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An exact derivation of the thin plate equation 
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Abstract. It is shown that, when the traditional assumptions of thin plate theory are taken as exact 
mathematical hypotheses, the desired field and boundary equations can be obtained by mere 
integration over the thickness of the corresponding equations for a three-dimensional cylindrical 
body made of a homogeneous, linearly elastic transversely isotropic, constrained material, yet 
avoiding some inconsistencies usually to be found in textbooks of structural mechanics. 

1. Introduction 

On p. 1 of their well-known book, Timoshenko and Woinowsky-Krieger [ 14] 
so describe the assumptions on which the theory of small deflections of thin 
plates is based (the quotation is verbatim): 

1. There is no deformation in the middle plane of the plate. This plane 
remains neutral during bending. 

2. Points of the plate lying initially on a normal-to-the-middle plane of the 
plate remain on the normal-to-the-middle surface of the plate after 
bending. 

3. The normal stresses in the direction transverse to the plate can be 
disregarded. 

According to Love [7], the first two assumptions were first stated by 
Kirchhoff (1850, [6]). Novozhilov [8], in his presentation of those "specific 
simplifications which are possible in the study of the deformation of flexible 
bodies", accepts 2, but replaces 3 with 

3'. The distance of every point of the plate from the middle surface remains 
unchanged by the deformation. 1 

Interestingly, Novozhilov expresses 2 and 3' as exact kinematical constraints 
on the possible deformations of the plate. Precisely, in terms of the fight 

1Cf. [8], pp. 177-178; again the quotation is verbatim; later, on p. 194, Novozhilov refers to 2 
and 3' as to "Kirchhoff's assumptions". The omission of 1 allows Novozhilov to encompass in his 
presentation v. Kfirman's nonlinear theory for large deflections of a thin plate, where the 
deformations in the middle plane of the plate are taken into account. 
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Cauchy-Green strain tensor C. Novozhilov writes 2 as 

Ci3 = C23 = 0, (1.1) 

and 3' as 

C33 = 1 (1.2) 

(for these notations, vid. formula (2.1) in the next section). However, in his 
discussion of the nature of Kirchhoff's assumptions in ~49, Novozhilov finds 
a serious difficulty with (1.1) and (1.2): 

"Interpreted as mathematically exact relations, [they] are absurd, since they 
lead, in general, to contradictions in the formulation of the condition of 
equilibrium of an element of the plate." 

Novozhilov-and with him the bulk of the engineering literature on struc- 
tural mechanics, whose treatment of these matters is well exemplified by 
his-seems content to interpret Kirchhoff's as purely geometrical simplifying 
assumptions, whose correctedness should be estimated a posteriori, meaning 
that " . . .  elongations and shears are neglected in comparison with rotations 
in determining the direction of fibers of the strained body" which were straight 
and perpendicular to the middle surface of the plate before the deformation. 
However, within the framework of a treatment ~ ia Novozhilov, the contradic- 
tions alluded at above remain, and could not possibly be removed by offering 
an appropriate interpretation for (1) and (2). 

Inconsistencies of this sort are not uncommon in the mechanics of elastic 
structures, 2 and contribute to give the subject, in the view of many, the aspect 
of an unattractive superfetation over the general theory of elasticity (cf. e.g. 
[8], §54). Indeed, structural mechanics is born when in the three-dimensional 
theory assumptions are introduced reflecting the peculiar 'thinness' of a class 
of bodies, so as to reduce the problem to a bidimensional one (membranes, 
plates, shells) or a monodimensional one (strings, rods, jets). A current 
method of attack, as old as Poisson's (1829, [13]) and Cauchy's (1828, [2]) 
first researches on plates and still popular nowadays, consists in 
" . . .p roceeding  from the general equations of Elasticity, and supposing that 
all the quantities can be expanded in powers of the distance from the 

2 E.g., Washizu ([15], §8.1) assumes, in addition to 2, both 3, i.e., T33 = 0, and 3', i.e., E33 = 0; he 
also assumes, as is done in all other textbooks, that the material is isotropic, so that, in particular, 
T33=21zE33+2(EI1+E22+E33),  (cf. equation (3.4) below). It follows that, necessarily 
2(Ell + E22) = -- 2x3 Au3 = 0 (here Ua = u3(xl, x2) is the transversal displacement). Thus, for 
consistency, either 2 = 0  (or, which is the same, the Poisson's ratio v = 0 ) - a  very special 
ins tance-or  u 3 has to be a harmonic funct ion-a  trivial instance. 
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middle-surface" ([7], p. 27). The tacit understanding is that, after some 
bookkeeping, the thinness of the structure under examination will be automat- 
ically accounted for by retaining only low order terms in the power expansions. 

In this paper, I show that assumptions 1, 2 and 3 can indeed be formulated 
as mathematically exact relations, and yet they do not yield any contradiction, 
provided those relations are consistently seen as internal constraints, i.e., 
provided that (i) an additive decomposition of the stress measure in a reactive 
and an active part is accepted, and (ii) the constitutive dependence of active 
stresses on the deformation is such as to reflect the maximal material 
symmetry compatible with the assumed internal constraints. It should be 
noted that, in the usual derivations of the thin plate equation, contradictions 
to equilibrium follow from the introduction of kinematical hypotheses of 
Kirchhoff-type precisely because of both failure to consider reactive stresses 
and the undue assumption of isotropy for the response function delivering the 
active stresses. 

In my present approach, the theory of small deflections of thin plates is 
made fully consistent with the principles and methods of three-dimensional 
linear elasticity; in a sense, the imposition of appropriate internal constraints, 
together with integration over the thickness, builds neatly into the model 
that thinness which is universally considered to be peculiar of plates, dis- 
pensing one from use of the brute force of power expansions. The merits 
of this approach for shells and rods, or in the nonlinear case, remain to 
be investigated. 3 

2. Internal constraints and reactive stresses 

Let (x~, x2, X3) be a rectangular coordinate system with origin at 0; let P be 
a bounded regular region in the plane x3 = 0, with 0 • P, and let dP be its 
boundary; finally, let C = P x ] - h, + h[ be a cylinder with generators parallel 
to the x3-axis and with end faces at x3 = + h. Later, I shall obtain boundary 
conditions over ~P from boundary conditions over the mantle M = 
{x • ~C[x3 # +_h) of C via integration over the thickness. In preparation for 
that, as is done in the study of the plane problem of linear elasticity (cf. [3], 
~45), I assume that whenever the boundary conditions are not the same ones 
on the whole of M then M is so partitioned that the intersection of the 
closures of any two elements of such partition consists at most of line 
segments parallel to the x3-axis and of length 2h. 

3 An attempt to account for rod thinness by introducing ad hoc internal constraints was made in 
[1]. 
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Now, let u=u(x)=(ul,u2, u3) be the displacement of  a point 
x - (xl, x2, x3) of  C, and let 

E = E(u):=~Vu + Vur), C = C(u) ,=I  + 2E(u) + VurVu (2.1) 

be, respectively, the linear and nonlinear strain measures (here, Vu is the 
displacement gradient and I is the identity tensor). 

A completely standard interpretation of  the components of  E and T, the 
Cauchy stress measure, shows that the assumptions listed in the introduction 
can be mathematically phrased as follows, in the context of  the linear theory: 

1 =~ (HI)  Ell(Xl, X2, 0) --~ E22(XI, X2, 0) = El2(Xl, x2, 0) = 0; 

for all x ~ C, 
2 =~ (H2) El3 = E23 = 0; 
3 =:, (H3) T33 = 0; 
3' =:" (HY) E33 = 0. 

Moreover, correspondence of  (1.1) with (H2), and of  (1.2) with (HY), is 
obvious in the light of  definitions (2.1). It should also be noticed that, at 
variance with the other ones, 3 and, consequently, (H3) are not kinematical 
assumptions. 

As anticipated in the introduction, I here choose to regard assumptions 
(H2) as internal constraints. 

In continuum mechanics, an internal constraint is a constitutive prescription 
restricting the class of  possible deformations (cf. [5]; [4], §16; [liD. In the 
linear theory of  elasticity (cf. [9]; [10]) such a prescription is expressed by the 
assignment of  a subspace 

SA..= {E E SymlA • E = 0} (2.2) 

of  the space Sym of all symmetric tensors (in (2.2) a dot designates the inner 
product of  two tensors: L"  M = trace(LMr)).  In particular, (H2)l is obtained 
for A = el ® e3 + e3 ® el, and (H2)2 is obtained for A = e2 ® e3 + e3 ® e2. 

An internal constraint is accompanied by reactive stresses T 0~), whose role 
is to maintain the constraint itself. For simplicity, the reactions T (R) are 
assumed to contribute nothing to the stress power in any admissible motion; 
it follows that "1~ R) must be orthogonal to SA, or rather, parallel to A: 

T (R) = zA, • E R, (2.3) 

where z is a scalar multiplier, at this stage arbitrary. On othe other hand, an 
expedient normalization consistent with the arbitrariness of  z suggests that the 
active stresses 
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T (a) = T - T (m (2.4) 

are taken as elements of SA; if more than one constraint subspace SA is to be 
considered, and if D denotes the intersection of all constraint subspaces, then 
T (a) e D. In the light of the above, (H2) imply that 

[ T ] =  ! T(2~ ) 0 + • 0 ) .  

T(3~ > 

3. The constitutive equation for active stresses 

In the linear theory, the active stresses are delivered by a linear mapping C 
from D into itself: 

T <A> = C[E], (3.1) 

where C, the elasticity tensor, associates a null stress only to the null strain, 
and is such that 

Cijhk = Cj,'hk = C~kh = Chk0"" (3.2) 

Let Rot denote the group of  all rotations, i.e., of all orthogonal tensors with 
positive determinant. The response symmetries of  the constrained material 
described by C are reflected in its symmetry group, i.e., the collection of all 
Q ~ Rot such that 

Q E Q r e D  and QT(A)Qr=C[QEQ r] for all E e D .  (3.3) 

Here I have adapted to constrained materials the classical notions of an 
elasticity tensor and its symmetry group, 4 which are obtained when the 
material is unconstrained, or rather, D - S y m  and (3.3)~ is trivially satisfied. 

In the classical constitutive theory, an interesting problem is to find a 
representation formula for all elasticity tensors having an assigned symmetry 
group: e.g., if (3.3)2 has to be satisfied by all orthogonal tensors (isotropic 
materials), then the Lain6 constitutive equation follows: 

T = C[E] = 2#E + 2(I .  E)I. (3.4) 

4 The latter are masterfully presented by Gurtin [3], ~20-22. 
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For a constrained material (D c c Sym), not any assignment of  a subgroup 
of  Rot  is compatible with (3.3)1. In particular, an isotropic material may be 
incompressible (D = {E ~ SymlE" I -  0}), but cannot be inextensible in the 
direction e3 (D = {E e Symle 3 • Ee3 = 0}). 

I here assume that the elastic material which comprises the cylinder C 
has the maximal response symmetry compatible with the internal con- 
straints imposed by (H2). A representation formula for C then follows from 
(3.3): 

T (A) = 2/~E + 2((1 - P) • E)(I - P) + 2 ' (P"  E)P, P = e 3 • e 3. (3.5) 

where P is the perpendicular projection onto the direction e3 of  the x3-axis; in 
components, 

Ilj E ° ] [T (a)] = 2p[E] + 2(E11 + E22) 1 + 2'E33 0 = 
0 1 

(2# + 2)Ell + 2E22 2pEl2 0 
(2# + 2)E22 "~- 2Eli 0 

(2/t + 2')E33 
(3.6) 

Formula (3.6) describes a transversely isotropic material (cf. e.g. [12]), with e 3 
its anisotropicity axis, constrained as required by (H2). 

4. Kirchhoff elastic states 

In view of (2.1)1, hypotheses (H2) can be written as 

Ul, 3 "~ U3, l = 0, U2, 3 "~- U3, 2 = 0. 

Moreover, (H3) and (3.6) imply that 

E33 = u3, 3 = 0 .  

The solution of system (4.1), (4.2) is 

U 1 = --X3U3,1 + Ul 0, 12 2 = --X3U3, 2 21- U02, 

U3 = U3(Xl, X2), U 0 = u O ( X l ,  X2) ,  0 0 U 2 = U2(XI,  X2), 

(4.1) 

(4.2) 

(4.3) 



The thin plate equation 127 

for all x ~ C. Furthermore, (HI )  implies that 

u° = ~l - flxz, u° = ~2 + flxt, (4.4) 

a rigid displacement in the middle plane of  the plate. 
In the technical literature, (4.3) and (4.4) are sometimes referred to as 

describing a Kirchhoff displacement field in C. The corresponding strain and 
(active) stress fields are, respectively, 

 U3ll U312 i] 
EE1 -x3[ i u322 

and 
-2#U3,11 + 2 AU 3 

[T ~A)] = - x 3  

(4.5) 

2#u3,12 0 ] 
2/.tu3,22 + 2 Au 3 0 . (4.6) 

0 

For the cylinder C, consider the triplet {u, E, T = T (A) + T(R)}, with u as in 
(4.2) and (4.3), E as in (4.5), T ~A) as in (4.6) and T ~R) as in (2.5). Given a body 
force field b = (0, 0, b(x)) over C, I call such a triplet a Kirchhoff state if it 
satisfies the equilibrium equation 

D i v T + b = 0  i n C  (4.7) 

and the boundary condition of  null tangential traction on the end faces of  C 

TI3 = T23 = 0 for x 3 = +h.  (4.8) 

It is easily found that (4.7)1,2 and (4.8) yield 

h2 t,x  ) 
TtJ ) = ~- (2# + 2)(Au3)'l \ h :  - 1 

2 (4.9) 
h 2 ( x 3 )  

T ~  ) = ~- (2g + 2)(Aua),2 ~-7 - 1 , 

whereas from (4.7)3 and (4.9) one obtains 

X3 
~- (2# + 2) ~-7 - 1 AAu3 + b = 0. (4.10) 
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For any given Kirchhoff state, the shear forces are 

;7 QI = Tl3 dx3 = -13'r('~) dxa = -D(Au3), l  
h 

(4.11) 

Q2 = 7"23 dx3 = T ~  ) dx3 = -D(Au3),2, 
h h 

where the flexural rigidity D is defined to be 

2h 3 
O = T (2/z + 2); (4.12) 

the moments are 

Ml=f_+;X3Tl'dX3=;+hhx3T({~)dx3_ 
2 o(u3 + u34 

M2 -- x3 r22 dx3 = x3 T~) dx3 
h h 

=-D(u3,22+~u3,1,) ,  (4.13) 

M n  = - x3 Tl2 dx3 = - x3 TI~ ) dx3 
h 

D ~ U3,12 . 

These formulae make evident the reactive nature of  shears and the constitutive 
nature of  moments. 

Shears and moments are linked by two direct consequences of  the equi- 
librium equations. In view of  the identity 

xk Toj = (x, Te) J -- T,,, (4.14) 

it follows from (4.7)1,2 and (4.8), after integration over the thickness of  C, that 

Q I - M I , I  +M12,2=0  and Q2-M2,2+M12,1 =0 .  (4.15) 
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Moreover, again by integration over the thickness, one gets from (4.7)3 

Q~,1 + Q2,2 + q = 0, (4.16) 

with 

f 
+h 

q = b dx3. (4.17) 
-h 

Combining (4.13), (4.15) and (4.16), one obtains the classical equilibrium 
equation for the small deflections u3 of a thin plate of flexural rigidity D, 
subject to transversal loads of surface density q: 

q 
AAu 3 = ~  in P. (4.18) 

Of course, (4.18) is also arrived at by direct integration of (4.10). 

5. Boundary conditions 

(4.18) is the strong form of the Euler-Lagrange equation associated with the 
energy functional 

Y,(u) = fc [tr(u) --b(x) "u] dx, (5.1) 

where the stored energy density tr is defined to be 

= ½T ~A)" E, (5.2) 

with T (a) and E given by (4.6) and (4.5), respectively, for a Kirchhoff 
displacement field u. 

In view of the hypothesis on M, the admissible boundary conditions on OP 
can be obtained by performing in either order the operations of integrating 
over the thickness and of taking the first variation of the energy functional. 
E.g., after integration over the thickness, (5.1) becomes 

4/~ [U3,11U3,22 -- (U3,12)2]}dx I dx2 E(u) =½D fe { (Aua)2- 2# + 2  

f qu3 dXl dx2 (5.3) 
de 
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(cf. formula (117) on p. 88 of  [14]). Notice that the terms 

[u3,~ I u3.22 - (u~, ,2)  ~] 

compose a null Lagrangean, and thus contribute nothing to the field equation. 
The variational format now allows for a straightforward derivation of  those 
boundary conditions which may be imposed along OP. When use is made of 
the divergence theorem, one obtains: 

'# ] 
0 = D e Auao,1 - (Aus),tv 2# "{" ,~, (U3'22/) '1 - -  U3 ' I2V '2 )  nl 

22 - us,12v, l ) ]  + [Auav.2-  (Au3),2v 2 / ~  2 (U3'11/3'2 n2' (5.4) 

where v = v(x~, x2) denotes the variation of  u3, and n = (n~, n2, 0) is the unit 
outer normal to M along 0P. On denoting by a,v = Vv • n and Otv = Vv • t the 
derivatives of  v in the directions of n and the tangent t to 0P, respectively, one 
has that 

v,l = nl OnV -- n2 dtv, v.2 = nl dtv + n2 OnV. (5.5) 

Substituting (5.5) into (5.4) yields 

0 = - - f  (Mln ~ + Mzn~ -- 2Mlzn~n2) OnV 
do P 

-b foe (Qlnl +Q2n2)v+[(Ml2(n2-n2) +(MI-M2)nln2]O'v'  (5.6) 

or rather, 

0 =  - f  n . O . v  - ( Q .  +OtM.,)v, (5.7) 
d0 P 

where 

M.=n'M'n,  M.,=t'M'n,  Q.=Q'n  (5.8) 

and, with slight abuse of notations, 

[ M ] =  - M , 2  M2 _]' [ O ] =  Q2 " 
(5.9) 
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Thus, as is well-known, on t~P the geometrical boundary conditions may 
involve u3 and an u3, whereas the natural boundary conditions may involve the 
bending moment Mn and Kirchhoff's shear force Vn = Q~ - t~,Mnt. 

A p p e n d i x  1 

The interpretation of the material moduli of transverse isotropy 

In standard textbooks of structural mechanics, where the material of which 
the plate is made is supposed to be isotropic, the flexural rigidity is defined to 
be 

2h 3 E 
D - ~ -  1 -- v 2' (Al. l )  

where E is Young's modulus and v in Poisson's ratio. 
As is well-known, for a uniaxial state of stress 

T = Te I (~) el, (A1.2) 

where el is, say, the unit vector of the xl-axis, E is the ratio of the only 
non-vanishing stress component TH and the corresponding strain E~, 
whereas v is the inverse ratio of Ell and any transversal strain, say, E22: 

z #(32 + #) //:22 2 
- , v -  . ( A I . 3 )  

E E11 2 + #  Ell 2 (2+#)  

For the transversely isotropic material of constitutive equation (3.5) the 
same interpretation holds. One has 

z 4#(2 + #) E22 2 
E~l) E11 2 +2#  v°) E11 2 + 2 # '  (AI.4) 

so that 

E°) - 2# +2 ,  (A1.5) 
1 - Vffl ) 

and (4.12) and (A1.1) can be brought to formally coincide. However, it should 
be noticed that a transversely isotropic material has more than one "Young's 
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modulus" and "Poisson's ratio" (just to continue to use the familiar termi- 
nology, in the same vein as the "Lam6 constants" of a transversely isotropic 
material have been denoted here by the same letters 2 and # used in the 
isotropic case); e.g., for the material described by (3.5), one has (with 
self-explanatory notation) 

T E,1 E22 
E(3) E33 +2/z, vo) E33 Ea3=0" (A1.6) 

Appendix 2 

Null transverse strains in place of null transverse stresses 

In the present derivation of the thin plate equation, the vanishing of transverse 
strains, 

E33 = u3, 3 = 0 ,  (4.2) 

has not the logical position of an independent hypothesis, as (4.2) follows 
from (H3), the hypothesis of vanishing transverse stresses, and the constitu- 
tive equation (3.6). If, in place of (H3), (H3') were accepted, (4.2) would 
express an internal constraint, and accordingly, (2.5) would feature an active 
stress 

T(~ ) = 0 

and a reactive stress 

T~) ~ o. 

Of course, the Kirchhoff displacement field, together with the associated 
strain and active stress fields in C, would not change. 

At this stage, in order to complete a derivation of the plate equations 
conceptually equivalent to the one presented in the text, one would confront 
two main alternatives: 
either one might choose to stick to the given notion of a Kirchhoff state, 
supplementing (4.8) with a boundary condition of null normal traction on the 
end faces, and integrating (4.10), which would now look as follows: 

h 2 /x~ ) 
-~- (2g + 2 ) ~  - 1 AAu3 + T~!3 + b = 0, (A2. l) 
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to get 

T ~  ) = - b dx 3 q- q 
h 4 h  

together with (4.18); 

1 x]XX 
~-~ID/AAu3 (A2.2) 

or one might  choose to set b = 0 in (4.7) and  supplement  (4.8) with appropri-  

ate b o u n d a r y  condi t ions  for the no rma l  tractions: 

T<ml,, - - h ) = - - q ( x l  x2) and  T ~ ) ( X l , X 2 , + h )  0, (A2.3) 33 \"~1,  X 2 ,  ~ 

etc.. Which course to follow is a mat ter  of  taste. 
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