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ABSTRACT 

The aim of this paper is to produce elementary yet explicit formulae for the evaluation of stress and strain 
concentration factors at an ellipsoidal inclusion, for arbitrary anisotropy, under uniform loading at infinity. 
The results are such that the required formulae do not involve the solution of any boundary value 
problems or the knowledge of any Green's functions. An important feature of the analysis is that the 
solution of the interface problem is intimately related to the solution of the inclusion problem. 

Introduction 

One of the most  often discussed problems in stress analysis is the determinat ion of 
stress and strain concentrat ion factors at the surface of an ellipsoidal inclusion in a 
matrix which is uniformly loaded at infinity. The vast majori ty  of this work is 
restricted to isotropic materials and makes  use of stress functions to solve the 
appropr ia te  boundary  value problem. Extension of this approach to anisotropic 
materials is not easy and has received very little attention. 

A second approach is due to Eshelby [1] and relies on explicit knowledge of the 
Green ' s  function. The difficulty here is that  the Green ' s  function is simple for 
isotropic materials,  dreadfully complicated for transversely isotropic materials  and 
unknown in general. Eshelby [1] only worked  out the results for isotropic materials.  
The method depends upon the fact that the stress and strain within the inclusion are 
uniform. Eshelby [1] goes on to analyse the conditions which apply at the interface 
and is then able to deduce the stress and strain in the matrix at the interface. We 
remark  that Eshelby 's  analysis of the interface conditions only works for isotropic 
materials.  

A third method has recently been given by Hill [2]. Hill 's [2] technique is to 
combine a thorough analysis of the jump conditions at an arbitrary interface with the 
standard solution to the ellipsoidal inclusion problem.  While most  of Hill 's [2] work 
is restricted to isotropic materials,  Laws [3] has shown how it can provide a basis for 
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a complete t reatment  of the anisotropic problem. Roughly, the method given in [3] 
combines the separate solutions of two sub-problems, viz. the interface problem and 
the inclusion problem. In the interface problem we can think of the stress and strain 
on one side of the interface as known ;1 the problem is to determine the stress and 
strain at the other  side of the interface. The general solution is given in [3] and 
depends upon four tensors each of which depends only on the stiffness tensor and 
the unit normal to the interface. Fur thermore any one of these tensors uniquely 
determines the other  three. When the solution of the interface problem is combined 
with the solution of the inclusion problem, one obtains explicit formulae for the 
evaluation of stress and strain concentration factors, c.f. [3]. 

At  the time of writing of my earlier paper [3] I said that applications of the 
general theory were limited by the fact that solutions of the inclusion problem were 
known only in a few special cases. This statement is not correct. Indeed further work 
has shown that the stress and strain within the inclusion can be determined whatever 
the degree of anisotropy. The important  work in this connection is due to Kinoshita 
and Mura [4]. 

The aim of the present paper is to bring together the solutions of the separate 
problems. In doing so, we give a simplified t reatment  of the anisotropic inclusion 
problem. Furthermore it transpires that there is a fundamental connection between 
the interface problem and the ellipsoidal inclusion problem. 

Ultimately it is shown that one can obtain stress and strain concentration factors at 
ellipsoidal inclusions in arbitrarily anisotropic materials without solving any bound- 
ary value problems and without knowing the Green's  functions. 

The interface problem 

We use the notation of Laws [3]. Fourth order  tensors are denoted by upper case, 
light face Latin letters, symmetric second order  tensors are denoted by lower case, 
bold face, Greek  letters, and vectors are denoted by lower case, bold face Latin 
letters. In addition it is often appropriate to use the usual suffix notation. 

The interface problem is conveniently specified by decomposing any s y m m e t r i c  

second order  tensor "r into the sum of its exterior part "re and its interior part "ri, 
where 

• , = n ® ~ ' n + ~ ' n ® n - ( n . ~ ' n ) n ® n ,  

~ = (1 - n ® n ) ~ ' ( 1  - n ® n ) .  

Here,  1 is the unit second order  tensor and ® denotes the tensor product. 
Consider an interface between two media. On one side of the interface there is a 

linearly elastic solid with stress o', strain ~ and stiffness tensor L and compliance 
tensor M. On the other side the stress is o-* and the strain is E*. In the interface 

1 This information is not necessary. In the terminology of [2] and [3] we only need to know the interior 
part of the strain and the exterior part of the stress. 
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problem one regards or* and e* as given. It can then be shown that or and e are 
uniquely determined by the formulae, c.f. Laws [3], 

t~ = C~* + Dor*, 

or = F~* + Go'*. 

Fur thermore  one can show that D is symmetric, D = D r, and that 

C = I -  D L ,  G = L D ,  

F = L - L D L  = F T. (1) 

It then follows that 

- ~ *  = D ( o . *  - L e * ) ,  (2)  

o. - o.* = F ( e *  - Mo '* ) .  

A quick derivation of the component  form of D can be given as follows. First, 
Hadamard 's  lemma implies that 

eli - e *  = l(a~n~ + a f t ) .  (3)  

Second, continuity of surface traction requires that 

o . n  ---- o . * n ,  

and hence that 

L ( e  - e * ) n  = ( o r * -  L e * ) n .  (4) 

If we temporarily put  ~/= o r * - L e * ,  then substitution of (3) into (4) leads to 

Tilnl = Li jk ln jnzak .  (5 )  

Since Lijkl is positive definite and symmetric, the tensor Liik,njnl is invertible. We 
denote  the inverse 2 by gik: 

L~jk~ninl ^-1 = g i k "  (6) 

We can now solve (5) for a~ in the form 

ai = gik Tkln~. 

Thus 

e 0 - e~j = ~(r~gjknl + ni~iknl)Tkl 

and so 

Dijk!  = ¼(rllg]kn! .-I- njglknl  + rl, ig]lnk -t- n jg i lnk) .  (7) 

We may interpret  this as the general solution of the interface problem. We observe 
that (7) clearly shows that D is positive definite and symmetric. 

2 Our  nota t ion anticipates the fact that  gti is just the  Fourier  t ransform of the Green 's  function g~r 
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The indusion problem 

N. Laws 

We begin by giving a convenient representation for the Green's function gis(x) for an 
infinite solid with arbitrary anisotropy. The representation is implied, but not 
specifically stated, by Kinoshita and Mural4]. In fact the result is readily obtainable 
from Synge's [5] calculation. The following results are given by Synge [5]: 

^ 

g~j(x) = ~ S g~i(k ) exp ( - ik  .x) dV(k) 

1 f sin (Rw.x) 
lim ~,~(w) dS(w), 

= ( 2 " t r )  3 R - - , ~  Jo w . x  

where ~ denotes the surface of the unit sphere. Furthermore since 

(8) 

1 sin (Rw.x)  
lim - 8(w.x), 

R - - -~  '/1" W ' X  

it follows that 

1Io g,j(x) =~--~2 ~,,j(w)~(x.w) dS(w). (9) 

Now Synge [5] does not write down equation (9) but goes directly from (8) to the 
formula 

g,j(x)=~Ig,~(w) as, (10) 

the integral being taken around the unit circle which has its centre at the origin and 
lies in the plane perpendicular to x. As far as I am aware, all subsequent work, 
including that of Kinoshita and Mura [4], is based on (10). My aim is to show that 
the representation (9) helps to produce a simple solution to the standard inclusion 
problem. 

Consider a bounded inclusion of arbitrary shape and volume V. The uniform 
transformation stress is denoted by s. It is known that the strain field in the inclusion 
and in the infinite matrix is given by 

~ ,i ( x ) = -r',jk, ( x ) sk,, 

where 

1 Iv /a2gik(x-Y) ÷a2g~k(x-Y) 
Pijkl(X) = --'~ t OXj OXl c3Xl c3Xl 

q c~2gi~(x- Y) ~-a2gjz(x-Y)/dV(y). 
Oxj dxk c~xi OXk J 

(11) 
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transforms the ellipsoid into a sphere. It is then easy to show that for x ~ V 

¢,(x, w) = ~ {t 2 -  (x. w)~}, 

where 

t 2 = a~Zw,wj, a = det a,~. 

From (11), (12) and (14) we now have, for x e  V, 

1 f 1 
P~jk~ = Jta 16rra 1/2 -~ {~,kWjWl + ~jkW,Wl 

+ ~,.WjWk + ~,izW, Wk} d S ( w ) .  (15) 

Thus P is constant for x ~ V. In addition comparison of (7) and (15) shows that for 
x E V  

P = ~ -~ o as(w). (16) 

Since D is positive definite (and obviously symmetric) so is P. It is remarkable that 
the solution of the inclusion problem is related to the solution of the interface 
problem through (16). Even more surprising is the fact that the connection extends 
still further. To see this we refer to Hill's [6] exposition of the ellipsoidal inclusion 
problem which contains details of all the tensors currently used in the problem. 

(:4) 

02g~k(x-Y)oxj Ox~ d V ( y ) = ~ 2  Ox~ Ox, ~j(w)~((x-y) .  w) dS(w) dV(y) 

1 02 In 
- 8~r 20xj Oxl ~ii(w)¢(x, w) dS(w) (12) 

where 

$(x, w) = fv ~ ( (x -y ) .  w) dV(y). (13) 

Thus ¢(x, w) is just the area of the section of V cut off by the plane through x 
perpendicular to w. We note that equation (12), albeit with a longer derivation, has 
been given previously by Kinoshita and Mura [4]. 

The simplifying feature of the ellipsoidal inclusion is that one can easily perform 
the integration in (:3) when x lies within the inclusion. Let the ellipsoid be given by 

a0yiy i = 1, 

then a simple change of variable 

z, =/3~jyj, /3 ~ = a ,  
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Foremost amongst these is Eshelby's S tensor which is given by 

S = P L .  (17) 

Trivially, from (1), (16) and (17) we obtain the additional connection 

1 f 1 S r 
- -  j G ds(w). 

It is also appropriate to emphasise here that equation (15) shows that the strain, 
and hence the stress, within the inclusion is constant--a result first proved by 
Eshelby [1]. The advantage of the above solution is that it provides explicit formulae 
for the evaluation of P and S. 

Stress and strain concentration factors 

Consider now the problem of an ellipsoidal inclusion with stiffness L* and com- 
pliance M* embedded in an infinite matrix with stiffness L and compliance M. The 
un i fo rm stress at infinity is tr(oo) and the corresponding uniform strain is e(oo). It is 
quite easy to show that the stress and strain within the cavity are also uniform and 
that the matrix stress, o', and strain, e, at the interface are given by (c.f. Laws [3, 
equations (28) and (29)]) 

e = { I  + D ( L *  - L ) } { I  + P ( L *  - L)}-le (oo), (18) 

o" = { I  + F ( M *  - M ) } { I  + Q ( M *  - M)}-lo'(oo), (19) 

where 

O = L - L P L .  (20) 

Now we already have an explicit formula for D and a simple integral formula for P 
whatever the degree of anisotropy. Thus equation (18) furnishes an elementary 
formula for the evaluation of strain concentrations at the face of an ellipsoidal 
inclusion in an infinite matrix for arbitrary anisotropy.  Likewise (19) is a formula for 
the determination of stress concentration factors. The significant feature of these 
formulae is that they involve only algebraic manipulations together with the evalua- 
tion of a known surface integral. Thus we are able to calculate both stress and strain 
concentration factors at an ellipsoidal inclusion in an arbitrarily anisotropic matrix 
without solving any boundary value problems and without knowing the form of the 
Green's functions. Some examples of the use of (18) in special cases are given by 
Hill [2] and Laws [3]. 

We note that the present method of deriving stress and strain concentration 
factors is no less powerful if we consider polynomial loading at infinity. As shown by 
Kunin and Sosnina [7] the stress and strain within the ellipsoidal inclusion are also 
polynomial; the same conclusion can also be inferred from the recent work of Asaro 
and Barnett  [9]. Thus once the stress and strain in the inclusion are known, we can 
again use equations (2) to determine the matrix stress and strain at the interface. 
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