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ABSTRACT

Motions of a sandwich plate with symmetric facings are studied in the framework of the three-dimensional
equations of elasticity. Both the core and facings are assumed to be isotropic and linearly elastic.

Harmonic wave solutions, which satisfy traction-free face conditions and continuity conditions of
tractions and displacements at the interfaces, are obtained for four cases: symmetric plane strain solutions
for extensional motion, antisymmetric plane strain solutions for flexural motion, and solutions for the
symmetric and antisymmetric SH-waves. The dispersion relation for each of these cases is obtained and
computed. In order to exhibit the effect of the ratios of facing to core thicknesses, elastic stiffnesses and
densities, on the dynamic behavior of sandwich plates, dispersion curves are computed and compared for
plates with “thick, light, and soft” facings as well as for plates with “thin, heavy, and stiff” facings.
Asymptotic expressions of dispersion relations for extensional, flexural, and symmetric SH-waves are
obtained in explicit form, as the frequencies and wave numbers approach zero.

The thickness vibrations in sandwich plates are studied in detail. The resonance frequencies and modal
functions of the thickness-shear and thickness-stretch motions are obtained. Simple algebraic formulas for
predicting the lowest thickness-shear and the lowest thickness-stretch frequencies are deduced. The
orthogonality of the thickness modal functions is established.

1. Introduction

Sandwich plates have been a subject of study for a long time. Most of the
investigations are devoted to sandwiches in which the facings are thin, stiff, and
heavy as compared with the core. The results of investigations for this type of
sandwich plate are applied to bending and buckling problems of light weight
structural constructions in civil and aerospace engineering [1], [2] and also to the
vibrations of the elastic sandwich plates [3], [4] and piezoelectric crystal plates with
metal electrodes [5].

On the other hand, very little has been found on the studies of sandwich plates in
which the facings are thicker, softer, and lighter than the core. An elastic sandwich
plate of this type is very useful to model a precipitator plate for studying its
mechanical behavior. In industrial precipitators, electrostatically charged precipitator
plates collect dust particles from a passing gas stream. The dust particles coagulate
under the effect of various forces of adherence, and upon collection, form dust layers
on both sides of the precipitator plates [6]. Depending upon the field situation, the
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mass of the dust layer can accumulate as much as the mass of the precipitator plate.
The dust layers are removed, in most cases, by the impact of an applied force at the
edge of the plate, either normal or parallel to the plane of the plate [7].

In order to study the effect of thickness, stiffness, and mass of the facings on the
wave propagation and vibrations in an elastic, symmetric sandwich plate, the
three-dimensional equations of elasticity are employed in the present paper. Since
there are no limitations on the values of the ratios, between the facings and the core,
of the thicknesses, elastic stiffnesses, and mass densities nor on the values of the
frequencies of vibrations, the results of the present study are applicable to the
sandwich plates with “thin, stiff, and heavy” facings as well as to those with “thick,
soft, and light” facings. The exact dispersion relations and curves obtained from the
three-dimensional theory of elasticity may also be used in evaluating the accuracy of
two-dimensional approximate theories of vibrations of sandwich plates.

II. Three-dimensional equations and boundary conditions

Consider a sandwich plate which consists of three layers, namely a middle layer and
two cover layers (shown in Figure 1). Each layer is homogeneous, isotropic, and
linearly elastic. The sandwich plate is of symmetric construction, i.e., its facings are
of the same material and of the same thickness. The Young’s modulus, Poisson’s
ratio, density and the thickness of the core are denoted by E,, v, p,, and 2b,,
respectively. For the facings, the corresponding notations are E,, v,, p,, and b,. The
right-hand system of coordinates, x,, x,, and x5, are as shown in Figure 1, where x,,
x5 are in the middle plane of the plate and x, is in the thickness direction. The time
is denoted by ¢, ; is the displacement, and 7; the stress tensor, i,j=1,2,3. In the
absence of body forces, the equations of motion are:

Tiji = P1Up |x2| <by, 1)
Tiji = P2Up b, < |x2| <by+b,,
x2
¥
b2 i COVER LAYER E2 v» p2 2
§

_'_. MIDDLE LAYER —+——E ¥ pj—— -

bz } COVER LAYER Ex v; p2 )
4

Figure 1. A symmetric sandwich plate.
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where and henceforth [ 1,;=d[ J/ax;, ["]=d[ ]/at, and the summation convention is
assumed unless specified otherwise. The constitutive relations:

Ty = A8+ P«l(“i,j + uj,i), |x2| <b,,
(2)

Ty = AU By + “’2(ui,j + uj,i), b, < |x21 <bi+b,,

where §; is the Kronecker delta, and A,, p, A,, and u, are the Lame constants of
the core and the facings, respectively. A;,, w, are related to E, and v, by

A= Eth/[(l +u)(1- 21’1)],

3
w = E/[2(1+wv)], I=1,2. ®

The sandwich plate is traction-free at the plate faces |x,|= b, +b,. The displace-
ments and the tractions are continuous at the interfaces, |x,|=b;. Hence, the
eighteen boundary conditions:

[TZj]|x2|=b1+b2 =0,
[ui]|x2|=b1* = [uj]lx2|=b," 4
[1'2;']|x2|=b,+ = ["'2j]|x2|=br~

For an unbounded sandwich plate these are the only boundary conditions to be
satisfied. Initial conditions are not needed for time-harmonic waves.

IT1. Harmonic wave solutions

In each layer of the sandwich plate there exist potential functions ® and H, such that
u; =D,; +euH, (5)

where e, =3(i —j)(j—k)(k—i). The potential functions must satisfy the following
wave equations [8]:

U%lvz(p:&)a U%IVZI_I]' 21:.11', |x2l<b1,

. . (6)
U%ZVZCD = (I), U%?_VzI{j = _PI]', bl < IX2| < b] + b2,

where V? is a Laplacian operator, and vy, and v, are the dilatational and shear wave
velocities for the core (I =1) and facings (I =2)
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Uﬁ: (A +2u) oy

! ™

V3= Wl o 1=1,2.

For straight-crested waves, the dependence of the potential functions on the
x;-coordinate is suppressed, and at the same time H, can be set equal to zero
without loss of any physical significance from the interpretation of the results [9].
After such simplifications, the general solutions for straight-crested waves propagat-
ing in the x, direction may be written as:

[a; cos a;x,+ a- sin a; x,] exp i(wt —&x,), |xal < by,

¢ =1 [(a £ ag) cos a(x,£b,)+(as+ ay) sin B,(x, F by)] exp i(wt — £x;),

b, <+£x,<b;+b,,
[a10cos Byx,+agysin Bix,] exp i(wt —&x,), |x%,| < by,
H;=1{[(xas+a,;) cos Bo(x, F by) +(ag £ ay,) sin By(x, F by)] exp i(wt — &x,y), )
b, <+£x,<b;+b,,
[a13 cos B1x,+ a6 5in B1x,] exp i(wt — &x;,), X2l < by,
H,=1{[(a14%a17) cos By(x, F b,) +ta,s+a,g) sin B(x, F by)] exp i(wt — &x,),
b, <£x,<b;+b,,

H1=0’

where w is the frequency, £ is the wave number in the direction of wave propaga-
tion, and o, «,, B1, and B, are the wave numbers in the thickness direction such
that they satisfy

§2+a,2=‘01_,2w2, §2+Bl2=,0512w2’ l= 1’ 2 (9)

One may verify that (8) are solutions of (6) by direct substitution. Also, one may
obtain displacements and stresses from (5) and (2).

The displacements and the stresses derived from (8) must satisfy the eighteen
boundary conditions of (4). This requirement leads to eighteen homogeneous, linear
algebraic equations on a,, a, - * * a,5. In matrix notation the system of equations is

Ua=0, (10)

where 0 is a null vector and a is a vector having a, - - - a3 as its components. For a
nontrivial solution the following relation must be satisfied

det U=0, (11)

which relates the frequency @ and the wave number £ and is called the dispersion
relation. The nontrivial solution for vector @ may be obtained from (10) for any
w — ¢ pair that satisfies (11).

For the symmetric sandwich plate (see Figure 1), (10) has the following uncoupled
form:
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where the dimensions of the submatrices V, W, X, and Y are 6 X6, 6 X6, 33, and
3 X3 respectively, and 0’s are null matrices. The elements of X, Y are given in (13)
and (14), and those of V and W in (15) and (16) on the following page.

—cos 3;b; 1 0
XE[MB1 sin B8b, 0 K2Ba :| (13)
0 _Sin szz COS szz
and
—sin B3,b, 1 0
YE[—F“IBI cos $3,b, 0 2B ] . (14)
0 —sin B,b, cos B,b,

Because the system of equations in (12) is uncoupled into four groups, the
solutions to (12) can also be classified into the following four types:

1. Symmetric plane strain solution of extensional motion

Set a;=ag="-'-=a,3=0, and let

Via, - - - a6]" =0, 17)
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where T represents the transpose of a matrix. To solve (17) for a, - - - ag, first solve
the dispersion relation

det V=0. (18)

Then, for any w — & pair that satisfies (18) a nontrivial solution is obtained from (17).
Since [a, ' - - a¢]" nontrivial but a,= -+ =a,3=0, the displacement field from (5)
and (8) represents the symmetric, plane strain solution of extensional motion, i.e.

uy(xy, =X, t) = Uy (Xq, X, 1), Un(Xy, =X, 1) =—Us(Xy, X2, 1) and u;=0.

2. Antisymmetric plane strain solution of flexural motion

Seta;=---a¢=0, a3=---=a,3=0, and let

Wla, - - a,]" =0. (19)
similarly, the corresponding dispersion relation is

det W=0, (20)

and the displacement field from (5) and (8) represents the antisymmetric plane strain
solution of flexural motion, i.e.,

ui(xy, =Xz, 1) = —uy (X1, Xa, 1), Un(Xy, =X5, ) = Up(Xy, X5, ), and uz=0.

3. Symmetric SH-wave solution

Seta;=+--=a,,=0, a;s=a,;,=0a,5=0 and

X[a;s aps ais]"=0. (21)
The associated dispersion relation is

det X =0. (22)

The symmetric SH-wave solution from (5) and (8) has u;=u,=0, and
Us(Xy, =Xa, £) = us(Xy, X, ).

4. Antisymmetric SH-wave solution

Seta;,=---=a,5=0 and
Yla,s ai; a]"=0. (23)
Dispersion relation becomes

det Y=0 (24)
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and the antisymmetric SH-wave solution from (5) and (8) has u,=u,=0, and
Us(Xy, =Xz, 1) = —uz(xq, X, 1).

The dispersion relations are now computed for two sandwich places, labeled SP4
and SP7, for which geometric and the material properties are:

SP4; Ez/Elz().OOl, 141 203, V2=0.1, p2/p1 :0.3, b2/b1 = 1.0,

(25)
SP7; E2/E1 =20.0, Vi =03, V2=0.3, p2/p1=2.0, b2/b1=0.1.

The elastic moduli and the density of typical dust layers are not well known at the
moment. If the mechanical properties of dust layers are assumed to be similar to
those of the fine and silty sands of inorganic soils, then E,=10° dyne/cm?, p,~
2.65 gram/cm® [10]. For precipitator plates made of steel, E; =2.0x 10'? dyne/cm?,
v, =0.3 and p, =7.7 gram/cm>. Thus, SP4 above is chosen to represent a reasonable
model of a dust-covered precipitator plate. SP7 is a sandwich plate whose facings are
heavier, thinner, and much stiffer than the core. It is chosen to model a light weight
composite used typically in aerospace structures.

The dispersion curves are computed for SP4 and SP7 and are shown in Figures 2
and 3 for extensional waves, in Figures 4 and 5 for flexural waves, in Figures 6 and 7
for the symmetric SH waves, and in Figures 8 and 9 for the antisymmetric SH waves.
In these figures, the nondimensional quantities 2b,w/wv,,, and 2b,& 7 are chosen as
the ordinate and abscissa respectively. The nondimensionalizing factor @, = 7v,,/2b,
is the first antisymmetric thickness-shear cut-off frequency for a single-layered plate
of thickness 2b, or a sandwich plate without facings (b, =0). The corresponding
dispersion curves for a single-layered plate, which are solutions of the Rayleigh—
Lamb frequency equation, were studied in great detail by Mindlin and his co-
workers [9], [11].

It can be seen from Figures 3, 5, 7, and 9 that the dispersion curves for SP7, a
plate with thin, stiff, and heavy facings, are very similar to those of a single-layered
plate. The first antisymmetric thickness-shear cut-off frequency (in Figure 5) is
reduced to 0.836 from the unity for a single-layered plate. All the frequency
branches have a similar downward shift. This frequency reduction phenomenon is
due mostly to the mass and the stiffnesses of the facings and is known in the
vibrations of crystal plates with electrodes [15].

From Figures 2, 4, 6, and 8 for SP4, which is a plate with thick, soft, and light
facings, we see that the real frequency branches still resemble those of a single-
layered plate, but the behavior of the imaginary branches has marked differences.
The value of the first antisymmetric thickness-shear cut-off frequency is reduced to
0.0627 (in Figure 4) from the value of unity (= 1) for a single-layered plate. In this
case, the frequency reduction is strongly affected by the strains developed in the
facings, and, therefore, depends on the thickness and stiffnesses of the facings.

Of special interest and usefulness are the explicit expressions of asymptotic
behavior of dispersion curves at low frequency, long wave length. When « —0 and
£—0, (9) shows that ¢y—0, B;—0, I=1,2. Then by a straightforward but quite
laborious expansion of (18), (20), (22), and (24) after using the Taylor series
expansion of trigonometric functions in (13)-(16), the asymptotic expressions of the
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Figure 2. Dispersion curves of extensional waves
in the sandwich plate SP4.
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dispersion relations are obtained. For the symmetric plane strain solution of exten-

sional motion,

[(1- V%)—‘IEl b, +(1- V%)_1E2b2]§2 =(p,b, + szz)wz-

(26)

Letting b, =0, we find that (26) reduces to the frequency equation in the classical
extensional theory of vibration of single-layered plates [13]. For the antisymmetric

251
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Im(5>) Re(—7)
1 - 1
[¢] 05 1o L5

Figure 3. Dispersion curves of extensional waves in
the sandwich plate SP7.
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Figure 4. Dispersion curves of flexural waves
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Figure 5. Dispersion curves of flexural waves in the
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Figure 6. Dispersion curves of symmetric SH-waves in
the sandwich plate SP4.
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Figure 7. Dispersion curves of symmetric SH-waves
in the sandwich plate SP7.

plane strain solution of flexural motion,
[(1 - V%)—IE] b? +(1- V%)_lEz{(bl + b2)3 - b%}]f“ =3(p,b, + szz)w2- (27)

Setting b, =0, we find that (27) reduced to the dispersion relation for the classical
flexural theory of vibration of single-layered plates [13]. For the symmetric SH-wave
solution,

(b + P«zbz)‘fz =(p;b; + szz)wz- (28)

The dispersion curve for the antisymmetric SH-wave solution does not pass through
the origin of the dispersion diagram, and so no asymptotic expression exists from
(24) as w and ¢ approaching zero. It is interesting to note that in the asymptotic
dispersion relations (26)—(28) the terms (1—v32) 'E,b,, (1—v3) 'E){(b, +b,)*— b3},

2byw
mVay

o3[

a2t

("

[oX] o

2mé
1m (228 /- Re(Zm)
1 L —

20 0o 20

Figure 8. Dispersion curves of anti-symmetric
SH-waves in the sandwich plate SP4.
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Figure 9. Dispersion curves of anti-symmetric SH-waves
in the sandwich plate SP7.

by, and p,b, represent, respectively, the contribution of the cover layers to the
extensional stiffness, flexural stiffness, shear stiffness and the mass of the sandwich
plate. The asymptotic expressions for the slopes and curvatures of these dispersion
curves can be obtained readily from (26)—(28) by differentiation.

IV. Thickness vibrations

In Figures 2-9 the points where the dispersion curves intersect the vertical, fre-
quency axis are the cut-off frequencies at zero wave number of the propagating
waves in the sandwich plate. When ¢ approaches zero, the wave solutions of (8)
become independent of the x, and x; coordinates and reduce to standing wave
solutions in the x, direction. Since the motions depend only on the thickness
coordinate, x,, they are called simple thickness vibrations [9].

The solutions for the simple thickness vibrations are among the simplest, exact
and closed-form solutions of the three-dimensional theory of elasticity. They often
reveal clear understanding and offer simple interpretation of the dynamic behavior
of the sandwich plates.

When the motion is independent of x, and x,, the equations of motion (1) and the
constitutive relations (2) reduce to

Cillj 20 = PUY; j=1,2 (no sum) 29)

T2j = Gl (30
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where
.= {Vq lle <b,
! M2 b1<|x2'<b1+b2
A+2uy |x2|<b1
= 1
© {)\2+2u2 b, <|x,|<b,+b, (31)
- {Pl |x2| <b,
p> b <|x2)<b,+b,.

For isotropic plates, u; is suppressed here without loss of generality.
The differential equations (29) and the boundary conditions (4) form an eigenvalue
problem for which the solutions may take the following form

u; = a;¢p;, (x2/by) exp (iw;,t), j=1,2 (nosum) (32)

where w;, are the natural frequencies of the thickness vibrations, ¢;,(x,/b;) are the
corresponding modal functions, and n=0,1,2,....
Substitution of (32) into (29) gives the governing equations on ¢,

cdin(n)=—pblwjd.(n),  0<|n|<1+by (33)
where the prime denotes differentiation with respect to n and

N = X2/by, by = by/b;. (34)

The boundary conditions (4) reduce to

¢jn[n = 1+] = ¢jn[n = 1_]>

cj(bljn[in = 1+] = Cj¢,in[:tn = 1-]’ (35)

d”;n["] =1+ bO] = 0

We note that u, (or ¢,,)) and u, (or ¢,,) may satisfy (33) and (35) independently.
The solutions ¢,,,#0 and ¢,, =0 correspond to displacements parallel to the faces
of the plate and are called thickness-shear modes, while ¢,,=0 and ¢,,#0
correspond to displacements normal to the faces of the plate and are called
thickness-stretch modes.

The solutions for thickness-shear and thickness-stretch vibrations, satisfying (33)
and (35), are expressed in the following general, nondimensional form

cosjz—T(Q,-,,—n) nl<1
din(1) =X cos 72—7 (Q;, — n) cos %T [voron(n— D] (36)

. T LA
—[pov-jol " sin 5 (@, ~n) sin > [vaLQmn—D]  1<|n|<1+b,
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and
&) =(=1)"d(—m) for —(1+by)<n<O0,

where

Q.= wjn/(%%) > Vjo = 2/ Vp1, Po = p2/p1.

For j=1, ¢y, and Q,, (or w,,) are the thickness-shear modal functions and
frequencies, respectively, and n=0, 2, 4,... are associated with symmetric
thickness-shear vibrations while n=1, 3, 5,... are associated with antisymmetric
thickness-shear vibrations. For j =2, ¢,,, and (,, (or w,,) are the thickness-stretch
modal functions and frequencies, respectively, and n =0, 2, 4, . . . are associated with
antisymmetric thickness-stretch and n=1, 3, 5,... are associated with symmetric
thickness-stretch.

The values of 1, in (36) must satisfy the frequency equation

T T +1
p0U(3_i)0 tan E [bov(_g,lnj)oﬂj"] + [tan 5 an] =0. (37)

Equation (37) is obtained from the boundary conditions (35) and is a condensed
form for the following four cases. Set j =1 for thickness-shear vibrations; the upper
and lower signs apply to the symmetric and antisymmetric deformations, respec-
tively. Similarly, set j =2 for thickness-stretch vibrations; the upper and lower signs
apply to the antisymmetric and symmetric deformations, respectively. Note that (36)
and (37) may also be obtained directly from (8), (17), and (18) by reduction. We
note that by setting j=1, (36) and (37) reduce to the Yu’s results for simple
thickness-shear vibrations [14].

The roots of (37), the resonance frequencies of the thickness vibrations, and their
corresponding modes (36) are computed for the sandwich plates SP4 and SP7 which
are defined in (25). The thickness-shear vibrational modes ¢, and frequencies
w,,/®, are shown in Figure 10 for the first five modes (n =0, 1, 2, 3, 4). Similarly,
¢, and w,, /@, for n=0, 1, 2, 3, 4 for the thickness-stretch vibrations are shown in
Figure 11. The nondimensional factor for the frequencies @; = m21/2b1 is the lowest

¢I n
_Sin_ S
&) 00 00627 00696 1.188 Qi9l
sP4
o \ <
“in <
) 0.836 1689 2566 3469

SPT
Figure 10. The thickness-shear modes and frequencies for the sandwich plates
SP4 and SP7.
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Figure 11. The thickness-stretch modes and frequencies for the sandwich
plates SP4 and SP7.

antisymmetric thickness-shear frequency of the single layered plate which is reduced
from a sandwich plate by letting b, =0 [12].

From Figures 10 and 11, it can be seen that the modes ¢, and ¢, for n=0
correspond to rigid body translations in the x; and x, directions, respectively. The
integer n which is associated with the nth mode identifies the number of nodal
planes parallel to the faces of the plate. Unlike the case of the single-layered plate,
the higher resonance frequencies are not equal to integral multiples of the funda-
mental frequencies; therefore the higher-order thickness modes are anharmonic
overtones of the fundamental modes in sandwich plates.

For SP4, which is a representative of the sandwich plates with “soft, light, and
thick™ facings, we see in Figures 10 and 11 that strains are developed mostly in the
outer layers and the middle layer acts essentially like a rigid body. The values of the
frequencies are given below each mode and distributed as follows

W11 W1y, W3S Wy, W SWy, and W3 Swyy

where the symbol =< should read as ““is less than but approximately equal to”. The
strains, in the cover layer, associated with these closely spaced frequencies are very
similar.

The value of the first antisymmetric thickness-shear frequency for SP4 has been
reduced from the unity (w,,/®, = 1) obtained for a single layered plate to w,;/®, =
0.063 due to the effect of facings. Values of /&, and w,,/®, are computed from
(37) for po/p;=0.3, vo/v; =1/3 and a range of values of E,/E, and b,/b, are are
listed in Table 1.

TABLE 1

Values of the first thickness-shear and thickness-stretch frequencies in sandwich plates (p,/p, =0.3,
valvy=3)

E,[E, 5% 7000 7060

b,/b, 1 1 3 1 1 3 1 1 3
W1,/dy 0.177 0.089 0.030 0.125 0.063 0.021 0.089 0.044 0.015

y/6; 0.265 0.133 0.044 0.188 0.094 0.031 0.133 0.066 0.022
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A useful simple formula for predicting the value of w,, is obtained as follows. By
realizing that for E,/E, <1, the mode shape ¢,; in the cover layer has a shear wave
length equal approximately to four times the thickness of the cover layer, and by the
use of (9), we have

UL, Wi _ V22/V21
Tu T2l 38
26, ' @ balby (38)
The values computed from (38) differ by less than about 1% from those listed in
Table 1.
In a similar manner, a formula for predicting the first thickness-stretch frequencies
is obtained:

0 S

(39)

TV <k 022/021
=Kz

26, T a') bo/b,

where k= v,,/05, =[(2—21,)/(1-2v,)]"?, and E,/E,;« 1.

For sandwich plate SP7, which is chosen as a representative of plates with “stiff,
heavy, and thin” facings, we see in Figure 10 and 11 that the strains in the core are
quite similar to those developed in a single layered plate (b, =0) and the facing acts
more like a rigid body, and the first thickness-shear frequency w,,/®, has been
reduced from unity (= 1) to 0.836, due to the effect of the mass and stiffnesses of the
facings. The values of w;,/®; and w,,/®, for b,/b;=0.1, v,/v;=1 and a range of
values of E,/E, and p,/p, are calculated from (37) and are listed in Table 2. From
the values in the columns 1 and 2 of Table 2, we note that the frequency reductions
remain constant for E,/E,=20.

Wy S

TABLE 2
Values of the first thickness-shear and thickness-
stretch frequencies in sandwich plates (b,/b; =0.1

vlvy=1)
E,/E, 200 20 10 3
p2/0, 2 2 1 0.3

w; /6, 0836 0836 0909 0971
wy/é, 1564 1564 1702 1816

A method employed by Mindlin and Lee [15] for calculating the mass effect of the
electrode platings on the first anti-symmetric thickness-shear cut-off frequencies of
crystal plates is adopted here to yield

RB, b, tan (B1by) =1, (40)

where R = p,b,/p,b, is the ratio of the mass of the facings to the mass of the core
per unit area of the plate, and 8, = w/v,, is the shear wave number obtained from (9)
by setting £€=0.

For R <1, the smallest root of (40) is given, approximately, by

[ 2] 1 [ 772 123 ]
—_— e ——— +_ .
®; 1+R 1 12(1+R)? (41)
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Comparing (41) with equation (15) of Ref. [15], we see that the second term in (41)
is an additional term to improve the accuracy of the formula when R=1.

The value of w;,/®, predicted by (41) for SP7 is within 0.02% of the exact value
listed in the column (2) of Table 2. A further check of the accuracy of (41) is made
by considering a sandwich plate with E,/E,=3.0, p,/p;=1.0, p,/b;=1.0, and
v,/v; = 1.0 such that R = 1.0. The value computed from (41) has an error of 3.8% as
compared to the exact value from (37).

A formula for calculating the lowest thickness-stretch frequency for E,/E,>1,
R <1 is similarly obtained as

w3y
N

2 3
k, [1+7T R ]

1+R | 12(1+R)? (42)

where k;=v,/v2=[2—2v))/(1 _21’1)]1/2-

V. Orthogonality conditions of thickness modes

The governing equation (33) of ¢, and the boundary conditions (35) form a
Sturm-Liouville problem with discontinuous material properties through the thick-
ness of the sandwich plate as defined in (31). The orthogonality conditions for the
modal functions ¢, (j=1,2) will be established as follows.

Let w,, and w;, be two distinct frequencies, and ¢;,, and ¢;, be the corresponding
solutions of (33), therefore

Cj ’j'm = —pb%wizmd)jm (43)
din = _Pb%wfn in- (44)

By multiplying (43) by ¢,, and (44) by —¢,,, adding the result, and integrating
both sides of the final equation over the thickness of the plate, we obtain

1+b, 1+b,
[ (ctutn =ttt dn=-b3[ " o(wh-i)dmbydn @)

—1—bg ~1—b,

By means of integration by parts, the left hand side of (45) becomes
LHS= [Cj¢jn¢;‘m - Cj(bjm(b;n]l_;i%o + [Cid)jnd’j,'m - Cj¢jmd);n]ll

1+b,
_ j (b — il .

—1—bg

The first two terms of the above equation vanish independently owing to the
boundary conditions (35), and the third term is identically zero. Therefore

1+b,
J’ (cj¢jn¢,j’m - Cid’jmd),j’n) d’ﬂ = Oa wjm ¢ wjn

—1—bg



68 P. C. Y. Lee and Nagyoung Chang

which establishes that the system is self-adjoint [16]. From the right hand side of
(45) we have

1+b,
J pbmbndn =0, =12, wpra, (46)

—1—bg

which is the orthogonality conditions for ¢, with p(n) defined in (31), as the
weighting function.

Multiply (43) again by ¢,,, integrate both sides of the equation over the thickness,
and make the use of (46); then

1+b,

—1—bg

By integration by parts and boundary conditions (35), (47) is transformed to

1+b,
[ ctpdinan=0, =12  w,*a, 48)
—1-bgy
which may be regarded as the orthogonality conditions of ¢}, with respect to the
weighting functions ¢;(n) defined in (31).

For the case of single-layered plates, b, =0, p(n), ¢;(n) become constant through-
out the thickness, and the modal functions of (36) reduce to [9]

() =cos [12’—’—(1,—1)] i=1,2, n=0,1,2,....

It is evident that the orthogonality conditions (46) and (48) are satisfied.

For a sandwich plate in general, the thickness-shear modes ¢,, (j=1) and the
thickness-stretch modes ¢,, (j =2) are different and their orthogonality conditions,
established in (48), contain different weighting functions c,(n) and c,(n). It should
be noted that (46) and (48) represent four conditions and in which ¢, ¢,, are
piecewise smooth and p, ¢,, ¢, are piecewise continuous.

In addition to orthogonality, the completeness of the system of ¢, can also be
assured [17]. Hence the thickness modes are piecewise smooth and form an
orthogonal and complete set, and may, therefore, be used as a natural basis for the
series expansion of the displacements in sandwich plates.

Acknowledgements

This work has been carried out under a grant to Princeton University from the
Electric Power Research Institute as part of the program, “Electrostatic Precipitator
Plate Rapping and Reliability’’, which goes together with a parallel research pro-
gram at Research Cottrell Inc. We wish to acknowledge the cooperation of Dr.
Owen Tassiker of EPRL



Harmonic waves in elastic sandwich plates 69

REFERENCES

[1] Reissner, E., On Bending of Elastic Plates, Quart. Appl. Math., 5 (1947) 55-68.

[2] Eringen, A. C., Bending and Buckling of Rectangular Sandwich Plates, Proceedings of the First U.S.
National Congress of Applied Mechanics, 1951, 381-390.

[3] Yu, Y. Y., Forced Flexural Vibrations of Sandwich Plates in Plain Strain, Jour. Appl. Mech. Vol. 27,
Trans. ASME (1960) 535-540.

[4] Mindlin, R. D., Flexural Vibrations of Elastic Sandwich Plates, Technical Report No. 35, CU-46-59-
ONR-266(09)-CE, Dept. of Civil Engineering and Engineering Mechanics, Columbia University
1959.

[5] Mindlin, R. D., High Frequency Vibrations of Plated, Crystal Plates, Progress in Applied Mechanics,
MacMillan, N.Y. 1963, 73-84. Prager Anniversary Volume.

[6] Tassicker, O. J., Aspects of Forces on Charged Particles in Electrostatic Precipitators, Dissertation,
Wollongong University College, University of New South Wales, Australia 1972.

[7] Gottschlich, G. F., Source Control by Electrostatic Precipitation, Chapt. 45, Vol. III of Air Polution,
edited by A. C. Stern, Academic Press 1968.

[8] Sternberg, E., On the Integration of the Equations of Motion in the Classical Theory of Elasticity,
Arch. Rational Mech. Anal. 6 (1960) 34-50.

[9] Mindlin, R. D., An Introduction to the Mathematical Theory of Vibrations of Elastic Plates, U.S.
Army Signal Corps. Engineering Laboratories, Fort Monmouth, N.J. Chapt. 2, 1955.

[10] Wilun, Z. and Starzewski, K., Soil Mechanics in Foundation Engineering, Vol. 1, John Wiley, New
York, 1972, 54-55, 120-121.

[11] Mindlin, R. D., Waves and Vibrations in Isotropic, Elastic Plates, Proc. Ist Symp. on Naval Struc.
Mech. Ed. by J. N. Goodier and N. J. Hoff, Pergamon Press, New York 1960, 199-232.

[12] Reference 9, Sections 2.02-2.03.

[13] Achenbach, J. D., Wave Propagation in Elastic Solids, American Elsevier, New York, 1973, Section
6.12,

[14] Yu, Y. Y., Simple Thickness-Shear Modes of Vibration of Infinite Sandwich Plates, Jour. of Appl.
Mech. Vol. 26, Trans. ASME (1959) 679-681.

[15] Mindlin, R. D. and Lee, P. C. Y., Thickness-Shear and Flexural Vibrations of Partially Plated
Crystal Plates, Int. J. Solids Structures, 2 (1966) 125-139.

[16] Meirovich, L., Analytical Methods in Vibrations, MacMillan, New York 1967, 138-146.

[17] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol. 1, Interscience, New York 1953,
424-429,



