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ABSTRACT 

Motions of a sandwich plate with symmetric facings are studied in the framework of the three-dimensional 
equations of elasticity. Both the core and facings are assumed to be isotropic and linearly elastic. 

Harmonic wave solutions, which satisfy traction-free face conditions and continuity conditions of 
tractions and displacements at the interfaces, are obtained for four cases: symmetric plane strain solutions 
for extensional m6tion, antisymmetric plane strain solutions for flexural motion, and solutions for the 
symmetric and antisymmetric SH-waves. The dispersion relation for each of these cases is obtained and 
computed. In order to exhibit the effect of the ratios of facing to core thicknesses, elastic stiffnesses and 
densities, on the dynamic behavior of sandwich plates, dispersion curves are computed and compared for 
plates with "thick, light, and soft" facings as well as for plates with "thin, heavy, and stiff" facings. 
Asymptotic expressions of dispersion relations for extensional, flexural, and symmetric SH-waves are 
obtained in explicit form, as the frequencies and wave numbers approach zero. 

The thickness vibrations in sandwich plates are studied in detail. The resonance frequencies and modal 
functions of the thickness-shear and thickness-stretch motions are obtained. Simple algebraic formulas for 
predicting the lowest thickness-shear and the lowest thickness-stretch frequencies are deduced. The 
orthogonality of the thickness modal functions is established. 

I. Introduction 

Sandwich  p la tes  have  b e e n  a sub jec t  of  s tudy  for  a long  t ime.  Mos t  of  the  

inves t iga t ions  a re  d e v o t e d  to  sandwiches  in which  the  facings a re  thin,  stiff, and  

heavy  as c o m p a r e d  wi th  the  core .  T h e  resul ts  of  inves t iga t ions  for  this t ype  of  

sandwich  p l a t e  a re  app l i ed  to b e n d i n g  and  buck l ing  p r o b l e m s  of  l ight  we igh t  

s t ruc tu ra l  cons t ruc t ions  in civil and  a e r o s p a c e  eng inee r ing  [1], [2] and  also to the  

v ib ra t ions  of  the  e las t ic  sandwich  p la tes  [3], [4] and  p iezoe lec t r i c  crysta l  p la tes  wi th  

me ta l  e l e c t rodes  [5]. 

O n  the  o t h e r  hand ,  ve ry  l i t t le  has  b e e n  found  on  the  s tudies  of  sandwich  p la tes  in 

which  the  facings  a re  th icker ,  sof ter ,  and  l ighter  than  the  core.  A n  elas t ic  sandwich  

p la te  of  this  t ype  is ve ry  useful  to m o d e l  a p r e c i p i t a t o r  p l a t e  for  s tudy ing  its 

mechan ica l  behav io r .  In  indus t r ia l  p rec ip i t a to r s ,  e l ec t ros ta t i ca l ly  c ha rge d  p r e c i p i t a t o r  

p la tes  col lec t  dus t  pa r t i c l es  f rom a pass ing  gas s t r eam.  T h e  dus t  pa r t i c les  coagu la t e  

u n d e r  the  effect  of  va r ious  forces  of  adhe rence ,  and  u p o n  col lec t ion ,  fo rm dus t  layers  

on  bo th  s ides  of  the  p r e c i p i t a t o r  p la tes  [6]. D e p e n d i n g  u p o n  the  field s i tua t ion ,  the  
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mass of the dust layer can accumulate as much as the mass of the precipitator plate. 
The dust layers are removed, in most cases, by the impact of an applied force at the 
edge of the plate, either normal or parallel to the plane of the plate [7]. 

In order to study the effect of thickness, stiffness, and mass of the facings, on the 
wave propagation and vibrations in an elastic, symmetric sandwich plate, the 
three-dimensional equations of elasticity are employed in the present paper. Since 
there are no limitations on the values of the ratios, between the facings and the core, 
of the thicknesses, elastic stiffnesses, and mass densities nor on the values of the 
frequencies of vibrations, the results of the present study are applicable to the 
sandwich plates with "thin, stiff, and heavy" facings as well as to those with "thick, 
soft, and light" facings. The exact dispersion relations and curves obtained from the 
three-dimensional theory of elasticity may also be used in evaluating the accuracy of 
two-dimensional approximate theories of vibrations of sandwich plates. 

II. Three-dimensional equations and boundary conditions 

Consider a sandwich plate which consists of three layers, namely a middle layer and 
two cover layers (shown in Figure 1). Each layer is homogeneous, isotropic, and 
linearly elastic. The sandwich plate is of symmetric construction, i.e., its facings are 
of the same material and of the same thickness. The Young's modulus, Poisson's 
ratio, density and the thickness of the core are denoted by Ex, ul, 01, and 2bl, 
respectively. For the facings, the corresponding notations are E2, 92, P2, and b2. The 
right-hand system of coordinates, xl, x2, and x3, are as shown in Figure 1, where Xl, 
x3 are in the middle plane of the plate and x2 is in the thickness direction. The time 
is denoted by t, uj is the displacement, and rij the stress tensor, i, j = 1, 2, 3. In the 
absence of body forces, the equations of motion are: 

"rod = p1/J i, IX21 < bl,  (1) 

r~i,, = o2/i~, bl < Ix=l < b, ÷ b2, 

x 2  

~2 / COVER LAYER E2 ~2 P:~ t 

~ 1  -~)~MIDDLE LAYER --+~-E I Vl Pl . . . .  
-- 

~2 ~) COVER LAYER E2 v2 p2 

Figure 1. A symmetric sandwich plate. 

1( I • 
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where and henceforth [ ],i--0[ ]lOxi, [ ']--0[ ]lOt, and the summation convention is 
assumed unless specified otherwise. The constitutive relations: 

"l'ii " = 1~ 1 l~k,k~i~ -t" ~[£1 (/,/i.,i q- /'/j,i), 

Ti] = X 2 t l k , k  Sii_ "q- /'£2 ( Ui,j "1-/'/~/,i), 

Ix2l < b,, 

b~ < Ix2] < b~ + b2, 
(2) 

where 8~ is the Kronecker delta, and /~1, /&l, /~2, and ~U, 2 are the Lfime constants of 
the core and the facings, respectively. ,~, ~t are related to E~ and vt by 

A~ = Gvd[(1 + vt)(1 - 2 v~)], 

th = Ed[2(1 + v~)], l = 1, 2. 
(3) 

The sandwich plate is traction-free at the plate faces Ix21 = bl + b2. The displace- 
ments and the tractions are continuous at the interfaces, Ix : l - -b .  Hence, the 
eighteen boundary conditions: 

[ 'r2i ] lx: l=b, +b ~ = O, 

[u~]~x~_~=~,+ = [ u ~ ] ~ = ~ , - ,  (4) 

[~r2~]tx:l=b,. = [T2/]lx2[=b~-. 

For an unbounded sandwich plate these are the only boundary conditions to be 
satisfied. Initial conditions are not needed for time-harmonic waves. 

IIl. Harmonic wave solutions 

In each layer of the sandwich plate there exist potential functions cI) and ~ such that 

u~ = ~, j  + e~jkHi,~, (5) 

where e~k = ½ ( i - ] ) ( ] - k ) ( k -  i). The potential functions must satisfy the following 
wave equations [8]: 

G v : ~  = ~,, v, : ,v:~.  = ~q~, 

v~::v:*=~, v~:V:~ = ~ ,  

Ix2[ < b~, 

bl < Ix21 < bl q- b2, 
(6) 

where V 2 is a Laplacian operator, and vl~ and v21 are the dilatational and shear wave 
velocities for the core (l = 1) and facings (l = 2) 
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v~ = (X~ + 2tx~)/0~ 

v22~ = tx~/~, l = 1, 2. 
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(7) 

For straight-crested waves, the dependence of the potential functions on the 
x3-coordinate is suppressed, and at the same time H l can be set equal to zero 
without loss of any physical significance from the interpretation of the results [9]. 
After such simplifications, the general solutions for straight-crested waves propagat- 
ing in the xl direction may be written as: 

~ [a~ cos (~x~ + av sin O~lX2] exp i((ot - ~x~), Ix~l ( b~, 
! 

~ = J [(a~ + as) cos ~ ( x 2  + b~) + (±a3 + a9) sin/3~(x~ ~: b~)] exp i((ot - ~x~), 

bl < + x2 < bl + ba, 

~[alocOS/31x2+a4sin/31x2]expi(o~t-~x1), Ixal<bl, 
H 3 = l [ ( + a s + a l l ) c ° s / 3 ~ ( x 2 : i b O + ( a 6 + a l ~ ) s i n / 3 2 ( x ~ = g b 1 ) ] e x p i ( ~ ° t - ~ x l ) '  (8) 

bl < +x2<  bl + b~, 

[a13 cos ~31x 2 + O16 sin/31x2] exp i(o~t - ~xl), Ix21 < bl, 

H 2 = ~ [(014 -t- a 17) cos/32(x2 :g bl) +(+a15 + a18 ) sin/32(x2 ~: b0] exp i (o~t-  ~xl), 

L bl < +x2 < bx + ha, 

H1 = 0, 

where ~o is the frequency, ~ is the wave number in the direction of wave propaga- 
tion, and a~, a2, /31, and /32 are the wave numbers in the thickness direction such 
that they satisfy 

~2+a~ = v~-?o~2, ~2+/3~ = v~?~o~, / = 1 , 2 .  (9) 

One may verify that (8) are solutions of (6) by direct substitution. Also, one may 
obtain displacements and stresses from (5) and (2). 

The displacements and the stresses derived from (8) must satisfy the eighteen 
boundary conditions of (4). This requirement leads to eighteen homogeneous, linear 
algebraic equations on al,  a2 • • • alS. In matrix notation the system of equations is 

Ua = O, (10) 

where 0 is a null vector and a is a vector having al  - • • a~s as its components. For a 
nontrivial solution the following relation must be satisfied 

det U = O ,  (11) 

which relates the frequency ~ and the wave number ~ and is called the dispersion 
relation. The nontrivial solution for vector a may be obtained from (10) for any 
o~-~ pair that satisfies (11). 

For the symmetric sandwich plate (see Figure 1), (10) has the following uncoupled 
form: 
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=0,  (12) 

where the dimensions of the submatrices V, W, X, and Y are 6 x 6, 6 x 6, 3 x 3, and 
3 x 3 respectively, and 0's are null matrices. The elements of X, Y are given in (13) 
and (14), and those of V and W in (15) and (16) on the following page. 

[ -cos~3,b, 1 u~;2 ] 
X---[tx,/31 s;n/3,b, 0 

-sin/3262 cos/3262_] 

and 

(13) 

[ -sin/3,b, 1 ~:;2 ] 
Y ~ [ -  ~,/3,gos/3,b, 0 . 

-sin/32b2 cos/32b~/ 
(14) 

Because the system of equations in (12) is uncoupled into four groups, the 
solutions to (12) can also be classified into the following four types: 

1. Symmetric plane strain solution of extensional motion 

Set a7 = as . . . . .  a18 = O, and let 

V i a  1 .  • • a6] T = 0 ,  (17) 
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where T represents the transpose of a matrix. To solve (17) for a~ • • • a6, first solve 
the dispersion relation 

det V = 0. (18) 

Then,  for any to - ~  pair that satisfies (18) a nontrivial solution is obtained from (17). 
Since [a~ . . .  a6] T nontrivial but a 7 . . . . .  a~8-= 0, the displacement field from (5) 
and (8) represents the symmetric, plane strain solution of extensional motion, i.e. 

b/l(Xl, --X2, t)= u~(xt, X2, t), U2(/1, --X2, t)=--U2(X1, X2, t) and u3 =0 .  

2. Antisymmetric plane strain solution of flexural motion 

Set a~ . . . .  a6 = O ,  a 1 3  . . . . .  a~8 = O, and let 

W[aT '"  a,2] T = O. (19) 

similarly, the corresponding dispersion relation is 

det W = 0, (20) 

and the displacement field from (5) and (8) represents the antisymmetric plane strain 
solution of flexural motion, i.e., 

Ul(X1, --X2, t)=-u~(x~, X2, t), U2(/1, --X2, t) = U2(X1, X2, t), and u3=O. 

3. Symmetric SH-wave solution 

Set al . . . . .  a~2=O, a16=a17=a~8=O and 

X[al3 a14 als]T =O. 

The associated dispersion relation is 

det X = 0. 

The symmetric SH-wave solution from 

U3(Xl, --X2, t) = u3(x~, x2, t). 

(21) 

(22) 

(5) and (8) has UI=U2=O, and 

4. Antisymmetric SH-wave solution 

Set al . . . . .  a15=0  and 

Y[a,6 a,7 a , s ]T=0 .  

Dispersion relation becomes 

det Y = 0 

(23) 

(24) 
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and the antisymmetric SH-wave solution from (5) and (8) has u 1 = U 2 = 0 ,  and 
/~/3(Xl, --X2, t) = --U3(X1, X2, t). 

The dispersion relations are now computed for two sandwich places, labeled SP4 
and SP7, for which geometric and the material properties are: 

SP4; E2/E1 = 0.001, Vl = 0.3, v2 = 0.1, 02/01 = 0.3, b2/bl = 1.0, 
(25) 

SP7; E2/E 1 = 20.0, 1-' 1 = 0.3, v2 = 0.3, P2/Pl = 2.0, b2/bl = O. 1. 

The elastic moduli and the density of typical dust layers are not well known at the 
moment. If the mechanical properties of dust layers are assumed to be similar to 
those of the fine and silty sands of inorganic soils, then E2 ~ 109 dyne/cm 2, 02 ~ 
2.65 gram/cm 3 [10]. For precipitator plates made of steel, E1 = 2.0 x 1012 dyne/cm 2, 
Vl = 0.3 and Pl = 7.7 gram/cm 3. Thus, SP4 above is chosen to represent a reasonable 
model of a dust-covered precipitator plate. SP7 is a sandwich plate whose facings are 
heavier, thinner, and much stiffer than the core. It is chosen to model a light weight 
composite used typically in aerospace structures. 

The dispersion curves are computed for SP4 and SP7 and are shown in Figures 2 
and 3 for extensional waves, in Figures 4 and 5 for flexural waves, in Figures 6 and 7 
for the symmetric SH waves, and in Figures 8 and 9 for the antisymmetric SH waves. 
In these figures, the nondimensional quantities 261~o/,tr021, and 261~/Tr are chosen as 
the ordinate and abscissa respectively. The nondimensionalizing factor ~1 = 7rv2l/2bl 
is the first antisymmetric thickness-shear cut-off frequency for a single-layered plate 
of thickness 2b~ or a sandwich plate without facings (b= = 0). The corresponding 
dispersion curves for a single-layered plate, which are solutions of the Rayleigh- 
Lamb frequency equation, were studied in great detail by Mindlin and his co- 
workers [9], [11]. 

It can be seen from Figures 3, 5, 7, and 9 that the dispersion curves for SP7, a 
plate with thin, stiff, and heavy facings, are very similar to those of a single-layered 
plate. The first antisymmetric thickness-shear cut-off frequency (in Figure 5) is 
reduced to 0.836 from the unity for a single-layered plate. All the frequency 
branches have a similar downward shift. This frequency reduction phenomenon is 
due mostly to the mass and the stiffnesses of the facings and is known in the 
vibrations of crystal plates with electrodes [15]. 

From Figures 2, 4, 6, and 8 for SP4, which is a plate with thick, soft, and light 
facings, we see that the real frequency branches still resemble those of a single- 
layered plate, but the behavior of the imaginary branches has marked differences. 
The value of the first antisymmetric thickness-shear cut-off frequency is reduced to 
0.0627 (in Figure 4) from the value of unity (=  1) for a single-layered plate. In this 
case, the frequency reduction is strongly affected by the strains developed in the 
facings, and, therefore, depends on the thickness and stiffnesses of the facings. 

Of special interest and usefulness are the explicit expressions of asymptotic 
behavior of dispersion curves at low frequency, long wave length. When ~o--~ 0 and 
~--~0, (9) shows that a~--~0, /3~-+0, l =  1, 2. Then by a straightforward but quite 
laborious expansion of (18), (20), (22), and (24) after using the Taylor series 
expansion of trigonometric functions in (13)-(16), the asymptotic expressions of the 
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~VzI 

0.3 

0.2 

l 

1.0 0.5 0 0.5 

Figure 2. Dispersion curves of extensional waves 
in the sandwich plate SP4. 

dispersion relations are obtained. For the symmetric plane strain solution of exten- 
sional motion, 

[(1 - v2)-] E 1 b I + (1 - v~)-l Ezb2]~ 2 = (01 bl + o2b2)oJ 2. (26) 

Letting b2 = 0, we find that (26) reduces to the frequency equation in the classical 
extensional theory of vibration of single-layered plates [13]. For the antisymmetric 

2.5 

~V21 

2.0 

( 
1.5 

1.0 

I m ( ~ )  Re ( - ~ - )  
I I I 

0 0.5 1.0 1.5 

F i g u r e  3. D i s p e r s i o n  curves  o f  e x t e n s i o n a l  w a v e s  in  
the sandwich plate S P T .  



60 P. C. Y. Lee and Nagyoung Chang 

2b~o~ 

~V21 

0.3 

(~2 

I m (  2 ~ ~  ~ 
(~5 0 i 0.5 

Figure 4. Dispersion curves of flexural waves 
in the sandwich plate SP4. 
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Figure 5. Dispersion curves of flexural waves in the 
sandwich plate SP7 
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Figure 6. Dispersion curves of symmetric SH-waves in 
the sandwich plate SP4. 
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2 b~_~_~ 
~ V21 

2.0 

I.C 

2b, ~ )  
Im( # 

I0 0 
I I 
I 0 2 . 0  

Figure 7. Dispersion curves of symmetric SH-waves 
in the sandwich plate SP7. 

plane strain solution of flexural motion, 

[(1 - ~,~2)-1E 1 b~ 3 + (1 - v~)-~E2{(bl + b2) 3 - b~}]~ 4 = 3(o~b] + P2b2)to 2. (27) 

Setting b2 = 0, we find that (27) reduced to the dispersion relation for the classical 
flexural theory of vibration of single-layered plates [13]. For the symmetric SH-wave 
solution, 

(/z, b, +/x2b2)~ 2 = (p~ bl + p2b2)to  2. ( 28 )  

The dispersion curve for the antisymmetric SH-wave solution does not pass through 
the origin of the dispersion diagram, and so no asymptotic expression exists from 
(24) as to and £ approaching zero. It is interesting to note that in the asymptotic 
dispersion relations (26)-(28) the terms (1 - v~)-lE2b2, ( 1 -  v~)-lE2{(bl + b2) 3 -  b~}, 

2b~ ~J 
1TV21 

0.3 

/: 
I,'n ( ~ )  

I I I 
2.0 0 2.0 

Figure 8. Dispersion curves of anti-symmetric 
S H - w a v e s  in t h e  s a n d w i c h  p l a t e  SP4. 
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Figure 9. Dispersion curves of anti-symmetric SH-waves 
in the sandwich plate SP7. 

bl,2b2, and p2b2 represent, respectively, the contribution of the cover layers to the 
extensional stiffness, flexural stiffness, shear stiffness and the mass of the sandwich 
plate. The asymptotic expressions for the slopes and curvatures of these dispersion 
curves can be obtained readily from (26)-(28) by differentiation. 

IV. Thickness w'brafions 

In Figures 2-9 the points where the dispersion curves intersect the vertical, fre- 
quency axis are the cut-off frequencies at zero wave number of the propagating 
waves in the sandwich plate. When ~ approaches zero, the wave solutions of (8) 
become independent of the xl and x3 coordinates and reduce to standing wave 
solutions in the x2 direction. Since the motions depend only on the thickness 
coordinate, x2, they are called simple thickness vibrations [9]. 

The solutions for the simple thickness vibrations iare among the simplest, exact 
and closed-form solutions of the three-dimensional theory of elasticity. They often 
reveal clear understanding and offer simple interpretation of the dynamic behavior 
of the sandwich plates. 

When the motion is independent of xl and x3, the equations of motion (1) and the 
constitutive relations (2) reduce to 

qttj.22 = Otlj j = 1, 2 (no sum) (29) 

~'zj = qui,z (30) 
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where 

{ ~ l  Ix2l < bl 
C 1 ~ 

~.1, 2 bi < lx21< bl + b2 

=/A-I+2P,, Ix2l<b, 
C2 / h 2  + 2P,2 b,<lx2l<bl+b2 

{ o~ Ix21 < bl 
o= 02 b~ <lx2l<b~ +b2. 

(31) 

For isotropic plates, u3 is suppressed here without loss of generality. 
The differential equations (29) and the boundary conditions (4) form an eigenvalue 

problem for which the solutions may take the following form 

U~ = a i f f ) i . ( x e / b l )  exp (i%.t), j = 1, 2 (no sum) (32) 

where O.)jn are the natural frequencies of the thickness vibrations, t~jn(x2/bl) a r e  the 
corresponding modal functions, and n = O, 1, 2 . . . . .  

Substitution of (32) into (29) gives the governing equations on &~, 

cfl~'/n (~1) = -ob~o~.4)in(rl), 0 <  1~11 < 1 + bo (33) 

where the prime denotes differentiation with respect to "O and 

~1 ~- x2/bl, bo = b~/b~. (34) 

The boundary conditions (4) reduce to 

~i .[n = 1+] = ~i.[n = 1-], 

q ~ } . [ e ~  = 1 +] = q ~ } . [ ~ n  = 1-], (35) 

~} . [n  = 1 + bo] = 0. 

We note that u~ (or ~ . )  and u~ (or &2.) may satisfy (33) and (35) independently. 
The solutions ~ .  ~ 0 and ~ .  = 0 correspond to displacements parallel to the faces 
of the plate and are called thickness-shear modes, while ~ .  = 0  and ~ 2 . ¢ 0  
correspond to displacements n o d a l  to the faces of the plate and are called 
thickness-stretch modes. 

The solutions for thickness-shear and thickness-stretch vibrations, satisfying (33) 
and (35), are expressed in the following general, nondimensional form 

cosg (a~. -  n) I n l < l  

~ . ( n ) = ~  ~ ~ -1 cos g (~n  - n) cos ~ [v(3_~)oa~. (rl - 1)] 

~ f l  ~ --1 ~ --[0or~3_~)o] -1 sin ~ ( ~. - n) sin ~ [v~3-,ofl~.(n - 1)] 

(36) 

l < [ r l [ < l + b o  
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and 

~bi.(rl)=(-1)"~bj.(--O) for - ( l + b o ) < r l < O ,  

where 

- ~  /(2~,3_j~,~ 
~'~j. - -  ~ . / \ - ~ - ~  / ,  rio = V~2/V~I, P o  = P2/P,. 

For i = 1, ~b~. and f~ .  (or ~o~.) are the thickness-shear modal functions and 
frequencies, respectively, and n = 0 ,  2, 4 . . . .  are associated with symmetric 
thickness-shear vibrations while n = 1, 3, 5 . . . .  are associated with antisymmetric 
thickness-shear vibrations. For j = 2, ~b2, and f~2, (or ~o2,) are the thickness-stretch 
modal functions and frequencies, respectively, and n = 0, 2, 4 . . . .  are associated with 
antisymmetric thickness-stretch and n = 1, 3, 5 . . . .  are associated with symmetric 
thickness-stretch. 

The values of fl~, in (36) must satisfy the frequency equation 

7r _~ [ rr ] ~' 
po/)(3_i)o tan ~ [bot ) (3_i )o~ ' ) i ,  ' ] -I- tan ~ l)i, = 0. (37) 

Equation (37) is obtained from the boundary conditions (35) and is a condensed 
form for the following four cases. Set ] = 1 for thickness-shear vibrations; the upper 
and lower signs apply to the symmetric and antisymmetric deformations, respec- 
tively. Similarly, set j = 2 for thickness-stretch vibrations; the upper and lower signs 
apply to the antisymmetric and symmetric deformations, respectively. Note that (36) 
and (37) may also be obtained directly from (8), (17), and (18) by reduction. We 
note that by setting j = 1, (36) and (37) reduce to the Yu's results for simple 
thickness-shear vibrations [14]. 

The roots of (37), the resonance frequencies of the thickness vibrations, and their 
corresponding modes (36) are computed for the sandwich plates SP4 and SP7 which 
are defined in (25). The thickness-shear vibrational modes (h,, and frequencies 
£01n/6~ 1 a r e  shown in Figure 10 for the first five modes (n = 0, 1, 2, 3, 4). Similarly, 
~b2, and o~2,/t~1 for n = 0, 1, 2, 3, 4 for the thickness-stretch vibrations are shown in 
Figure 11. The nondimensional factor for the frequencies ~ ,  = ~rv~,/2bl is the lowest 

~in 

~In 
~ 0,0 00627 Q0696 1.188 0.191 

SP4 

~ln 

~ln 
~ 0.0 0.836 1.6~19 2.566 3~,69 

SP 7 

Figure 10. The thickness-shear modes and frequencies for the sandwich plates 
SP4 and SP7. 
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• %n j j < . 1  ~ 

~ 0.0 0,094 0.104 0.282 0.286 

SP 4 

I / - 
~,o ~ <::: 

o,_. / <4. <>_ 
El 0.0 1.565 3.160 4.801 6A91 

SP7 

FJ~EC ] ].  ~ e  t~c~ness-stTetch modcs and [[equcn~es ~oT thc sandwich 
plates SP4 and SPT. 

antJs~mct[ic thic~ncss-s~ca[ ~Ecqucnc~ o~ thc s~nglc layered plate which is ~educed 
fEom a sandwich plate by letting h2 = 0 [12]. 

Ero~ Figu[es 10 and 11, it can be seen that the modes ~o  and ~2o ~o~ ~ = 0  
corEes~ond to ~igid ~ d y  tTanslations in thc x] and x2 diEections, [¢spectiv¢]y. ~ e  
integ¢~ ~ which is associated with the ~th mode identifies the numbeE o~ nodal 
planes parallel to th¢ ~aces o[ the plate. Unlike the case o~ the single-layered plate, 
the high¢~ Eesonanc¢ ~Eequencies are not equal to integEa] ~ultJp]cs o~ t~c ~unda- 
~cnta] ~TcqBcncics; thcEc~o[c thc highcT-oTdcT thJc~ncss modcs aTc an~a~onJc 
oveEtoncs o~ thc [undamcnta] modcs in sandwich platcs. 

~or SP4, which is a rcpTcscntatJvc o~ thc sandwich plates ~ith "so~t, ]~ght, and 
thick" ~acings, we s¢¢ in Figures 10 and 11 {hat strains a~¢ developed mostly in the 
oute~ layers ~nd the middle layer acts essentially like a ~igid body. ~ e  values o[ the 
~¢quencies a~¢ given b¢low cach mode and distributed as ~ollows 

~ 1 1 ~ 1 2 ~  ~ 1 3 ~ 1 4 ,  ~ 2 ~ 2 2 ,  a n d  ~ 2 3 ~ 2 4  

wheEe the symbol ~ should Eead as "is less than but app[oximat¢ly ¢qua] to". ~ ¢  
strains, in thc covc~ layc~, associated with these closcly spaccd ~Tcqucncics aEc vc~  
similaE. 

Thc valuc o~ thc ~Tst antJs~mctfic ~hJc~ness-shcaE ~TcQucncy ~0~ SP4 has bccn 
reduc¢d f~om the unity ( ~ / ~  = 1) obtained fo~ a s~gl¢ layered plate to ~ / ~  = 
0.063 due to the effect o~ ~acings. Values o~ ~ ] /~1  and ~2~/~] a~¢ computed [~om 
(~?) {oT P2/p] = 0.~, e2/e] = ~/~ and a ~angc o[ valucs o[ E2/E~ and ~2/h~ ~ aEc 
listed in Table 1. 

TABLE 1 
Values of the first thickness-shear and thickness-stretch frequencies in sandwich plates (P2/P1 = 0 .3 ,  

.~I~ = ~) 

Ez/EI ~ -  1~00 2~0~1 5~  
~ 1 3 1 1 3 1 1 3 b2/b~ ~ ~ ~ 

toll/~b I 0.177 0.089 0.030 0.125 0.063 0.021 0.089 0.044 0.015 
~o21/ff h 0.265 0.133 0.044 0.188 0.094 0.031 0.133 0.066 0.022 
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A useful simple formula for predicting the value of ~oll is obtained as follows. By 
realizing that for E2/E1 < 1, the mode shape ~bll in the cover layer has a shear wave 
length equal approximately to four times the thickness of the cover layer, and by the 
use of (9), we have 

< ~T~322 (JOll ~< va2/v2, (38) 
~°~x-- "262 or ~51 ba/bl " 

The values computed from (38) differ by less than a ~ u t  1% from those listed in 
Table 1. 

In a similar manner, a f o ~ a  for predicting the ~ s t  thickness-stretch frequencies 
is obtained: 

~ ~D12 ~21 ~ k u22/u21 
~ 2 ~ 2 b  2 or 6 ~  2 ~  (39) 

where k~ = v~/v22 = [ (2 -  2v2)/(1 - 2v2)] ~/2, and EE/E1 << 1. 
For sandwich plate SP7, which is chosen as a representative of plates with "stiff, 

heavy, and thin" facings, we see in Figure 10 and 11 that the strains in the core are 
quite similar to those devdoped in a single layered plate (bE = 0) and the facing acts 
more like a rigid body, and the f i~t  thickness-shear frequency ~ / 6 ~  has been 
reduced from unity ( = 1) to 0.836, due to the effect of the mass and stiffnesses of the 
facing.  ~ e  values of ~ / 6 ~  and ~2~/6~ for b2/b~=0.1, v2/v~= 1 and a range of 
values of E2[E 1 and PE/p~ are calculated from (37) and are listed in Table 2. From 
the values in the columns 1 and 2 of Table 2, we note that the frequency reductions 
remain constant for EE/E ~ ~ 20. 

TABLE 2 
Values of the first thickness-shear and thickness- 
stretch frequencies in sandwich plates (b2/bl = 0.1, 
v~/vl = 1) 

E2/E ~ 200 20 10 3 
#2/01 2 2 1 0.3 

~o 11/61 0.836 0.836 0.909 0.971 
o~21/61 1.564 1.564 1.702 1.816 

A method employed by Mindlin and Lee [15] for calculating the mass effect of the 
electrode platings on the first anti-symmetric thickness-shear cut-off frequencies of 
crystal plates is adopted here to yield 

R[3,b, tan 031b,) = 1, (40) 

where R--p2b2/plbl is the ratio of the mass of the facings to the mass of the core 
per unit area of the plate, and/31 = odv21 is the shear wave number obtained from (9) 
by setting ~ = 0. 

For R < 1, the smallest root of (40) is given, approximately, by 

[ 7r2 R 3  ] 
o~1~ _ 1 1-~  
o~, l + n  12 (1 _7_ ~)3 . (41) 
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Comparing (41) with equation (15) of Ref. [15], we see that the second term in (41) 
is an additional term to improve the accuracy of the formula when R-< 1. 

The value of 0)11/o31 predicted by (41) for SP7 is within 0.02% of the exact value 
listed in the column (2) of Table 2. A further check of the accuracy of (41) is made 
by considering a sandwich plate with E2/E 1=3.0, P2/Pl= 1.0, pa/b~= 1.0, and 
Vz/U~ = 1.0 such that R = 1.0. The value computed from (41) has an error of 3.8% as 
compared to the exact value from (37). 

A formula for calculating the lowest thickness-stretch frequency for Ez]E1 > 1, 
R < 1 is similarly obtained as 

, l r 2  R 3 ] 
O)21 --  k l  1 4  (42) 
o57 I + R  12 ( I + R )  3 

w h e r e  k l  ----/9111021 ---- [ ( 2 - 2 v , ) / ( 1 - 2 v l ) ]  1/2. 

V. Orthogonality conditions of thickness modes 

The governing equation (33) of ~bi, and the boundary conditions (35) form a 
Sturm-Liouville problem with discontinuous material properties through the thick- 
ness of the sandwich plate as defined in (31). The orthogonality conditions for the 
modal functions thi, ( j - -1 ,  2) will be established as follows. 

Let  0)i,- and %, be two distinct frequencies, and 4~i,, and 4~i, be the corresponding 
solutions of (33), therefore 

tt __ 2 2 cith ~ m - -pb~ 0)i.~i. ~ (43) 

C d'~tt - -  2 2 i '~  i .  - - P b ~ 0 ) i " ¢ ~ i . "  (44) 

By multiplying (43) by ~bi, and (44) by -~bi,~, adding the result, and integrating 
both sides of the final equation over the thickness of the plate, we obtain 

(1+% (c,A d~ '~ fl+bo 
,! = 0 (0 )~ . , -  ¢%,)6~,,,6i,, dn (45 )  i~.~..~.,-c/~bi,~b.~,,) d~l - b ~ |  2 = 

a--l--bo a--1 --bo 

By means of integration by parts, the left hand side of (45) becomes 

' q4,~..4,~.]-,--% + [ q 4 , # , , . , -  c,4,i..4,~.]_, LHS = [q6~..~.. - , ~+s , , ~ 
f l +b o 

- (c;,b~,.4~. - q ~ , . 4 ~ . )  dn. 
a--1 --bo 

The first two terms of the above equation vanish independently owing to the 
boundary conditions (35), and the third term is identically zero. Therefore 

f_,+~o (q¢,~,,4,';,,, _ qq,,..,t,';.) dn  = o, 
l--fro 
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which establishes that the system is self-adjoint [16]. From the right hand side of 
(45) we have 

i_~÷bo Oq)j,,rk~,~ dn = 0, j = 1, 2, ~o~,~ ~ o~n (46) 
1-bo 

which is the orthogonality conditions for &~n with p(~) defined in (31), as the 
weighting function. 

Multiply (43) again by &~n, integrate both sides of the equation over the thickness, 
and make the use of (46); then 

I_~+bo c~b~n~b'~,, d~/= 0, %.,, ~ win. (47) 
1--bo 

By integration by parts and boundary conditions (35), (47) is transformed to 

f_~+bo q~b}m&;., dn = 0, j = 1, 2 %,, ~ %n (48) 
1--bo 

which may be regarded as the orthogonality conditions of ~b'#n with respect to the 
weighting functions q(rl) defined in (31). 

For the case of single-layered plates, bo = 0, p(~), q(~) become constant through- 
out the thickness, and the modal functions of (36) reduce to [9] 

~i.(rl) = cos [ ~  ( r l -  1)] j = l , 2 ,  n = 0 , 1 , 2  . . . . .  

It is evident that the orthogonality conditions (46) and (48) are satisfied. 
For a sandwich plate in general, the thickness-shear modes ~bln (] = 1) and the 

thickness-stretch modes 4~2, (J = 2) are different and their orthogonality conditions, 
established in (48), contain different weighting functions cl('q) and c2(~). It should 
be noted that (46) and (48) represent four conditions and in which ~bln, 4~2n are 
piecewise smooth and #, cl, c2 are piecewise continuous. 

In addition to orthogonality, the completeness of the system of 4% can also be 
assured [17]. Hence the thickness modes are piecewise smooth and form an 
orthogonal and complete set, and may, therefore, be used as a natural basis for the 
series expansion of the displacements in sandwich plates. 
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