Journal of Elasticity, Vol. 9, No. 1, January 1979 © 1979 Sijthoff & Noordhoff International Publishers Alphen aan den Rijn Printed in The Netherlands

Symmetry considerations for materials of second grade

A. IAN MURDOCH

Department of Engineering Science, University of Cincinnati, Cincinnati, Ohio 45221, U.S.A.

(Received October 24, 1977)

ABSTRACT

The symmetry group associated with a material point of second grade is characterized, thereby eludicating the interplay between first- and second-order strain measures in determining its response to deformation.

Introduction

It is the purpose of this note¹ to record some simple observations on material symmetry for a material point of second grade; that is, a material point X whose response to a deformation λ from any configuration κ of the body to which it belongs depends both upon the first and second derivatives of λ evaluated at $\kappa(X)$. Although symmetry considerations for simple materials were made precise some time ago by Noll [2], only recently has the same been accomplished for higher-grade materials,² by Morgan [4, Section 4]. However, in the general case the simplicity associated with second-grade materials is not transparent, nor, in respect of symmetry considerations, are the fundamental differences of such materials from simple bodies self-evident. Emphasis upon second-grade materials is merited by virtue of the work of Toupin [5] and of Mindlin and Tiersten [6] on such bodies, the simplest which admit of polar phenomena.

¹ We consistently use the terminology of Truesdell and Noll [1] with minor modifications: if κ and μ are any two configurations of a body \mathfrak{B} we require that the deformation gradient $\nabla(\mu \circ \kappa^{-1})$ takes values in Invlin (\mathscr{V}) with positive determinant. The requirements of frame-indifference are also modified: observers are assumed to agree upon orientation (that is, agree what constitutes "right-handedness") which requires frame changes to involve only *proper* orthogonal tensors.

 $^{^{2}}$ Cheverton and Beatty [3] also considered this problem, but seem to have confined themselves to (locally) homogeneous configurations which mask the subtlety of response possible in such materials, as will be demonstrated.

(1)

(2)

Preliminaries

Let \mathfrak{B} be a (three-dimensional) continuous body of class C^2 for which,³ during any motion χ , the Cauchy stress tensor T and the couple-stress tensor M depend upon $\nabla \chi_{\kappa}$ and $\nabla \nabla \chi_{\kappa}$, where χ_{κ} denotes the motion relative to a (reference) configuration κ . More precisely, suppose T and M are given at time t by

$$\boldsymbol{T}(\boldsymbol{x},t) = \boldsymbol{T}_{\boldsymbol{\kappa}}(\nabla \boldsymbol{\chi}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}},t), \nabla \nabla \boldsymbol{\chi}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}},t), \hat{\boldsymbol{x}})$$

and

$$\boldsymbol{M}(\boldsymbol{x},t) = \boldsymbol{M}_{\boldsymbol{\kappa}}(\nabla \boldsymbol{\chi}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}},t), \nabla \nabla \boldsymbol{\chi}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}},t), \hat{\boldsymbol{x}}),$$

where

$$\mathbf{x} = \mathbf{\chi}_{\mathbf{\kappa}}(\hat{\mathbf{x}}, t), \qquad \hat{\mathbf{x}} = \mathbf{\kappa}(\mathbf{X}),$$

these relations holding for every $X \in \mathcal{B}$. If *n* denotes a unit normal field to a surface lying in $\chi(\mathcal{B}, t)$ then **Tn** is the usual traction field and **Mn** represents the couple per unit area transmitted across the surface. We regard **M** as a tensor field of rank three with **Mn** taking skew values. Equivalent to relations (1), but more convenient in respect of considerations of frame-indifference, are the following:

$$\boldsymbol{T}(\boldsymbol{\mathbf{x}},t) = \boldsymbol{\hat{T}}_{\boldsymbol{\kappa}}(\boldsymbol{F}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{\mathbf{x}}},t),\,\boldsymbol{G}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{\mathbf{x}}},t),\,\hat{\boldsymbol{\mathbf{x}}})$$

and

$$\boldsymbol{M}(\boldsymbol{x},t) = \hat{\boldsymbol{M}}_{\boldsymbol{\kappa}}(\boldsymbol{F}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}},t), \boldsymbol{G}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}},t), \hat{\boldsymbol{x}}),$$

where

$$\boldsymbol{F}_{\boldsymbol{\kappa}} = \nabla \boldsymbol{\chi}_{\boldsymbol{\kappa}} \quad \text{and} \quad \boldsymbol{G}_{\boldsymbol{\kappa}} = \boldsymbol{F}_{\boldsymbol{\kappa}}^{\mathrm{T}} \nabla \nabla \boldsymbol{\chi}_{\boldsymbol{\kappa}}. \tag{3}$$

The tensor field (of rank three) G_{κ} is frame-independent, since a change of frame (cf. [1], Section 17) in which

$$\mathbf{x} \rightarrow \mathbf{x}^* = \mathbf{c} + \mathbf{Q}(\mathbf{x} - \mathbf{x}_0)$$

results in

$$F_{\kappa} \to F_{\kappa}^* = QF_{\kappa}$$
 and $\nabla \nabla x_{\kappa} \to (\nabla \nabla \chi_{\kappa})^* = Q \nabla \nabla \chi_{\kappa}$

so that

$$G_{\kappa} \rightarrow G^{*}_{\kappa} = G_{\kappa}$$

by virtue of the orthogonal nature of Q. We remark (cf. Duvaut, [7]) that the dependence of the response functions \hat{T}_{κ} and \hat{M}_{κ} upon G_{κ} is equivalent to one upon ∇C , where C denotes the (right) Cauchy-Green tensor $F_{\kappa}^{T}F_{\kappa}$.

If **A** is a tensor of rank three we define \mathbf{A}^{T} to be that tensor which satisfies, for all

44

³ Of course, for a complete *thermo-elastic* theory the free energy, entropy, and heat flux vector would need to be added to T and M, and constitutive dependence upon temperature and temperature gradient included. The generalization of our discussion to such a theory is clearly evident, this also being the case for a mechanical theory in which the dependence of T and M, is upon *histories* of $\nabla \chi_{\mathbf{x}}$ and $\nabla \nabla \chi_{\mathbf{x}}$.

Symmetry considerations for materials of second grade

vectors⁴ $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{V},$

$$(\mathbf{A}^{T}\boldsymbol{u})\boldsymbol{v} = (\mathbf{A}\boldsymbol{v})\boldsymbol{u}. \tag{4}$$

The space of third-rank tensors \mathbf{A} for which $\mathbf{A} = \mathbf{A}^T$ will be denoted by $\operatorname{Sym}_3^T(\mathcal{V})$ and the set of all invertible second-rank tensors with positive determinant by $\operatorname{Invlin}^+(\mathcal{V})$. Of course, \mathbf{F}_{κ} takes values in $\operatorname{Invlin}^+(\mathcal{V})$ and \mathbf{G}_{κ} values in $\operatorname{Sym}_3^T(\mathcal{V})$, the latter because of the symmetry of the second gradient $\nabla \nabla \chi_{\kappa}$.

Material symmetry considerations

Let μ be any configuration of \mathfrak{B} such that $\mu \neq \kappa$ and write

 $\boldsymbol{\lambda} = \boldsymbol{\mu} \circ \boldsymbol{\kappa}^{-1}, \qquad \bar{\boldsymbol{x}} = \boldsymbol{\lambda}(\hat{\boldsymbol{x}})$

so that λ is of class C² and $\bar{x} = \mu(X)$. Denoting the motion χ relative to μ by χ_{μ} it follows that

$$\boldsymbol{\chi}_{\kappa}(\hat{\boldsymbol{x}},t) = \boldsymbol{\chi}(\mathbf{X},t) = \boldsymbol{\chi}_{\mu}(\bar{\boldsymbol{x}},t) = \boldsymbol{\chi}_{\mu}(\boldsymbol{\lambda}(\hat{\boldsymbol{x}}),t).$$

Suppressing time-dependence we thus have

$$\chi_{\kappa} = \chi_{\mu} \circ \lambda,$$

whereupon differentiation yields

$$\nabla \boldsymbol{\chi}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}}) = \nabla \boldsymbol{\chi}_{\boldsymbol{\mu}}(\bar{\boldsymbol{x}}) \nabla \boldsymbol{\lambda}(\hat{\boldsymbol{x}})$$
(5)

and

$$\nabla \nabla \boldsymbol{\chi}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}}) \boldsymbol{v} = (\nabla \nabla \boldsymbol{\chi}_{\boldsymbol{\mu}}(\bar{\boldsymbol{x}}) \nabla \boldsymbol{\lambda}(\hat{\boldsymbol{x}}) \boldsymbol{v}) \nabla \boldsymbol{\lambda}(\hat{\boldsymbol{x}}) + \nabla \boldsymbol{\chi}_{\boldsymbol{\mu}}(\bar{\boldsymbol{x}}) \nabla \nabla \boldsymbol{\lambda}(\hat{\boldsymbol{x}}) \boldsymbol{v}, \tag{6}$$

(6) holding $\forall v \in \mathcal{V}$. Writing $F_{\mu} = \nabla \chi_{\mu}$, $G_{\mu} = F_{\mu}^T \nabla \nabla \chi_{\mu}$, and making use of (4), equations (5) and (6) may be written in the equivalent forms

$$\boldsymbol{F}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}}) = \boldsymbol{F}_{\boldsymbol{\mu}}(\hat{\boldsymbol{x}})\boldsymbol{H}(\hat{\boldsymbol{x}}) \tag{7}$$

and

$$\boldsymbol{G}_{\boldsymbol{\kappa}}(\hat{\boldsymbol{x}}) = \boldsymbol{H}(\hat{\boldsymbol{x}})^{T} (\boldsymbol{G}_{\boldsymbol{\mu}}(\bar{\boldsymbol{x}})^{T} \boldsymbol{H}(\hat{\boldsymbol{x}}))^{T} \boldsymbol{H}(\hat{\boldsymbol{x}}) + \boldsymbol{H}(\hat{\boldsymbol{x}})^{T} \boldsymbol{F}_{\boldsymbol{\mu}}(\bar{\boldsymbol{x}})^{T} \boldsymbol{F}_{\boldsymbol{\mu}}(\bar{\boldsymbol{x}}) \boldsymbol{K}(\hat{\boldsymbol{x}}), \tag{8}$$

where

 $\boldsymbol{H} = \nabla \boldsymbol{\lambda}$ and $\boldsymbol{K} = \nabla \nabla \boldsymbol{\lambda}$.

If \hat{f}_{κ} and \hat{f}_{μ} denote *either* pair of response functions appropriate to configurations κ and μ respectively (so that if $\hat{f}_{\kappa} = \hat{T}_{\kappa}$ then $\hat{f}_{\mu} = \hat{T}_{\mu}$, while $\hat{f}_{\kappa} = \hat{M}_{\kappa}$ implies $\hat{f}_{\mu} = \hat{M}_{\mu}$) then (cf. (2))

$$\hat{f}_{\kappa}(F_{\kappa}(\hat{x}), G_{\kappa}(\hat{x}), \hat{x}) = \hat{f}_{\mu}(F_{\mu}(\bar{x}), G_{\mu}(\bar{x}), \bar{x}).$$
(9)

⁴ \mathcal{V} denotes the (three-dimensional) space of all vectors.

Writing F_{μ} as F, G_{μ} as G, and suppressing arguments in an obvious manner, (9) yields, on use of (7) and (8),

$$\hat{f}_{\kappa}(FH, H^{T}(G^{T}H)^{T}H + H^{T}F^{T}FK) = \hat{f}_{\mu}(F, G).$$
(10)

Furthermore, for a fixed material point X (and consequently fixed values of **H** and **K**), (10) must hold for all $\mathbf{F} \in \text{Invlin}^+(\mathcal{V})$ and all $\mathbf{G} \in \text{Sym}_3^T(\mathcal{V})$, since it must hold for all motions. In the event that the material response at X in the configuration $\boldsymbol{\kappa}$ is indistinguishable from that of X in $\boldsymbol{\mu}$ then, clearly,

$$\hat{f}_{\kappa}(F,G) = \hat{f}_{\mu}(F,G) \tag{11}$$

 $\forall \mathbf{F} \in \operatorname{Invlin}^+(\mathcal{V}), \forall \mathbf{G} \in \operatorname{Sym}_3^T(\mathcal{V})$. It follows from (10) that in such a case

$$\hat{f}_{\kappa}(F,G) = \hat{f}_{\kappa}(FH,H^{T}(G^{T}H)^{T}H + H^{T}F^{T}FK)$$
(12)

for all \mathbf{F} , \mathbf{G} as in (11). This motivates the definition of $S_{\kappa}(X)$, the symmetry set of X in configuration κ , as follows:

 $S_{\kappa}(X) = \{(H, K) : H \in Invlin^+(\mathcal{V}), K \in Sym_3^T(\mathcal{V}) \text{ with } (12) \text{ holding for both } T \text{ and } M\}.$

Clearly, $(1, 0) \in S_{\kappa}(X)$. Further, it is a simple matter to show that if (H_1, K_1) and $(H_2, K_2) \in S_{\kappa}(X)$ then so does $(H_1H_2, (K_1^TH_2)^TH_2 + H_1K_2)$. Defining the operation (\circ) on $S_{\kappa}(X)$ by

$$(\mathbf{H}_{1}, \mathbf{K}_{1}) \circ (\mathbf{H}_{2}, \mathbf{K}_{2}) = (\mathbf{H}_{1}\mathbf{H}_{2}, (\mathbf{K}_{1}^{\mathrm{T}}\mathbf{H}_{2})^{\mathrm{T}}\mathbf{H}_{2} + \mathbf{H}_{1}\mathbf{K}_{2})$$
(13)

it is easily shown that (•) is associative, (1, **0**) is an identity element for $S_{\kappa}(X)$ with each (\mathbf{H}, \mathbf{K}) having an inverse, namely $(\mathbf{H}_{1}^{-1}, -\mathbf{H}^{-1}(\mathbf{K}^{T}\mathbf{H}^{-1})^{T}\mathbf{H}^{-1})$. Thus we have

PROPOSITION 1. $S_{\kappa}(X)$ is a group under the operation defined by (13).

We accordingly re-label $S_{\kappa}(X)$ as the symmetry group of X in κ . That subgroup of $S_{\kappa}(X)$ consisting of elements of the form $(\boldsymbol{H}, \boldsymbol{O})$ might be termed⁵ the homogeneous symmetry group of X in κ , $\mathscr{G}_{\kappa}(X)$ say, representing as it does those homogeneous deformations⁶ of the whole body which do not alter the material response at X. Of course, $S_{\kappa}(X)$ is related in a specific manner to $S_{\mu}(X)$. Indeed, we have

PROPOSITION 2. If $(\mathbf{H}, \mathbf{K}) \in S_{\kappa}(X)$ then, if $\mathbf{H}_0, \mathbf{K}_0$ denote, respectively, $\nabla \lambda$ and $\nabla \nabla \lambda$ evaluated at $\kappa(X)$,

$$(\boldsymbol{H}_{0}\boldsymbol{H}\boldsymbol{H}_{0}^{-1},\boldsymbol{H}_{0}[\{\boldsymbol{K}-(\boldsymbol{K}_{0}^{T}\boldsymbol{H})^{T}\boldsymbol{H}-\boldsymbol{H}\boldsymbol{H}_{0}^{-1}\boldsymbol{K}_{0}\}^{T}\boldsymbol{H}_{0}^{-1}]^{T}\boldsymbol{H}_{0}^{-1}] \in S_{\mu}(X).$$
(14)

⁶ These are deformations of the form

$$\boldsymbol{\lambda}(\hat{\mathbf{y}}) = \boldsymbol{\lambda}(\hat{\mathbf{x}}) + \boldsymbol{H}_0(\hat{\mathbf{y}} - \hat{\mathbf{x}})$$

for all $\hat{\mathbf{y}} \in \boldsymbol{\kappa}(\mathcal{B})$, with $\boldsymbol{H}_0 \in \text{Invlin}^+(\mathcal{V})$.

⁵ It is this group which Cheverton and Beatty introduced in [3] and which they termed the homogeneous isotropy group. We remark that although non-empty, it may possibly contain only (1, 0).

The proof of this result is straightforward. An immediate consequence is

COROLLARY 3. The homogeneous symmetry group $\mathscr{G}_{\kappa}(X)$ is conjugate to $\mathscr{G}_{\mu}(X)$ whenever ${}^{7}\mathbf{K}_{0} = \mathbf{O}$.

Proof. Since $(\mathbf{H}, \mathbf{K}) \in \mathcal{G}_{\kappa}(\mathbf{X})$ implies $\mathbf{K} = \mathbf{O}$, equation (14) yields $(\mathbf{H}_0 \mathbf{H} \mathbf{H}_0^{-1}, \mathbf{O}) \in S_{\mu}(\mathbf{X})$ and hence $(\mathbf{H}_0 \mathbf{H} \mathbf{H}_0^{-1}, \mathbf{O}) \in \mathcal{G}_{\mu}(\mathbf{X})$. The interchangeability of κ and μ implies that $(\mathbf{H}_0^{-1} \mathbf{H}' \mathbf{H}_0, \mathbf{O}) \in \mathcal{G}_{\kappa}(\mathbf{X})$ whenever $(\mathbf{H}', \mathbf{O}) \in \mathcal{G}_{\mu}(\mathbf{X})$ so that the result follows. Symbolically we may write

$$\boldsymbol{H}_0 \mathscr{G}_{\boldsymbol{\kappa}}(\mathbf{X}) \boldsymbol{H}_0^{-1} = \mathscr{G}_{\boldsymbol{\mu}}(\mathbf{X})$$

in such cases.

The following observations give an indication of the essential character of a material point of second grade.

Remarks

1. Elements of an homogeneous symmetry group must be expected to be proper unimodular tensors⁸ since $(\mathbf{H}, \mathbf{O}) \in \mathcal{G}_{\kappa}(X)$ implies from the group property that $(\mathbf{H}^n, \mathbf{O}) \in \mathcal{G}_{\kappa}(X)$ for all integers *n*. Indeed, defining λ_n to be that homogeneous deformation with gradient \mathbf{H}^n , the response at X in the configuration $\mu_n = \lambda_n \circ \kappa$ is identical to that of X in κ , yet by virtue of mass conservation.

$$\rho_{\kappa}(\hat{\mathbf{y}}) = (\det \mathbf{H})^n \rho_{\mu_n}(\boldsymbol{\lambda}_n(\hat{\mathbf{y}})) \qquad \forall \hat{\mathbf{y}} \in \kappa(\mathcal{B}).$$

Thus, if det $\mathbf{H} \neq 1$, it is possible to make the density ρ_{μ_n} everywhere in a neighborhood of X arbitrarily small (by choosing n large enough⁹) and yet maintain unchanged response at X, a result clearly at variance with experience. However, if $(\mathbf{H}, \mathbf{K}) \in$ $S_{\kappa}(X)$ we cannot deduce in a similar manner that **H** be unimodular. In attempting to do so we notice that $(\mathbf{H}^2, (\mathbf{K}^T \mathbf{H})^T \mathbf{H} + \mathbf{H} \mathbf{K})$,

$$(\boldsymbol{H}^{3}, (\boldsymbol{K}^{T}\boldsymbol{H}^{2})^{T}\boldsymbol{H}^{2} + \boldsymbol{H}(\boldsymbol{K}^{T}\boldsymbol{H})^{T}\boldsymbol{H} + \boldsymbol{H}^{2}\boldsymbol{K})$$

etc. lie in $S_{\kappa}(X)$ and are forced to the conclusion that, although the density at $\kappa(X)$ may be made vanishingly small without change in response thereat, if **K** is not zero this rarefaction cannot be accomplished in a *neighborhood* of $\kappa(X)$ as evidenced by the second entries in the elements of $S_{\kappa}(X)$ involved. These are, of course, related to density gradients: differentiating

$$\rho_{\kappa} = (\det H) \rho_{\mu} \circ \lambda$$

yields, $\forall v \in \mathcal{V}$,

$$\nabla \rho_{\kappa} \cdot \boldsymbol{v} = (\det \boldsymbol{H})((\nabla \rho_{\mu}) \cdot \boldsymbol{\lambda}) \cdot \boldsymbol{H} \boldsymbol{v} + \rho_{\kappa} (\boldsymbol{H}^{-1})^{T} \cdot \boldsymbol{K} \boldsymbol{v}.$$
(15)

⁷ In particular this would be true were λ homogeneous.

⁸ More precisely, if $(\mathbf{H}, \mathbf{O}) \in \mathscr{G}_{\mathbf{k}}(\mathbf{X})$ then **H** is unimodular with det $\mathbf{H} = +1$.

⁹ Without loss of generality we may assume det H > 1 since if $H \in \mathscr{G}_{\kappa}(X)$ so does H^{-1} .

Thus, if $(\mathbf{H}, \mathbf{K}) \in S_{\mathbf{k}}(X)$, the absence of the assumption that \mathbf{H} be unimodular is consistent with the possibility that certain deformations involving changes in density leave the response unchanged (by virtue of second-order effects which introduce changes in density gradient). This possibility of first- and second-order effects counterbalancing each other would seem to represent the essential nature of a second grade material. Indeed, we note that

 $(H, K) = (H, O) \circ (1, H^{-1}K) = (1, \hat{K}) \circ (H, O),$

where

$$\hat{\boldsymbol{K}} = ((\boldsymbol{K}\boldsymbol{H}^{-1})^{\mathrm{T}}\boldsymbol{H}^{-1})^{\mathrm{T}}.$$

It follows that if λ_1 , λ_2 , and λ_3 are deformations associated with, respectively, (\mathbf{H}, \mathbf{O}) , $(\mathbf{1}, \mathbf{H}^{-1}\mathbf{K})$, and $(\mathbf{1}, \hat{\mathbf{K}})$, so that λ_1 represents a first-order effect¹⁰ while λ_2 and λ_3 are second-order, and if $(\mathbf{H}, \mathbf{K}) \in S_{\kappa}(X)$, then $\lambda_1 \circ \lambda_2$ and $\lambda_3 \circ \lambda_1$ leave the response at X unchanged.

2. Elements of the form (1, K) comprise a subgroup of $S_{\kappa}(X)$ since, by (7.9)

$$(\mathbf{1}, \mathbf{K}_1) \circ (\mathbf{1}, \mathbf{K}_2) = (\mathbf{1}, \mathbf{K}_1 + \mathbf{K}_2),$$

(1, -K) clearly being the inverse of (1, K). This implies that if $(1, K) \in S_{\kappa}(X)$ then $(1, nK) \in S_{\kappa}(X)$ for all integers *n*. If $K \neq O$, so that there exists a vector *u* such that¹¹ $(Ku)u \neq 0$, define for any integer *n* the deformation λ_n on $\kappa(\mathcal{B})$ by

$$\boldsymbol{\lambda}_n(\hat{\boldsymbol{x}}+\boldsymbol{v}) = \hat{\boldsymbol{x}} + \boldsymbol{v} + \frac{1}{2}n(\boldsymbol{K}(\boldsymbol{v}\cdot\boldsymbol{u})\boldsymbol{u})(\boldsymbol{v}\cdot\boldsymbol{u})\boldsymbol{u} = \hat{\boldsymbol{x}} + \boldsymbol{v} + (\boldsymbol{v}\cdot\boldsymbol{u})^2n\boldsymbol{w}$$

say, so that $\nabla \lambda_n(\hat{x}) = 1$ and $\nabla \nabla \lambda_n(\hat{x}) = n((Ku)u) \otimes u \otimes u$. The response of X in κ is the same as that of X in $\mu_n(=\lambda_n \circ \kappa)$ where $\rho_{\kappa}(\hat{x}) = \rho_{\mu_{\kappa}}(\lambda_n(\hat{x}))$ and, from (7.11),

$$\nabla \rho_{\kappa}(\hat{\mathbf{x}}) \cdot \mathbf{v} = \nabla \rho_{\mu_n}(\boldsymbol{\lambda}_n(\hat{\mathbf{x}})) \cdot \mathbf{v} + n \rho_{\kappa}(\hat{\mathbf{x}})(\mathbf{u} \cdot \mathbf{v})((\mathbf{K}\mathbf{u})\mathbf{u} \cdot \mathbf{u}) \qquad \forall \mathbf{v} \in \mathcal{V}.$$

If $((\mathbf{K}\mathbf{u})\mathbf{u}\cdot\mathbf{u}\neq 0$ for any $\mathbf{u}\in\mathcal{V}$ this would imply unchanged response at X after deformations involving no change of density but arbitrarily large density gradient component in the direction defined by the vector \mathbf{u} , the components in perpendicular directions being zero. This we feel to be physically implausible and so make the following

Postulate. If $(\mathbf{1}, \mathbf{K}) \in S_{\mathbf{k}}(\mathbf{X})$ then $(\mathbf{K}\mathbf{u})\mathbf{u} \cdot \mathbf{u} = 0 \quad \forall \mathbf{u} \in \mathcal{V}$.

At this point we remark that couple-stress theories are essentially addressed to material behaviour as manifested in the solid state. In view of the preceding remarks a natural generalization of the concept of solid from that adopted in respect of simple elastic materials would seem to require that deformations of the form

 $\boldsymbol{\lambda}(\boldsymbol{\hat{x}}+\boldsymbol{v}) = \boldsymbol{\hat{x}} + \boldsymbol{v} + \frac{1}{2}(\boldsymbol{K}\boldsymbol{v})\boldsymbol{v}$

 $2(\mathbf{K}\mathbf{u})\mathbf{v} = (\mathbf{K}(\mathbf{u}+\mathbf{v}))(\mathbf{u}+\mathbf{v}) - (\mathbf{K}\mathbf{u})\mathbf{u} - (\mathbf{K}\mathbf{v})\mathbf{v}.$

 $^{^{10}}$ Without loss of generality $\pmb{\lambda}_1$ may be taken to be homogeneous.

¹¹ Here we note that **K** is completely determined by the set $\{(\mathbf{K}w)w : w \in \mathcal{V}\}$ since, by its symmetry, we have

always result in a change of response, implying that if $(1, \mathbf{K}) \in S_{\kappa}(X)$ and X is "solid" in κ then $\mathbf{K} = \mathbf{0}$. Using this terminology we have

PROPOSITION 3. If X is solid in κ then for any given $\mathbf{H} \in \operatorname{Invlin}^+(\mathcal{V})$ not both of (\mathbf{H}, \mathbf{O}) and (\mathbf{H}, \mathbf{K}) can belong to $S_{\kappa}(X)$, where $\mathbf{K} \in \operatorname{Sym}_3^T(\mathcal{V}), \mathbf{K} \neq \mathbf{O}$.

Proof. If (\mathbf{H}, \mathbf{O}) and $(\mathbf{H}, \mathbf{K}) \in S_{\kappa}(X)$ then by the group property $(\mathbf{H}, \mathbf{O})^{-1} \circ (\mathbf{H}, \mathbf{K}) = (\mathbf{H}^{-1}, \mathbf{O}) \circ (\mathbf{H}, \mathbf{K}) = (\mathbf{1}, \mathbf{H}^{-1}\mathbf{K}) \in S_{\kappa}(X)$ whence, from the solidity assumption $\mathbf{H}^{-1}\mathbf{K} = \mathbf{O}$ so that $\mathbf{K} = \mathbf{O}$, yielding a contradiction.

3. A second-grade material point X might be described as *isotropic* if there exists a configuration κ wherein¹² $\mathcal{O}^+(\mathcal{V}) \subset \mathcal{G}_{\kappa}(X)$. In such a case, $\forall F, G$ as in (11)

$$\hat{f}_{\kappa}(F, G) = \hat{f}_{\kappa}(FQ^{T}, Q(G^{T}Q^{T})^{T}Q^{T}) \qquad \forall Q \in \mathcal{O}^{+}(\mathcal{V}).$$
(16)

However, material frame-indifference requires that $\forall F, G$ as in (11)

$$\hat{f}_{\kappa}(\boldsymbol{QF},\boldsymbol{G}) = \boldsymbol{Q}\hat{f}_{\kappa}(\boldsymbol{F},\boldsymbol{G})\boldsymbol{Q}^{T},$$
(17)

for $\hat{f}_{\kappa} = \hat{T}_{\kappa}$, and 13

$$\hat{f}_{\kappa}(\boldsymbol{QF},\boldsymbol{G}) = \boldsymbol{Q}(\hat{f}_{\kappa}(\boldsymbol{F},\boldsymbol{G})^{T}\boldsymbol{Q}^{T})^{T}\boldsymbol{Q}^{T}$$
(18)

for $\hat{f}_{\kappa} = \hat{M}_{\kappa}$.

Replacing F in (16) by QF and using (17) or (18) as appropriate, we have

$$\hat{\boldsymbol{T}}_{\boldsymbol{\kappa}}(\boldsymbol{Q}\boldsymbol{F}\boldsymbol{Q}^{\mathrm{T}},\,\boldsymbol{Q}(\boldsymbol{G}^{\mathrm{T}}\boldsymbol{Q}^{\mathrm{T}})^{\mathrm{T}}\boldsymbol{Q}^{\mathrm{T}}) = \boldsymbol{Q}\hat{\boldsymbol{T}}_{\boldsymbol{\kappa}}(\boldsymbol{F},\,\boldsymbol{G})\boldsymbol{Q}^{\mathrm{T}}$$
(19)

and

$$\hat{\boldsymbol{M}}_{\boldsymbol{\kappa}}(\boldsymbol{Q}\boldsymbol{F}\boldsymbol{Q}^{T},\,\boldsymbol{Q}(\boldsymbol{G}^{T}\boldsymbol{Q}^{T})^{T}\boldsymbol{Q}^{T}) = \boldsymbol{Q}(\hat{\boldsymbol{M}}_{\boldsymbol{\kappa}}(\boldsymbol{F},\,\boldsymbol{G})^{T}\boldsymbol{Q}^{T})^{T}\boldsymbol{Q}^{T},$$
(20)

these relations holding for all $\mathbf{F} \in \operatorname{Invlin}^{+}(\mathcal{V})$, all $\mathbf{G} \in \operatorname{Sym}_{3}^{T}(\mathcal{V})$ and all $\mathbf{Q} \in \mathcal{O}^{+}(\mathcal{V})$. Thus $\hat{\mathbf{T}}_{\kappa}$ and $\hat{\mathbf{M}}_{\kappa}$ are isotropic tensor-valued functions of their arguments in the sense of [1] (cf. §8) whenever the material point concerned is isotropic in κ . Since we cannot in general expect $\mathscr{G}_{\kappa}(X)$ to coincide with $S_{\kappa}(X)$, any additional symmetry of X, which happens to be isotropic in κ , will place restrictions on response functions over and above those of relations (19) and (20).

4. The approach adopted in this note readily generalizes to higher-grade materials, with, however, symmetry sets having increasingly complex group operations. Since a material of grade n is insensitive to deformation gradients of orders in excess of n,

$$(\boldsymbol{M}^{*}\boldsymbol{Q}\boldsymbol{v})\boldsymbol{w} = \boldsymbol{Q}(\boldsymbol{M}\boldsymbol{v})\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{w} = \boldsymbol{Q}(\boldsymbol{M}^{\mathsf{T}}(\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{w})\boldsymbol{v}) = \boldsymbol{Q}((\boldsymbol{M}^{\mathsf{T}}\boldsymbol{Q}^{\mathsf{T}})^{\mathsf{T}}\boldsymbol{v})\boldsymbol{w},$$

so that

 $\boldsymbol{M}^{*}\boldsymbol{Q} = \boldsymbol{Q}(\boldsymbol{M}^{T}\boldsymbol{Q}^{T})^{T}.$

¹² $\mathcal{O}^+(\mathcal{V})$ denotes the group of proper orthogonal tensors on \mathcal{V} .

¹³ With obvious notation we have, by frame-indifference, $M^*n^* = Q(Mn)Q^T$ where $n^* = Qn$. Thus, by linearity, $\forall v, w \in \mathcal{V}$,

deformations may be partitioned into equivalence classes, any pair in any such class having gradients up to order n which coincide (at the point in question) and hence elicit identical material response. Ljubicic¹⁴ (cf. [4]) was the first to realize that the theory of jets was the most natural mathematical vehicle for a general discussion of such non-simple materials.

5. If, for the sake of example, construction of response functions for a specific second-grade material is desired, it must be noticed that these are restricted not only by frame-indifference, but also by thermodynamic requirements. For elastic materials these place restrictions upon $\hat{T}_{\kappa} + \hat{T}_{\kappa}^{T}$ and $\hat{M}_{\kappa} + \hat{M}_{\kappa}^{T}$ and the specific manner of their dependence upon G (c.f. [5], [8]).

Acknowledgements

This work is an offshoot of a study of second-grade material surfaces, supported in part by the National Research Council of Canada. The author gratefully acknow-ledges stimulating discussions with Professor H. Cohen, University of Manitoba.

REFERENCES

- Truesdell, C. and Noll, W., The Non-linear Field Theories of Mechanics. Handbuch der Physik, Vol. III/3 (ed. S. Flügge). Berlin-Heidelberg-New York, 1965.
- [2] Noll, W., A mathematical theory of the mechanical behavior of continuous media. Arch. Rat. Mech. Anal. 2 (1958/9) 197-226.
- [3] Cheverton, K. J. and Beatty, M. F., On the mathematical theory of the mechanical behavior of some non-simple materials. University of Kentucky Technical Report, May, 1973.
- [4] Morgan, A. J. A., Inhomogeneous materially uniform higher order gross bodies. Arch. Rat. Mech. Anal. 57 (1975) 189-253.
- [5] Toupin, R. A., Elastic materials with couple-stress. Ibid. 11 (1962) 385-414.
- [6] Mindlin, M. D. and Tiersten, H. F., Effects of couple-stresses in linear elasticity. Ibid. 11 (1962) 415-448.
- [7] Duvaut, G., Application du principe de l'indifférence matérielle à un milieu élastique matériellement polarisé. Compte Rendus 258 (1964) 3631-3634.
- [8] Murdoch, A. I., Elastic materials of second grade, Research Report ES 78-132, University of Cincinnati, February 1978.

¹⁴ Presumably motivated by precisely the foregoing observation.