-g ~(IIZ-~(',')IIH+IIz.~(',T)II2)d'--C2 z~2x, dx dr  

2f-J(--Z~)~(O,t) -~- Zl'r) "q- J(z.x(o,t) + z2~-) - J ( z l r )  - J ( z 2 r )  

/o ) (f2 - f l ,  z , )  dr.  (3.44) 

But the sum of the last four terms on the left-hand side of (3.44) is the limit, as 
n ~ +oo,  of 

fo T Z l . ) ( 1 , r ) X ( o , t ) [ T  hn l (Z2r -  + Zl~(1, r)l d r -  Jo hnlzl~-(1, r)[ d r  

/o /o + h~l(Zl. - z2.)(1, T)~(0,~l + z2.(1,~-)r dr - h~lz241, ~)1 d~- 

= h,~lz2,-(1, r)l d r -  hn[zl ,(1,  r)l dr  

+ f0~ h~lzl.(1, r)l d~ - -  foe h~lz2.(1, r)l dr 

"-- 0, 

and hence is also zero. It follows that for each r / > 0 and for a.e. t ~ [0, T], 

IIz4",t)115 + IIz~x(',t)ll5 .< [Iz~%- "" ,2 "20.H + IlZll - z21112 

r] 2 2~  2 2  +~llz, llL=(~) + [ I l l -  f IIL=(~T)' 

which implies (3.5), for ~ > 0 sufficiently small. The proof of Theorem 3.1 is now 
complete. 

We remark in concluding this section that the proof we give of Theorem 3.1 
shows that in the case when the distribution h is a function in LI(0, T), the full 
sequence {Vm} of Galerkin approximations obtained directly from the regular- 
ized problems converges weak* in WI,°°(0, T; H)  f ) / /1(0 ,  T; V) to the solution 
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of (3.1)-(3.4). Consequently, these approximations may be used in developing 
numerical methods for calculating the vertical displacement of the beam in specific 
examples. 

4. Proofs of the Main Results 

In this section we use the results of Section 3 to prove Theorems 2.2, 2.3, 2.5 and 
2.6. 

Proof of Theorem 2.2. As has been mentioned above, it follows from [21, 
Theorem 4.1] that problem (2.19) and (2.21) has a unique solution u. (Although 
the proof as stated there only covers the case cl = 0, it can be modified in obvious 
ways to obtain the results for cl > 0.) Consequently, we need only establish 
the existence of a unique solution to (2.20) and (2.22). To this end we note that 
when cl > 0 we have that u E L2(0, T; E)  and ut C L2(0, T; E)  and therefore 
u(1, . ) ,  the trace of u on x -- 1, belongs to HI(0 ,  T). Consequently, if we now put 
h -- cT(u(1, .) - g ) ~ r  we have that h E L~°(0, T). In the case when el = 0 we 
have that u(1, . )  C H 1/2(0 , T)  and hence by [26] u(1, . )  E L q (0, T) for every finite 
q. It follows that h is in L2(0, T). In either case we can apply Theorem 3.1 with 
this choice of h to conclude that problem (2.20) and (2.22) has a unique solution 
v. This completes the proof of Theorem 2.2. 

Proof of Theorem 2.3. In this section we let C1 denote a constant whose value 
may change from line to line but which only depends on the norms of the data for 
the horizontal problem. Let Yl and Y2 be as in the hypothesis of the theorem. Let 
t E [0, T] and let X(o,t) be the characteristic function of (0, t). Since we have that 

Yi-~ C L2(O,T;E), i  = 1,2, we may set ~ = u~x(0,t) in (2.21) for u = Yl and 
u = y2. We subtract one of the equations so obtained from the other, and integrate 
the first two terms in the resulting equation. We thus obtain, for all ~ > 0 and all 
t e [0, T], 

Ily~(.,t)ll~ + allux(',t)ll2H + Cl ~0 t IlYx~ll~ dr 

+cN fo/[(yl(1, ") - g)7 N 

- (y2(1,  ") - g)"~NY.r(1,')dr 

< I ly~o-  ' 2 U2ollH + IlYu - y2111~ 

+ ~ (k~ - ~2) 2 d~ a~- + ~ Jo Jo y~ dx dr, (4.1) 
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where y = Yl - Y2. Using the fact that y~. E L2(0, T; E) ,  we have that 

CN fot[(yl(1,r)-  g)~tC - (y2(1,v)-  g)~N]yr(1,r)dvl 

/o t ~<E IlYx.llSdr+ ~ I (y l (1 , r ) -~)~  ~' 

- ( y 2 ( 1 , 7 - )  - g)~Y 12 dr.  (4.2) 

Assuming that mN > 1 we use the Mean Value Theorem and HOlder's inequality 
for q > max{l,  1/(2(mN - 1))} to obtain 

f0 t I(y1(1,7-) - g)7~ - (y2(1, r) - g ) ~ N [ 2  dT- 

~<Clly(1, = ")IIL2(O,0 

, "~ll2(mN-- 1) 
+C max{llyl(1 "JNL~mN-~)q(0,T)' 

Ily2(1, 2(r-N-l) Z • )llL~m,,_,),(O,T)}llY(1, ")llL=.(o,0, (4.3) 

where p is such that p-1 + q-I = 1. If mN = 1 then the estimate (4.3) holds with 
the second term on the right deleted. 

Now recall that the trace operator from Hi( f iT)  into L T (0, T), for 1 ~< r < + ~ ,  
is bounded, and so by rescaling the inequality, we can find C > 0, independent of 
t, for which 

Ily(1, z ")llL~(O,t) <~ Cmax{t(z/T)+x,t(2/T)-l}llyllzHl(at), Vt G (O,T), (4.4) 

where we have set 12t = (0, 1) x (0, t). We also note that it follows from the proof 
of [21, Theorem 4.1 ] that the H 1 (~2T) -norms of y I and Y2 do not exceed a constant 
which depends boundedly on the appropriate norms of the data. If we thus set 

m(t) = max{l,  t z} + max{t (1/p)+I, t(1/p)-l}, 

it follows from (4.3)-(4.4) that there exists a constant CI > 0, depending boundedly 
on the norms of the data, for which 

fo' I(y~(1, r ) -  g ) ~  - (y~( l, r ) -  g)7~l ~ dr  

<~ clm(t)llyll2w(.,), vt ~ (O,T). (4.5) 
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By using the fact that Y E L2(0, T; E),  it now follows from (4.1)--(4.5), that, for e 
sufficiently small and for all t E [0, T], 

[[v(.,t)[[~ + [[w(.,t)[[~ + [[y~(.,t)[[~ 

~< Cl ( [ [Yio  ! 2 2 v20tlH + IIv-  v21tJ~ + II~  - - - &211z=(.T)) 

+Clm( t)[ly[[~,(,,). 

The stability result for y is now a consequence of Gronwall's inequality, since rn(t) 
is integrable on (0, T). 

We next let Zl and z2 be as in the hypothesis of Theorem 2.3 and put z = zl - z2. 
By an argument similar to the one used in the proof of Theorem 3.1, we have, for 
all s > 0 and for all t E [0, T], that 

.< fizZ'0 ,, ,2 

+e 1~,(1,~)12dr + 1/4e[[fl-  f2[[L2(ar) 

+ 1/4~/f I(v~(1,  ~ )  - g ) ; ~  - (y2(  1, ~-) - e ) 7 ~ l  2 dr .  (4 .6)  
dO 

Since z~- E L2(0, T; V), we have that 

fotlZ~(1,r)12dr <~fotfolzz~xrdxdr. 

From (4.5) (with mN replaced by roT), we have that the last term on the right-hand 
side of (4.6) does not exceed a constant multiple of m(T)IIYlI~(.T). Using these 
facts in (4.6), taking s sufficiently small and combining this with the stability result 
just obtained for y, we obtain the stability result for z. This concludes the proof of 
Theorem 2.3. 

Proof of Theorem 2.5. In this setting the existence of a unique solution to the 
horizontal problem (2.23) and (2.25) follows from [28, Theorem 2.1] for the case 
when cl = 0 and [KS] for the case when O > 0. The proof in Section 2.2 of 
[28] can also be modified to show that if u E L2(0, T; E), ut E L2(0, T; E)  and 
utt - auxz - ClUzxt (defined in the sense of distributions) is in L2(ftT) then the 
trace aN ( l ,  .) = au~:(1, .) + ClUb:t(1, .) exists as an element of H-1/2(O,T). (In 
the case when cl = 0 this conclusion follows if the only assumption made on ut is 
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that ut C L2(0, T; H)).  Moreover, it is shown there that if u satisfies (2.25) then 
- -aN(I ,  .) is nonnegative. In [13] it is shown that in fact aN( l ,  .) is in L2(0, T). 
Consequently, if we put h = - # a N ( l ,  .) in Theorem 3.1 we can again conclude 
that there exists a unique v satisfying (2.24) and (2.26). 

Proof of  Theorem 2.6. As in the proof of Theorem 2.5, we have a unique 
solution to the horizontal problem (2.23) and (2.25) such that the trace - aN (1,.) = 
--cux (1,.)  is a nonnegative function in L2(0, T). However, in this case, we cannot 
rely on Theorem 3.1, as stated, to produce the solution to the vertical problem 
since when c2 = 0 the critical Lemma 3.3 is no longer valid. However, we can 
begin the proof in the same way, choosing zj to satisfy the additional conditions 
z~!(1) = z~"(1) = 0 and then taking the convergence in (3.6) and (3.7) in H4(0, 1) 
and V, respectively. We thus obtain the elementary estimate (3.11), with the term 
II Vm  tllL2( T) deleted. This alone, of course, is not sufficient to pass to the limit in 

(3.30). But if we take a C2-smoothing of ¢ and let h = R ( - # a N (  1, .)) E H2(0, 1) 
then it is possible to differentiate 

(Vmn,Zj) + (v.~x~,zj~z) + h~m[Vmt(1,')]zj(1) = ( f ,  zj), 

" and sum over j to obtain a second round of with respect to t, multiply by aj 
estimates of the form 

IlVmtt(',t)ll~ + [IVmxxt(',t)ll 2 <~ C, 

where C depends only on the data. In this process the additional assumptions on the 
initial data are used. These estimates are sufficient to pass to the limit in (3.30) and 
establish (3.4). Since this approach is by now well-known (see, e.g., [5, Chapter 
III, Section 5.5.4]), we omit the details. We can thus conclude that there exists 
a solution to the vertical problem (2.24) and (2.26). This concludes the proof of 
Theorem 2.6. 
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