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Abstract. Based on a continuum model for oriented elastic solids the set of nonlinear dispersive 
equations derived in Part I of this work allows one to investigate the nonlinear wave propagation 
of the soliton type. The equations govern the coupled rotation-displacement motions in connec- 
tion with the linear elastic behavior and large-amplitude rotations of the director field. In the 
one-dimensional version of the equations and for two simple configurations an exhaustive study 
of solitons is presented. We show that the transverse and/or longitudinal elastic displacements are 
coupled to the rotational motion so that solitons, jointly in the rotation of the director and the 
elastic deformations, are exhibited. These solitons are solutions of a system of linear wave 
equations for the elastic displacements which are nonlinearly coupled to a sine-Gordon equation 
for the rotational motion. For each configuration, the solutions are numerically illustrated and the 
energy of the solitons is calculated. Finally, some applications of the continuum model and the 
related nonlinear dynamics to several physical situations are given and additional more complex 
problems are also evoked by way of conclusion. 

1. Introduction 

In a previous paper [1] we have constructed a continuum model for nonlinear 
oriented elastic media and deduced a set of nonlinear field equations govern- 
ing both the usual deformation of the medium (at the macroscopic scale) and 
the evolution of the additional internal degrees of freedom (rotations) involv- 
ing the microstructured description (at the microscopic scale). On the basis of 
this continuum approach we investigate the possible propagation of nonlinear 
excitations of the soliton type. Solitons emerge from a paradox, since, at first 
glance, it seems strange that a nonlinear dispersive equation could have soliton 
solutions. In fact, if either of these effects appear alone, there are no soliton 
solutions. It is only when the effects of nonlinearity are balanced by dispersion 
(in some cases but rarely, dissipation may play the role of dispersion) that 
solitons result. When only nonlinear terms are present, the wave steepens 
because of the continual supply of higher-frequency components. The profile 
of the wave then steepens until the function representing the wave profile is no 
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longer single-valued and discontinuities are formed (shock waves). If only 
dispersion is present, different frequency components (of the Fourier expan- 
sion of the initial signal) of the wave propagate at different velocities with 
higher frequencies traveling more slowly so that the shape of the original 
signal spreads while propagating. Now, if both are present, the competition 
between the steepening due to nonlinearities and the spreading due to disper- 
sion favors a traveling wave of constant profile and velocity [2, 3]. However, 
it would be better to refer to solitary wave than to a soliton since to have true 
solitons additional conditions must exist. A soliton is a solitary wave which 
preserves its shape and velocity in a collision with another such solitary wave. 
Nevertheless, in the forthcoming development the name of soliton will be used 
even if this is not a true soliton.* 

The soliton concept occupies a key position in physics since solitons are 
elementary nonlinear excitations which allow one to model the nonlinear 
dynamics of the real world. Solitons are found in various areas of physics such 
as nonlinear optics, nonlinear plasma dynamics, nonlinear electronic transmis- 
sion lines, hydrodynamics, dynamics of anharmonic atomic lattices, theory of 
commensurate-incommensurate structural phase transition, Josephson junc- 
tions as well as in biological materials and neurophysical models, to quote 
only a few examples [2, 4-7]. Solitons are exact propagative solutions of a 
large class of nonlinear dispersive partial differential equations such as the 
well-known Korteweg-de-Vries equation, the Boussinesq equation, the nonlin- 
ear Schr6dinger equation, the sine-Gordon equation and the related double 
sine-Gordon equation, the Kadomtsev-Petviashvili equation, the Hirota equa- 
tion, the reduced Maxwell-Bloch equations, the Toda lattice equation, 
etc . . . .  [2, 8, 9]. Most of these equations are integrable by means of the 
inverse scattering transform (IST), or the B/icklund transformation or also 
Hirota's method [8, 10-12]. In the present work, the equations of the model 
for oriented elastic media, in the one-dimensional version, are reduced to the 
classical wave equations for the elastic displacements (since a linear elastic 
behavior of the continuum is assumed) nonlinearity coupled to a sine-Gordon 
equation (a double sine-Gordon equation in more complex cases) governing 
the rotations of the director field. In the one-soliton case, the complete 
dynamical system, in spite of its greater or lesser complexity, admits an exact 
solution of the soliton type. 

The present work is particularly devoted to nonlinear excitations connected 
with the nonlinear behavior in the internal degrees-of-freedom inherent in a 

* The multicomponent soliton solutions of systems such as (8) and (37) below are not exact 
solitons. This can be proved only by studying the interaction between solitons (radiation may be 
generated during interaction). This was proved analytically and numerically by the authors (Second 
part of Ref. 16 below) for a system of the type (37), hence afortiori for systems such as (8). 
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finer description of the microstructured medium. A good picture of such 
media can be given by a deformable lattice equipped, at each of its nodes, with 
a molecule considered as a small rigid body. If the existence of these molecules 
is not accounted for, then we recover the classical lattice, hence the usual 
elastic deformation of the continuum framework. If we now suppose that the 
molecules perform rigid-body rotational motions (which may have large 
amplitude) about the nodes of the lattice, the microgyration of the molecules 
provides additional degrees of freedom. If, moreover, an inertia is associated 
with the molecules, we can then define an angular momentum relating to the 
molecules and the dynamics of the coupled rotation-elastic displacements can 
be envisaged. The interactions involved in the microstructured media depend 
strongly on the physics of the micro-system and may be related to some 
phase-transition phenomena in particular cases. The interactions of special 
interest are those which permit nonlinear excitations of the soliton type 
(especially competitive interactions). The latter are found in media such as 
nematic liquid crystals [13], long chains of polymers [14, 15], molecular 
ferroelectric crystals of which we have already a microscopic model [ 16], and 
elastic chains of molecules (e.g. DNA) [17]. 

The basic equations developed in Part I are set forth in Section 2. The set 
of nonlinear equations governs the coupled rotation-displacement motions of 
an oriented medium with one director. In Section 3 an exhaustive study of 
solitons in the peculiar case of a simple configuration (so-called configuration 
A which is similar to the "N6el wall" in ferromagnets) is presented, and in this 
configuration the director rotation is effected about an axis which is perpen- 
dicular to the axis of propagation. A second simple configuration (configura- 
tion B identical to the "Bloch wall" in ferromagnets) is studied in Section 4. 
In this case the directors rotate about the axis of propagation. According to 
the configuration one or two elastic displacements (longitudinal and/or trans- 
verse displacements) are coupled to the rotational motion. In each situation 
the nonlinear dispersive equations thus obtained consist of a sine-Gordon 
equation for the rotational motion of the director and one or two linear wave 
equations for the elastic displacements, these equations being nonlinearly 
coupled. Exact solutions of the system are found, and coupled solitons in 
rotation and elastic deformation are placed in evidence. The stable solutions 
are numerically illustrated. For each configuration, comparisons with other 
approaches such as microscopic models and solitary waves in micropolar 
elastic media are made. The last section is devoted to the conclusions and 
remarks in which potential applications of this model and related nonlinear 
excitations are outlined. Finally, the extensions of the models to other 
problems (solitons in two-dimensions, or solitons with the composition of two 
rotations of the director, or the influence of an external field on the propaga- 
tion of solitons) are evoked. 
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2. Basic equations 

We recall the basic equations obtained in Ref. 1. These equations govern the 
classical deformation motion of  an elastic body and the coupled rotational 
motion of  the director field. The latter is associated with the internal degree of  
freedom of a deformable microstructure. These basic equations are [1] 

poili - - - -  C//pq(d)up,q/+ ~ijpq( d)@,qj n t- poDiye d:j  

+ P~(Qopq - @Biq)(dpdq)j, (1) 

pOJ~i = ~,ipqApjmn dqdm,nj - -  (~ipqp2 Bpj)djdq 

-- ~ipqp2 ~/'pj ~ dq -~- ,ipqp2 ~pp# dkdqU#, k -~- p2~ipqO#kpqU~..k , (2) 

where we have set 

(~pq(d) = % q  -- poDijpdq -- poDpqi4 • "~ PO~ipDjq#dp 

- 2p~Qo~drd q - p~Qpq~d:dy + p~6fpQjqekdkd: 

+ ogB,,4d " + dq + o aoB,,d, dq, (3a) 

~,jpq( d) = ~ijpq "~- p2 Xipdq4", (3b) 

Q:kpq( d) = Bpedkd q - p o  1Dtkpdq - Q,kmpdmdq q- (~kpBlmdradq, (3c) 

and the angular momentum per unit mass is given by 

A = I d  × d. (4) 

The notation 6pq is the Kronecker symbol and e~j: is the permutation tensor. 
In Eqs. (1-4) ,  Po is the mass density, Co.pq is the tensor of  elasticity coefficients, 
qfi:pq is the tensor of  viscoelasticity coefficients, B o is the tensor denoting the 
phenomenological director interactions, Aiypq is a tensor which represents the 
interactions between director gradients (this accounts for the spatial nonuni- 
formity in the director field), D;je is the linear coupling tensor between the 
elastic continuum and the director field, Oqpq is a nonlinear-coupling tensor 
between deformation and directors, and X 0. is the tensor of  rotational 
relaxation. Also I is the inertial coefficient associated with the director. These 
equations have been obtained under some assumptions. This continuum 
model concerns a linear behavior with respect to classical elasticity but the 
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nonlinearities in the director are kept. We have assumed that terms such as 
(Vu) 2, Vu" Vd, (Vd) 2, (Vu)d, d(V/I) either are negligible or they do not have 
any physical meaning. 

Equation (1) is the motion equation of the classical continuum and is 
nonlinearly coupled to the director field. Eq. (2) governs the rotational motion 
of the director field. Note that Eq. (1) reduces to a classical elastic-wave 
equation if the director field is discarded. Eq. (2) is strongly nonlinear since 
the director field is present in all terms in this equation. With the view of 
examining the propagation of nonlinear waves, we somewhat simplify the 
above equations. We first discard the dissipative terms (in fact the latter might 
be considered as small perturbations), and next we only consider the case of 
centrosymmetric media, so that the linear-coupling tensor D~e vanishes. In 
order to proceed further we consider only two special cases where the 
rotational motion of the director field is reduced to a pure finite rotation 
about one crystallographic axis. Furthermore, we consider that all the un- 
known quantities, that is, the elastic displacement u and the director d, depend 
on one spatial variable only and obviously on time. However, some involved 
cases can be considered in further works, for instance, the soliton propagation 
in the two dimensional (spatial) case, or the soliton propagation in the case of 
two rotation angles of the director field. Despite the simplifying hypotheses 
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Fig. 1. Two special configurations in the one-dimensional case: (a) rotation about an axis 
perpendicular to the axis of propagation and (b) rotation about the axis of propagation. 
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considered, the model remains rich enough to offer propagation problems 
which are the subject of the paper. In one case we examine the soliton 
propagation in a configuration such that the rotation takes place about an 
axis perpendicular to the spatial axis (see Fig. la). The second studied 
configuration is distinguished from the first by the fact that the rotation takes 
place about the spatial axis (see Fig. lb). In the framework of these two 
configurations, we examine the possible propagation of solitons in both the 
rotation of the director and the elastic deformation. 

3. Solitons in the configuration A 

A.  Equations in configuration A 

This configuration can be referred to as "Nrel wall" by analogy with the 
moving domain wall in thin ferromagnetic films [18, 19]. Referring to Fig. 1 a, 
the elastic displacement and the director field can be chosen as 

u=(0 ,  u2, u3), 

d = do(0, sin 0, cos 0), 

(5a) 

(Sb) 

^ 1 2 2 
P 0 / / 3  = C33u3,zz + ~podo(O33  - Q 3 2  - 2B33)(cos 2 0  + 1),z, 

1 2 2 - -  poiiz C~u2,z~ + gpodo(Q~ B22)(sin 20),z, 

(6a) 

(6b) 

poIO " = AO,z z -~ l p o 2 ( n 3 3  - -  B 2 2  ) sin 20 

Jr" 21-po2(Q33 - Q22 - 2B33)(sin 20)U3.z 

- pg(Q44 - B22)(cos 20)u2,z, (6c) 

where we have used the Voigt notation for the tensorial coefficients. These 
equations will be rewritten by using the following new functions and variables, 

= 20, u = ~ u ~ / d o ,  V = 2u~/dox/-I, (7a) 

z = t/co A, Z = z/6A, (7b) 

where u2, u3 and 0 depend on the spatial variable z and time t. We consider 
a medium which possesses the hexagonal symmetry in class 6/m or 6/mmm 
[20]. The anisotropy axis is the z-axis. The system (1-4) is reduced to the 
following one (in dimensional notation), 
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(~2 U (~2 U 
0z 2 c ~ - - ~ =  ~ (1 + COS ~b), (8a) 

0 2 V  2 0 2 V  ~ " 
0z 2 Cr ~ 5  = fl ~-~ (sin q~), (8b) 

O2~b 02~b = sin 4~ + ct sin (a OU OV (8c) &2 Oz---~ ~-~ - /~  cos 4~ 0---~. 

where we have set 

co A = (i/poX),/2, 6A = (A44/pZx)'/2, (7c) 

and we define 

eL = X/~33/CRa, Cr = X / ~ / C . a ,  (7d) 

podo 
= (2poZ)- '/2(Q33 - Q32 - 2B33), (7e) 

CRA 

fl = podo (POX)- '/2(Q44 - B22), (7f) 
eRA 

~--- l 2 2 - -  
C33 [C33 + ~podo(Q32 2Q33 -I- 3B33)]/po, (7g) 

l 2 2 __ ~44 [C44 + ~podo(Q33 Q44 + Q32 + B22)]/Po, (7h) 

c~A = A44/poL (7i) 

= B33 - -  B22. (7j) 

In these notations, time and space are nondimensionalized with the help of a 
characteristic length 6A and a characteristic frequency 094; CL and cr are the 
elastic longitudinal and transverse wave velocities, respectively, modified by 
the director field (terms depending on d~). 

In the above changes of  variables we have intentionally supposed that X > 0 
(or B33 > B22); in the opposite case we would have a minus sign before the 
sin 20 term of Eq. (6c). The coefficient X may depend on temperature if we 
study the problem of nonlinear phenomena connected with phase-transition. 
We then obtain the following system in dimensionless notation. 
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The structure of this system of dispersive nonlinear hyperbolic equations is of 
special interest. It consists of two wave equations for the two elastic displace- 
ments (U and V) and a sine-Gordon equation for the rotation ~b (twice the 
physical rotation 0), each elastic displacement being nonlinearly coupled to 
through the coupling coefficient ~t or fl (note the analogy with the electrostric- 
tive coupling). If ~ = 0, we recover the system of equations deduced in Ref. 16 
which governs an anharmonic chain equipped with microscopic electric 
dipoles. The latter microscopic model, after passing to a continuum approxi- 
mation, is reduced to a macroscopic model for oriented media with one 
director. Now, the next step of the study is the investigation of the solutions 
of the system (8a-c). 

B. Single-soliton solution 

We concentrate here on the case of one-soliton solutions of the system (8a-c). 
Some obvious properties of the system can be emphasized. Let (U, V, ~b) be a 
solution. Then both (U, - V, - 4 )  and (U, V, $ + 2k) are also solutions. The 
system (9a-c) has the following uniform static elementary solution, 

U = U0 = const., V = V0 = const., $ = kTr(k ~ Z). (9) 

Nevertheless, a more interesting solution can be looked for in the form of 
propagative waves, that is, functions of a single phase variable 

= Q Z -  fir + 40, where Q and fi may be referred to as a pseudo-wave 
number and a pseudo-circular frequency which must satisfy a certain "disper- 
sion" relation. In this case the system (8) becomes 

2 d2U (fi2 _ flz) ~ = atQ ~ (1 + cos ¢), (lOa) 

d2V 
(fi2 _ 0 2 )  ~ = flQ (sin $), (lOb) 

d2~b sin ~b dU dV (fi2 _ Q2) - ~  = + ~Q - ~  sin ~b - flQ ~ cos q~, (lOt) 

where we have set 

f i~=c~Q 2, n~=c2rQ 2. ( l l )  

Eqs. (10a) and (10b) integrate once with respect to ~ to produce 
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2 dU (f2 _ ilL) - ~  = otQ[cos ~ - ( - 1)k], (12a) 

2 dV 
(f2 _ f ~ )  ~ -  = flQ sin ~b, (12b) 

where it has been assumed that the elastic deformations (OU/t3Z and OV/dZ) 
vanish when ~b goes to kn, and fl differs from +t)  L and +f i r .  Now, on 
substituting dU/d~ and dV/d~ from Eqs. (12a) and (12b) into Eq. (10c), we 
obtain 

"~'2" d2~ 
( ~ 2 -  ~d ) - ~  = sin 4) +7(~ ,  ~) sin 2tb, (13) 

where 

= f / x / ~ ,  0 = Q/V/-~, (14a) 

2 (a, = 7  ' (14b) 

(~2~2 
# = 1 + (-- 1)~'~T----~2 " ~ l l  (14c) 

We see that the problem of one-soliton solutions of the somewhat complicated 
system (8a-c) is equivalent to the solution of the nonlinear ordinary differen- 
tial equation (13), which can be formally deduced from a double sine-Gordon 
equation when a one-soliton solution is sought [21-24]. Eq. (13) possesses a 
first integral which can be written as 

, ^2 .~2,/d~bX~ 2 
- u  +Co, (15a) 

~ (~ )  = - c o s  ~ - ~ c o s 2 ~ ,  (15b) 

where Eo is the integration constant which can be related to the total energy 
of the system. Eq. (15a) stands for the equation governing the motion of a 
particle of mass (~2 _ ~2) in a periodic potential ~ ( $ )  (here the "mass" may 
be negative in some cases). In a general manner Eq. (15a) has periodic 
propagation solutions depending on the energy E0 (cno'/dal waves) and which 
can be expressed with the help of Jacobian elliptic integrals [25]. Here, 
however, we consider the solution of Eq. (15) such that ~b ~ kn at infinity, and 
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then Eo=) ' /2+(-1)  k. In this case the first integral of Eq. (15a) can be 
written as 

( t ~ - Q )  ~ - - ~ 2  ^ 2 ( d f f ) E = 2 [ ( _ l ) k _ c o s ~ b l + ) ' ( l _ c o s 2 ~ b ) .  (16) 

With a view to seeking a solution of Eq. (13) or (16) which satisfies the 
boundary condition ~b ~ k~r as [¢[~ + oo, we consider the following change of 
function, 

~b = 2 t a n  - l tp ,  (2 = ~ 2 _ ~ 2 ) .  (17) 

Substituting ~b into Eq. (13) and (16) and after some manipulations consisting 
in eliminating the undesirable terms between Eqs. (13) and (16), we arrive at 

d2tp 
2-7;-~.~ = q~[2y + ( - - 1 )  k] + q~3[1 + (-- 1)k]. (18) 

We immediately notice that the type of solution in tp of Eq. (18) depends on 
whether k is odd or not. The boundary conditions are 

q ~ 0  a s l~ l -~+oo  f o r k e v e n ,  (19a) 

I o1- +oo asl¢l- +oo forkodd. 

Note that the second condition can lead to ~0 --. + oo as ~ ~ + oo or ~0--, + 
as ~ ~ + oo, which correspond respectively to the conditions ~b~ +rr as 

--, +oo or ~b--*rr as ~ ~ +oo. In the case of even k, the ~0 3 term does not 
vanish and we have a "phi-four" equation. But, here, on account of the 
boundary condition (19a) and notation (14), it can be shown that, in these 
conditions, Eq. (18) does not possess a solution. For odd k, Eq. (18) is simpler 
since it is reduced to the ordinary linear differential equation 

d2tp 
2 - ~  = (2), - 1)~0. (20) 

The solution is subject to the boundary condition (19b) which implies that 
v = (2), - 1)/2 > 0. In addition, the compatibility for both tp and ~b, related 
through eqn. (17), to satisfy simultaneously eqns. (20) and (13), requires that 
v = 1, thus providing the looked for "dispersion" relation 

2 =2y  -- 1, 
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which can be rewritten as 

[02 _ (Q2 _ l)](f~2 _ [,/2) + f12Q2 = O. (21) 

We may notice that the dispersion relation (21) does not depend on the 
longitudinal quantities since neither the elastic longitudinal wave velocity nor 
the coupling coefficient ct contribute in the dispersion relation, whereas the 
coupling between the longitudinal displacement and director rotation does 
exist in the system (8). The dispersion relation thus obtained is formally the 
conjugate relation of the dispersion relation for the linear case [26] (we have 
to change f~ and Q into ill  and iQ, respectively). This situation is quite similar 
to that of solitons in elastic chains of dipoles [16]. The solutions of the 
dispersion relation (21) are represented in solid lines in Fig. 2; the branch (a) 
corresponds to the case f~< Q while the branch (b) is very close to f i r  
(branch of elastic transverse waves), up to terms of order f12, and corresponds 
to the soliton which propagates practically at the velocity of a transverse 

°I 

(b) 

(a) 

o 1 Q 

Fig. 2. Dispersion relation for single-soliton solution: branches (a) and (b) solutions of Eq. (21), 
[~L: longitudinal elastic mode, fir: transverse elastic mode and coupled linear modes in broken 
lines. 
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elastic mode. In the same figure the linear case has been plotted in broken 
lines. However, two cases can be considered, either 2 > 0 or 2 < 0. Only the 
second case is interesting since it leads to a stable solution since we must have 
a subsonic soliton (f~/Q < 1) [27, 28]. The solution 'then corresponds to the 
branch (a) of  the dispersion curves (Fig. 2). The solution is then given by 

- - I f  sinh~ '~ 
~b = - 2  tan ~ - Q ~ ) .  (22) 

The minus sign in Eq. (22) is only a matter of choice. In Eq. (22) c = t)/Q is 
the phase velocity of  the wave. The solution (22) represents the transition 
from the position ~b = ~ to the position ~b = - n .  Moreover, we can compute 
the strain state of  the medium. This is characterized by 

O U 2~ ( 1 - 2),) 
O'--Z = c 2 - c 2 cosh 2 ~ - 2~,' (23a) 

aV 2flQ x/1 - c z sinh 
0--Z ~ c2 _ c2 cosh 2 ¢ _ 27. (23b) 

It is possible to determine the solutions in longitudinal and transverse 
displacements by integrating the solutions (23a) and (24b), but here we only 
consider the strain state of  the medium. 

In Figs. 3 a, b and c we give numerical illustrations* of  the solutions (22), 
(23a) and (23b) in space-time representation. The graph in Fig. 3a illustrates 
the rotation motion of  the director from the state 0 = n/2 for Z ~ - ~ to the 
state 0 = - n / 2  for Z - ~  + oo; here we have a so-called "kink" soliton. In Fig. 
3b we have the elongational deformation (Eq. (23a)) generated through the 
coupling coefficient ct by the soliton in rotation; this is a "hump" soliton which 
is essentially nonzero in the thickness of  the kink. Finally, the shear deforma- 
tion (Eq. (23b)) is given in Fig. 3c; this deformation changes sign when the 
angle tk passes through zero. This is a sort of  "double hump" soliton generated 
by the soliton in rotation as well. 

C. So,ton energy 

The system (9) can be derived from a Hamiltonian formulation of  which the 
Hamiltonian for the whole system is given by 

a~ = A(¢, u, v) dZ, 
o o  

(24) 

* Graphs are drawn without specific units and are obtained by solving the PDEs numerically a n d  

not by feeding in the analytic solution. 
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~ . ~ : ~  ~...~x 

(a) 

(b) 

I avl3x 

Fig. 3. Numerical illustrations for single-soliton solution in the case of configuration A: (a) 
soliton in rotation, (b) soliton in elongation and (c) soliton in shear. 



170 J. Pouget and G.A. Maugin 

with a density 

~(~, U, V) = ½[(U,) 2 + (V,) 2 + (~)21 + ½[c~(Uz) ~ + c ~ ( V z Y  + (~z)  ~] 

+ (1 + cos $) + otUz(1 + cos ~b) + #Vz sin $. (25) 

On considering the relations (12a) and (13b) and the solution ~ in terms of 
the phase variable ~, the Hamiltonian (25) becomes 

A~ = ½A [(fZ 2 -  Q2)(~b¢)2 + 2(1 + cos ~) - )r( 1 - cos 2~b)] d~, (26) 
OD 

where we have set 

= - B / A ,  (27a) 

B = ~_[f12 3c2 - c~ 2 3c2 - c2 -] 
(c-7:c2)----- 2 ~t (c 2 _ c~.)2j, (27b) 

2c 2 - c 2 
A = 1 + e2 (c5:C--~-L)2 ' (27c) 

= n/A, Q = Q/A. (27d) 

The Hamiltonian (26) can be formally deduced from a system governed by a 
double sine-Gordon equation if we look for a solution depending only on 
~" = O Z -  t~T + G0. Now we substitute the solution (22) into the expression 
(26), and after a rather lengthy calculation we obtain 

{[ = ( Q 2 - 1  + ~  1 +  
~rgA = 4 A+ \ ] 

x s i n - l ( x / ~ ) +  Q 2 - 1  q - J - ~  (1 B ) } ,  (28) 

where the various parameters introduced in this expression have already been 
defined. On account of the dispersion relation (21) the total energy (28) 
depends thus on the wave number Q, the elastic wave velocities CL and Or, and 
the coupling coefficients e and ft. If  the latter are neglected, then Eq. (28) 
simplifies to give the usual simple result (sine-Gordon model) 

~ a o  = 8Q. (29) 
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The thickness of the soliton (defined similarly to the thickness of a structured 
shock) is given by 

AA = n Q x / 1 - c  2. (30) 

When the velocity of the soliton increases towards unity the thickness tends to 
zero. Going back to the real physical dimensions we have 

AA =@- c_: 
c~A) ~ '  

(31) 

where CRA and 6A are defined in Eq. (8h) and (8c), respectively. The 
expression (31) may be useful if the model deals with the problem of the 
structure in domains and walls in ferroelectric crystals so that the director field 
has the physical dimension of an electric polarization and AA represents the 
thickness of a domain wall. 

D. Remark  

Let us go back to the problem of the sign of ~ in Eq. (6c). In the case where 
< 0, we set g = -X '  and X'> 0 and only Eq. (6c) changes and becomes 

0~4~ ~¢' - s i n  4, + ~ sin 4, ~-~ - 3 c o s  4~ e Z  
c3z 2 ~Z  2 

(32) 

In nondimensional notation, we then consider the following change of func- 
tions, 

= ~ + ~', (33a) 

U = - U ' ,  (33b) 

V = - V'. (33c) 

Those new functions are substituted into Eqs. (6a-b) and Eq. (32) so that the 
new functions ~b', U' and V' satisfy the system (6). The study of this case is 
the same as in the case X > 0. However, the topology of the soliton is different. 
Here tk decreases from 2n to 0 and the solitons in deformation have opposite 
signs. This means that the physical angle 0 (=~b/2) of the director varies 
monotonously from rc to 0. Fig. 4a and 4b show numerical pictures of the 
director orientation in the cases Z > 0 (Fig. 4a) and X < 0 (Fig. 4b). 
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z 

Fig. 4. Numerically obtained picture of the director orientation in the case of the configuration 
A: (a) for x>O and (b) x<O. 

4. SoHtons in configuration B 

A. Equations in the configuration B 

Referring to Fig. lb, we force the director to rotate about the propagation 
axis. This configuration can be referred to as a "Bloch wall" by analogy with 
the domain walls in ferromagnetic crystals [18, 19]. The elastic displacement 
and the director field are taken in the form, 

u = (u~, u2, 0), 

d = do(0, sin ~0, cos ¢), 

(34a) 

(34b) 

where u~, u2 and ~0 depend only on the spatial variable x and time t. We 
consider a medium possessing the same crystalline symmetry as in the case of 
the configuration A. Under these conditions the system (1-4) is reduced to the 



~b = 2tp, 

"C = t/OgB, 

where 
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following one, 

1 2 2 Po//l = CllUl,xx +~podo(Q13 QIE)(1 + cos 2(p), x, (35a) 

Po//E = C66u2 .... (35b) 

poI(o" =A66tP,xx 1 2 2 + ipodo(B33 - BEE)Sin 2tp 

1 2 2 + ipodo(Q13 - QlE)(sin 2tp)ul,x. (35c) 

We have obviously used the same notation as in the previous configuration. 
The following change of functions and variables is effected, 

U = ~ / ~ U l / d O ,  V = 2UE/dox/ / I ,  (36a) 

X = x/fiB, (36b) 

rob = (I/poX)liE, ~B = (A66/p2z)1/2. ( 3 6 C )  

On using the same expressions as in Eqs. (7d) and (7e) but with the new 
coefficients 

C2B = A66/Po I,  ( 3 6 d )  

o~ = podo(Po X )  -I/E(QI3 - -  QIE) /C RB, (36e) 

1 2 2 t~ll =[Cll  +~podo(Q1E+ Qla)]/Po, c 2 ~ll/CRn, (36f) 

C66 [C66 1 2 2 = + 5 p o d o ( Q l 2  + Ql3)] /po ,  c 2 = C66/CRB, (36g) 

the system (35) can be written in the following nondimensional form, 

~ E u  2 ~ 2 U  
~z 2 C L - ~ =  Ct ~--~ (1 +COS ~,), (37a) 

a 2V c 2 ~2V_ 
OT E T ~ X  E - -  0 ,  (37b) 

~E¢ c~E~, c~U 
~,[.2 ~ X  ~ = sin ~k + 0t sin ~ t3-X" (37c) 
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We notice that the system (37) has the same structure as that obtained in the 
case of the configuration A, but in the present case fl = 0. In Eqs (36b) and 
(36c) a characteristic length 6s (connected with the thickness of the soliton) 
and a characteristic frequency to n have been introduced in order to have 
nondimensional time and space. Furthermore, in these changes of variables 
(36b) we have intentionally supposed that Z > 0 - or B33 > B22 - but in the 
opposite case we would have ( - s i n  ¢) instead of sin ~b on the right hand 
side of Eq. (37c). The system (37) consists of two wave equations for 
longitudinal and transverse elastic displacements and a sine-Gordon equation 
for the rotations of the directors. Note that, whereas the equations of the 
system (8) are all three coupled in the case of the configuration A, here the 
transverse elastic displacement uncouples, only the longitudinal elastic dis- 
placement remaining nonlinearly coupled to the rotation. 

Once the study of the configuration A is achieved, it is easy to examine 
the present configuration. Indeed, it is sufficient to set fl = 0 in all the results 
obtained in Section 2 and make the necessary changes in notation. 

B. Single soliton solution 

The system (37) has the same properties as the system (8). As usual, we 
look for a solution in the form of propagative waves. The functions U, V 
and ~ depend thus on the phase variable ~ = Q X -  ~ + Go. Eqs. (37a-c) 
become 

D2 2 d2U ~t d ( ( - - D L ) - - ~ =  Q~-~ l + c o s ¢ ) ,  

d2V 
( n  2 - n O  = o, 

~2) d2• dU 
(f~2__ ~ ~ - i =  sin ~, + ~tQ ~ sin ~b, 

(38a) 

(38b) 

(38c) 

where fit. and t~ r are defined by Eqs. (11). Eq. (38b) leads to the conditions 
that either f~ = + f i r  or dV/d~ =const.; the definite choice is made in the 
forthcoming section. On eliminating dU/d¢ between Eqs. (38a) and (38c), 
one obtains 

d2¢ = sin ~k + ~(f~, Q) sin 2~,, (39) 
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1 o~2Q 2 
2~ = (40) 

with/~ defined by Eq. (14c) (k odd) and ,t given by Eq. (36e). Since fl = 0, the 
dispersion relation (21) is notably simplified to yield 

( n  2 - n )[n 2 - ( 0  2 - 1)] = o ,  ( 4 1 )  

where we recover the condition f~ = + f i r -  However, if f~ # +fiT,  we must 
have dV/d~ = cst. and the dispersion relation (41) gives 

f~2 = Q2 _ 1, (42) 

which is, in fact, the usual dispersion relation associated with the sine-Gordon 
soliton. The dispersion relation (42) is of  interest since it is not altered by the 
elastic deformation, even if the coupling plays a predominant role in the wave 

J~ 

Jfl L 

~T 

(a) 

(b) 

ol 1 Q 
Fig. 5. Dispersion relation for single soliton solution for the configuration B: (a) the pure 
transversal elastic mode and (b) the pure subsonic soliton mode. 
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motion. In Fig. 5 the two solutions of the dispersion relation (41) are 
sketched: the wave (a) is a pure elastic transverse mode, and the branch (b) 
corresponds to the subsonic soliton stable solution given by 

~b=-2tan-'( si___L_i~ 2/.nh~ \ 
\Qx/1  - c2] 

(43) 

This solution represents the rotation of the director field from the state ~k = 
(or ~o = ir/2) to the state ~ = - ~  (or ~o = -rr/2). In addition, the strain state 
generated by the soliton in rotation is given by 

t3 U 2ct 1 - 2), 
aX = c 2 - c 2 cosh 2 ~ - 2y" (44) 

Figures 6a and 6b gather the numerical illustrations, in space-time representa- 
tion, for the soliton in rotation (Fig. 6a) and the accompanying soliton in 
elongation deformation (Fig. 6b). These curves are practically not different 
from those obtained in the case of the configuration A. 

C. So,ton energy 

The calculations are the same as those of configuration A. It is sufficient to 
adjust the result (28) to the present case, which yields 

1 - A  
~ s  = 4{IA + # ( Q 2 - 1 ) +  ~ - ( 1 - / t - ~ _  p ) ] ( p -  1)l/2tan-I(fl -- 1)1/2 

- 1) + ½ (1 + 1 - A + 
k 

(45) 

where A and # have been defined by Eq. (27c) and Eq. (14c), respectively. 
Finally, the thickness of the soliton can be written in dimensional notation 
as  

c 2 '~U2 
As = n  1-c-~Rs, ] 3s- (46) 

The parameters 3s and CRs are given by Eqs. (35c) and (35d). This situation 
can be compared to the moving domain wall in ferromagnetic crystals; this is 
the Bloch wall [19]. The microscopic model of this situation can be built from 
a nonlinear compressible chain of dipoles [29] of which the long-wave length 
limit leads to the same system as Eq. (35). The systems of compressible 
Heisenberg chains provide a comparable problem [30, 31]. 



Ca) 

Oriented elastic solids. H 177 

X 

- ~ v j  

Fig. 6. Numerical illustrations for the single sotiton solution in the case of the configuration B: (a) 
soliton in rotation and (b) soliton in elongation. 

I y 

x 

Fig. Z Numerically obtained picture of the director orientation in the case of the configuration B. 
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D. Remark 

As in configuration A, a digression can be made about the sign of %. If Z < 0, 
we have to change sin ~k into - s in  ~b in Eq. (38), and then a similar change of 
functions to that of Eqs. (3a-c) (apart from V) is considered in order to 
recover the system (38a-c) but with the new functions. In this case, the angle 
of rotation ~ varies monotonically from 2n to 0 while the real angle decreases 
from ~ to 0, and a change in the soliton topology will ensue. In Fig. 7 we give 
the numerical simulation of the director orientation for X > 0. For X < 0 we 
have the same picture by rotating the frame by 90 ° about the x-axis. 

5. Conclusions and remarks 

The propagation of solitons for two simple configurations has been examined 
on the basis of a nonlinear continuum model for oriented media. The 
nonlinear excitations are intimately connected with the additional degrees of 
freedom modelled by a vector of constant length in interaction with the 
deformable continuum so that the theory accounts for the nonlinear coupling 
between the rotational motion of the directors and elastic deformation, hence 
the propagation of solitons in director rotations and in (elongational and shear) 
elastic deformations. As a general rule, the system, which admits soliton 
solutions, consists in two wave equations for the elastic displacement and a 
sine-Gordon equation for the rotations, the three equations being nonlinearly 
coupled by means of phenomenological coefficients which represents the 
interactions between the director field and the deformable medium. The first 
configuration, referred to as A, is much more involved than the second one 
since, in this case, both longitudinal and transverse elastic displacements 
polarized in the plane of rotation of the director field are coupled to the latter. 
This situation is identical to that of the N6el wall in thin elastic ferromagnetic 
films [19]. In the second situation, configuration B, the directors rotate about 
the axis of propagation. This in fact is the same situation as in the Bloch wall 
in ferromagnetic crystals apart from the fact that in the latter the wave 
equations for elastic displacements are not coupled to the equation governing 
the magnetic spin rotation [ 19]. We have an identical situation in the dynamics 
of a bar with a large-amplitude elastic twist [32]. On the other hand, in both 
cases we recover the results concerning solitary waves in micropolar media 
[33, 34]. For each situation, we have given the total energy in terms of 
characteristic parameters, that is, the elastic wave velocities, the coupling 
coefficients, the soliton velocity and characteristic length associated with the 
soliton thickness are obtained as well. Moreover, it has been shown that, 
in each configuration, the complete dynamical problem of the nonlinearly 
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coupled system is equivalent to solving a double sine-Gordon equation only in 
the case of one-soliton solutions, which amounts to solving a single ordinary 
differential equation with respect to the phase variable. 

The present nonlinear excitations occurring in the continuum model for 
oriented media can be compared to those obtained from the long-wavelength 
limit of a microscopic model made of a single atomic chain equipped with 
rotatory microscopic electric dipoles. The configuration A, where the director 
rotation occurs about an axis perpendicular to the plane of the displacements, 
can be compared to the microscopic model for molecular ferroelectric crystals 
[16]. This microscopic model has allowed us to study the stationary motion of 
a single-domain wall in these particular crystals of which sodium nitrite 
(NaNO2) provides a good prototype (in addition, this crystal undergoes an 
incommensurate-commensurate phase transition [35, 36]). The second 
configuration can find its microscopic origin in the compressible atomic chain 
with dipoles [29]. In this situation the dipoles rotate about the axis of the 
longitudinal displacements. Thus the continuum model can be applied to 
describe the structure in domains and walls in molecular ferroelectric crystals 
if the director field is endowed with an electric polarization. The physical 
meaning of the soliton in rotation is then a moving domain wall coupled to 
the mechanical states, and solitons in elongation and shear deformations are 
accordingly generated through the electromechanical couplings [16]. The 
characteristic lengths AA and As (see Eqs. (31) and (46)) or 6A and 6s for the 
static cases (Eqs. (7c) and (36c)) represent physically the wall thicknesses. It 
is these quantities which can be experimentally reached by means of various 
methods (electron microscopy, for instance) [37-39]. Insofar as the domain- 
wall structures problems are concerned, nonlinear oriented media can also be 
applied to molecular crystals and the director field then is associated with the 
rotation of a molecular group [40-42]. 

The nonlinear excitation of the soliton type studied in the present work can 
take place in various media when both the microstructure of the medium and 
the internal degrees of freedom are considered. In particular, we clearly 
account for the rigid-body rotational motion of the microstructure and this 
leads to the notion of angular momentum associated with the rotational 
motions. The microstructure can, in a way, be modelled by a small gyroscope 
of which the rotation about its mass center is characterized by a vector 
(director) of constant length. The underlying physics of the micro-motion 
corresponds to various media, and the micro-system possesses both nonlinear- 
ities related to the internal degrees of freedom (large amplitude rotational 
motions of the directors) and dispersion (long-range interactions between 
neighboring directors accounting for the spatial nonuniformity in the director 
field). Thus the above-developed model can be applied to the study of 
nonlinear excitations in nematic liquid crystals [13] where a bunch of rigid 
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nematic molecules is well enough modelled by a director, in polymer media 
(poly-vinylidenefluoride) [14, 15, 43-45], or in long elastic chains of macro- 
molecules (biological materials, e.g. DNA); in the latter case more compli- 
cated interactions between macromolecules may be involved [ 17, 46-48]. The 
macromolecules undergo relatively large amplitude rotational motions from a 
stable state to another one while passing through a metastable state. In such 
media one may associate a director with the orientation of a macromolecule. 
Moreover, the possible intermediate metastable state can be explained by 
introducing nonlinearities of higher order in the director field in the free 
energy of the oriented elastic medium (see Part I). For instance, if a nonlinear 
term of the fourth order in the director field is accounted for in the 
constitutive equations, the symmetry being still centro-symmetric, the equa- 
tion governing the rotational motion can be written as (in nondimensional 
notation and in the case of the configuration A) 

q; - ~',~x = sin ff + # sin 2 ~ ,  (47) 

without considering the deformability of the medium. This is a double 
sine-Gordon equation. If the elastic deformation is again introduced, the 
results are slightly modified by the coupling, but this does not change the 
essence of the discussion. Nevertheless, the equilibrium states of Eq. (47) are 
given by setting its right-hand side equal to zero, from which there follow the 
solutions ~b = kn and ~ = (2k + 1)n + cos-l(1/p) (only if [#l > 1). Accord- 
ingly the different solutions of this situation can be obtained by examining 
the extrema of the energy potential of the model described by Eq. (47) 
[23, 49, 50]. 

The influence of an external field on a soliton is a problem that can be 
studied. The external field acts on the internal degrees of freedom through a 
volume torque. Such a torque can easily be built if the micro system is ridigly 
endowed with an electric dipole performing the same rotation as the director 
does. Then, if an external field is applied the volume torque takes on the form 
P x Eo (Eo is the applied electric field and P is the electric polarization). This 
problem has already been discussed in the case of a microscopic model based 
on an anharmonic chain equipped with microscopic electric dipoles [51, 52]. 
If, in the case of configuration A (Fig. 1), the director carries an electric 
polarization in the same direction as the latter and an external electric field is 
applied in the y direction, the external torque is then given by EoP sin(~/2), 
and this term must be added to the right-hand side of Eq. (6c). This allows us 
to study the transient motion of a soliton from rest by means of perturbation 
methods [51, 52]. An identical problem can be studied if instead of an electric 
polarization we have a magnetization; however, in this case, the applied field 
is a magnetic field [19]. This problem can be extended to a time dependent 
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external field which allows us to investigate the effects of a periodic driving 
field in the presence of rotational relaxation on a soliton, hence the possible 
transition to deterministic chaos [53-55]. 

Two interesting problems regarding the continuum model for oriented 
media deserve careful attention. The first problem concerns solitons in two 
spatial dimensions in the presence, or not, of applied fields, which leads to the 
notion of vortices. This problem is met in magnetic structures (Josephson 
junctions [56-58]) or in nematic liquid crystals. The second problem brings 
into play the combination of both configurations A and B, and two rotational 
angles of  the director field are therefore considered. In this case we may have 
a complex behavior of the nonlinear excitations. Indeed, a soliton of the 
configuration A may be transformed while traveling into a soliton of the 
configuration B and vice versa.  Such situations can model the nonlinear 
dynamics in DNA, in which both bending and twisting of the molecular chain 
must be taken into account (see also, for instance, the same situation in 
ferromagnetic media [59-62]). 
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