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ABSTRACT 

The symmetry group associated with a material point of second grade is characterized, thereby eludicating 
the interplay between first- and second-order strain measures in determining its response to deformation. 

Introduction 

I t  is the  p u r p o s e  of  this  no te  1 to  r e c o r d  s o m e  s imple  obse rva t ions  on  m a t e r i a l  

s y m m e t r y  for  a m a t e r i a l  p o i n t  of  s e c o n d  g rade ;  tha t  is, a m a t e r i a l  p o i n t  X whose  

r e s p o n s e  to a d e f o r m a t i o n  k f rom any  conf igura t ion  K of  the  b o d y  to which  it 

be longs  d e p e n d s  b o t h  u p o n  the  first a n d  s econd  der iva t ives  of  k e v a l u a t e d  a t  K(X). 

A l t h o u g h  s y m m e t r y  cons ide ra t i ons  for  s imple  ma te r i a l s  we re  m a d e  p rec i se  s o m e  

t ime  ago by  Nol l  [2], on ly  r ecen t ly  has  the  s a m e  b e e n  a c c o m p l i s h e d  for  h i g h e r - g r a d e  

mate r i a l s ,  z by  M o r g a n  [4, Sec t ion  4]. H o w e v e r ,  in the  gene ra l  case  the  s impl ic i ty  

a s soc ia t ed  wi th  s e c o n d - g r a d e  ma te r i a l s  is no t  t r a n spa re n t ,  nor ,  in r e spec t  of  sym-  

m e t r y  cons ide ra t ions ,  a re  the  f u n d a m e n t a l  d i f ferences  of  such ma te r i a l s  f rom s imple  

bod i e s  se l f -ev iden t .  E m p h a s i s  u p o n  s e c o n d - g r a d e  ma te r i a l s  is m e r i t e d  b y  v i r tue  of 

the  w o r k  of  T o u p i n  [5] and  of  Mind l in  and  T i e r s t e n  [6] on  such bod ies ,  the  s imples t  

which  ~dmi t  of  p o l a r  p h e n o m e n a .  

1 We consistently use the terminology of Truesdell and Noll [1] with minor modifications: if K and Ix are 
any two configurations of a body ~ we require that the deformation gradient V(Ix o K-l) takes values in 
Invlin (~') with positive determinant. The requirements of frame-indifference are also modified: observers 
are assumed to agree upon orientation (that is, agree what constitutes "right-handedness") which requires 
frame changes to involve only proper orthogonal tensors. 

2 Cheverton and Beatty I-3] also considered this problem, but seem to have confined themselves to 
(locally) homogeneous configurations which mask the subtlety of response possible in such materials, as 
will be demonstrated. 
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Preliminaries 

Let ~ be a (three-dimensional) continuous body of class C z for which, 3 during any 
motion X, the Cauchy stress tensor T and the couple-stress tensor M depend upon 
VX K and VVXK, where XK denotes the motion relative to a (reference) configuration 
K. More precisely, suppose T and M are given at time t by 

T(x, t) = T.(Vx.(~, t), VVxK(~, t), ~) 

and (1) 

M(x, t) = M,,(VX,,(~, t), WX, , (~ ,  t), ~), 

where 
x = x~(~,  t), ~. = K ( x ) ,  

these relations holding for every X ~ ~ .  If n denotes a unit normal field to a surface 
lying in X(~, t) then Tn is the usual traction field and Mn represents the couple per 
unit area transmitted across the surface. We regard M as a tensor field of rank three 
with Mn taking skew values. Equivalent to relations (1), but more convenient in 
respect of considerations of frame-indifference, are the following: 

T(x, t) = ~.,(E,(~, t), ~.~(Y~, t), ~) 

and (2) 

M(x, t) =/17/.(F.02, t), 6.02, t), ~2), 

where 

F, ,=Vx,,  and G, ,= T l~vvx. .  (3) 

The tensor field (of rank three) G .  is frame-independent,, since a change of frame 
(cf. [1], Section 17) in which 

x->x* =c+O(X-Xo) 

results in 

F,,--> F*~ = QF~ and VVxK--> (WX~)* = QVVx~, 

so that 

(~K __.> :g __ GK--G~ 

by virtue of the orthogonal nature of Q. We remark (cf. Duvaut, [7]) that the 
dependence of the response functions ~'. and /¢/. upon G .  is equivalent to one 
upon VC, where C denotes the (right) Cauchy-Green tensor F~F..  

If. A is a tensor of rank three we define A r to be that tensor which satisfies, for all 

3 Of  course, for a complete  thermo-elastic theory the  free energy, entropy, and heat  flux vector would 
need to be added to T and 1~1, and constitutive dependence upon tempera ture  and tempera ture  gradient  
included. The  generalization of our  discussion to such a theory is clearly evident, this also being the  case 
for a mechanical  theory in which the  dependence  of T and M, is upon histories of VX~ and VVX~. 
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v e c t o r s  4 ~, I~ e o//,, 

(A Tu)v = (Av)u. (4) 

The space of third-rank tensors A for which A = A T will be denoted by Sym3 -r (V') 
and the set of all invertible second-rank tensors with positive determinant by Invlin ÷ 
(V'). Of course, F .  takes values in Invlin ÷ (~) and G.  values in Sym((~F), the latter 
because of the symmetry of the second gradient VVX,. 

Material symmetry considerations 

Let It be any configuration of ~ such that It # ~c and write 

k = I t  o ~ - ~ ,  ~: = k (~: )  

so that k is of class C 2 and ~ = It(X). Denoting the motion X relative to It by X~ it 
follows that 

X,,(~, t)= xCX, t )= X.(~, t)= x~Ck(2~), t). 

Suppressing time-dependence we thus have 

XK = Xv, o k, 

whereupon differentiation yields 

VXK(~) = VX,#)VX(~) (5) 

and 

VVx.(1)v = (VVx.(~)Vk(fc)v)Vk(Y¢)+ VX~02) VVk(i)v, (6) 

(6) holding Vv e ~. Writing 1~ = VX~, G~ = / ~  WX~ , and making use of (4), equa- 
tions (5) and (6) may be written in the equivalent forms 

F.(~) = F.(~)H02) (7) 

and 

G.(~) = H(i)T(G.(~)*H(~))rH(~) + H(~)TF~ (~)TF~ (~)K(~), (8) 

where 

H = V k  and K=VVk.  

If ] .  and )~ denote either pair of response functions appropriate to configurations K 
and It respectively (so that if £ = ~ .  then ~. = ~. ,  while £ =/~K implies • =/~/~) 
then (cf. (2)) 

].(F.(~), G.( i ) ,  2) = ]~,(F~,(~), G,(~), ~). (9) 

a ~F denotes  the ( three-dimensional)  space of all vectors. 
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Writing F~ as F, G,~ as G, and suppressing arguments in an obvious manner, (9) 
yields, on use of (7) and (8), 

rF(GTH) 11+ = G). (lO) 

Furthermore, for a fixed material point X (and consequently fixed values of 11 and 
K), (10) must hold for all F ~  Invlin ÷ (~) and all G ~ Sym]"(°F), since it must hold for 
all motions. In the event that the material response at X in the configuration ~ is 
indistinguishable from that of X in I~ then, clearly, 

L(F, G ) =  f~(F, G) (11) 

~ F ~  lnvlin + (T'), ~G  e Sym~ (~), It follows from (10) that in such a case 

L( i  ~, G) = L ( m ,  H~(G~H)~11+ 11~'F~rK) (12) 

for all F, G as in (11). This motivates the definition of S.(X), the symmetry set of X 
in configuration ~, as follows: 

S.(X) ={(/-/, K):11~ Invlin + (~), K~  Sym~(°F) with (12) holding for both T and 

Clearly, (1, O)~ SK(X). Further, it is a simple matter to show that if (H~, K~) and 
(H2, K2) ~ S.(X) then so does (HIH2, ( / ~  H2)a"H~ + 11~K2). Defining the operation (o) 
on S.(X) by 

(H~, K0 ° (H2, K~) = (H~H2, (K~H2)TH2+HIK:) (13) 

it is easily shown that (o) is associative, (1, O) is an identity element for SK(X) with 
each (11, K) having an inverse, namely (11~-1, _11-a(KrH-1)T11-1). Thus we have 

PROPOSITION 1, SK(X) is a group under the operation defined by (13). 

We accordingly re-label SK(X) as the symmetry group of X in K. That subgroup of 
S.(X) consisting of elements of the form (11, O) might be termed 5 the homogeneous 
symmetry group of X in K, ~K(X) say, representing as it does those homogeneous 
deformations 6 of the whole body which do not alter the material response at X. Of 
course, S.(X) is related in a specific manner to S,~(X). Indeed, we have 

PRoPosrrloN 2. If  (11, K)~ SK(X) then, if 1to, Ko denote, respectively, Vk and 
VVk evaluated at ~(X), 

(Ho1111~ 1, Ho[{K- (/~o 11)rH - 1111~1Ko}TH~ 1]TH~ ~) e S~,(X). (14) 

s It is this group which Cheverton and Beatty introduced in [3] and which they termed the homogeneous 
isotropy group. We remark that although non-empty, it may possibly contain only (1, O). 
6 These are deformations of the form 

x(,~) = x(i) + ~o(,~ - i) 

for all ~ ¢ ~(~) ,  with Ho~ Invlin+(Y). 
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The proof of this result is straightforward. An immediate consequence is 

COROt~ARV 3. The homogeneous symmetry group ~K(X) is conjugate to ~,(X) 
whenever 7 Ko = O. 

Proof. Since (11, K ) e ~ , ( X )  implies K = O ,  equation (14) yields ( / /o/ tI /~ ~, 
O)e  S~(X) and hence (11o//11~ ~, O)e  rg,(X). The interchangeability of ~ and Ix 
implies that (H~l-I'I-Io, O ) e ~ . ( X )  whenever (11', O)efg,(X) so that the result 
follows. Symbolically we may write 

/'~0 ~ ( X )  11~ 1 = (~ ~ ( X )  

in such cases. 
The following observations give an indication of the essential character of a 

material point of second grade. 

Remarks 

1. Elements of an homogeneous symmetry group must be expected to be proper 
unimodular tensors 8 since (11, O)e  ~,(X) implies from the group property that 
(/'/", O )e  qd,(X) for all integers n. Indeed, defining kn to be that homogeneous 
deformation with g rad ien t /~ ,  the response at X in the configuration Ixn = ~ o K is 
identical to that of X in K, yet by virtue of mass conservmion. 

PK(~) = (det Fi)np~(k,(~)) V~ ~ K(~). 

Thus, if det I-/# 1, it is possible to make the density p~. everywhere in a neighborhood 
of X "arbitrarily small (by choosing n large enough 9) and yet maintain unchanged 
response at X, a result clearly at variance with experience. However, if (11, K)~ 
S,(X) we cannot deduce in a similar manner that t l  be unimodular. In attempting to 
do so we notice that (//~, (/(r11)a~11+HK), 

(113, (K~W)~rV + 11(h'~f13~11 + hr~h') 

etc. lie in SK(X) and are forced to the conclusion that, although the density at ~(X) 
may be made vanishingly small without change in response thereat, if K is not zero 
this rarefaction cannot be accomplished in a neighborhood of ~(X) as evidenced by 
the second entries in the elements of S,  (X) involved. These are, of course, related to 
density gradients: differentiating 

0K = (det H)p~ o k 

yields, Vv ~ ~, 

VOw. v = (det/-/)((Vp~) o k) .  Hv + pK(H-~) a~- Kv. (15) 

7 In particular this would be true were k homogeneous. 
s More precisely, if (//,  O ) e  qdK(X) t h e n / / i s  unimodular with d e t / t ' =  +1. 
9 Without loss of generality we may assume d e t / / >  1 since i f / ' / e  %,(X) so does / / -1 .  
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Thus, if (H, K)~ S.(X), the absence of the assumption that H be unimodular is 
consistent with the possibility that certain deformations involving changes in density 
leave the response unchanged (by virtue of second-order effects which introduce 
changes in density gradient). This possibility of first- and second-order effects 
counterbalancing each other would seem to represent the essential nature of a 
second grade material. Indeed, we note that 

(H, K) = (H, O) o (1, U-lg )  - - ~  (1,/~) o (H, 0 ) ,  

where 

~ = ((KH-1)TH-I) r. 

It follows that if kin, k2, and k 3 a r e  deformations associated with, respectively, 
(H, O), (1, H-~K), and (1, ~ff), so that k~ represents a first-order effect ~° while k~ 
and k3 are second-order, and if (H, K)e  S,(X), then kl o k2 and k 3 o k l  leave the 
response at X unchanged. 

2. Elements of the form (1, K) comprise a subgroup of S.(X) since, by (7.9) 

(1, K1) o (1, K2) = (1, K1 + K2), 

( 1 , - K )  dearly being the inverse of (1, K). This implies that if (1, K)~ SK(X) then 
(1, nK) ~ SK(X) for all integers n. If K ~  O, so that there exists a vector u such thaP 1 
(Ku)u~O, define for any integer n the deformation k ,  on K(O3) by 

k,  02 + v) =~+v+½n(K(v. u)u)(v, u)u = ~ + v  +(v" u)2nw 

say, so that ~7k,(~) = 1  and VVk~02)= n((Ku)u)®u®u. The response of X in K is 
the same as that of X in p , , (=k ,  o ~) where p.02)= p,,()t,02)) and, from (7.11), 

xrp,(~) ,  v = XTp~(X~(~)) • v + no,,(~)(u, v ) ( ( K u ) u ,  u) V v  ~ T'. 

If ((Ku)u.u~O for any u ~  this would imply unchanged response at X after 
deformations involving no change of density but arbitrarily large density gradient 
component in the direction defined by the vector u, the components in perpendicular 
directions being zero. This we feel to be physically implausible and so make the 
following 

Postulate. If (1,K) ~ Sk(X) then (Ku)u. u = 0 ~u ~ T'. 

At this point we remark that couple-stress theories are essentially addressed to 
material behaviour as manifested in the solid state. In view of the preceding remarks 
a natural generalization of the concept of solid from that adopted in respect of 
simple elastic materials would seem to require that deformations of the form 

X(~ + v) = i~ + v +½(Kv)v  

1°Without  loss of generality k~ may be taken to be homogeneous .  
~1 Here we note that  K is completely determined by the  set {(Kw)w :w e ~} since, by its symmetry ,  we 
have 

2 ( K u ) v  = ( K ( u  ÷ v ))(u ÷ ~) - (Ku)u  - ( K v ) v .  
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always result in a change of response, implying that if (1, K) e SK(X) and X is "solid" 
in K then K--- O. Using this terminology we have 

PROPOSITION 3. If X is solid in K then for any given I-t ~ Invlin+(~) not both of 
(H, O) and (H, K) can belong to S.(X), where K ~  Sym~(T'), K ~  O. 

Proof. If (H, O) and (H, K)eSK(X) then by the group property (H, 0 )  -1o 
(H, K) = (H -1, O) o (H, K) = (1, H-IK) ~ S,(X) whence, from the solidity assumption 
H-~K = 0 so that K =  O, yielding a contradiction. 

3. A second-~ade material point X might be described as isotropic if there exists 
a configuration ~ wherein ~ ~+(~) c ~.(X). In such a case, VF, G as in (11) 

L(F, G) = ~(FQL Q(G~Q~)~Q r) V Q ~ ~+(~). (16) 

However, material frame-indifference requires that VF, G as in (11) 

L(QF, G)= ~ ( F ,  G)Q v, (17) 

for L = ~ ,  and13 

[.(Or, G)= 
f.= 

Replacing F in (16) by Q F  and using (17) or (18) as appropriate, we have 

~ . (QFQ ~, Q(G~Qr)rQ r) = ~ . ( F ,  G)Q ~ (19) 

a n d  

~ . ( Q F Q  r, Q(GTQr)rQ ~) = Q(~ . (F ,  G)rQr)rQ r, (20) 

these relations holding for all F ~  Invli~(~), all G ~ S ~  (~) and all Q ~ ~+ (~). 
Thus ~ .  and ~ .  are isotropic tensor-valued functions of their arguments in the sense 
of [1] (cf. ~8) whenever the material point ~ncerned is isotropic in x. Since we 
cannot in general expect rg.(X) to ~incide with S.(X), any additional symmetry of 
X, which happens to be isotropic in x, will place restrictions on response functions 
over and above those of relations (19) and (20). 

4. The approach adopted in this note readily generalizes to higher-grade materials, 
with, however, symmetry sets having increasingly complex group operations. Since a 
material of grade n is insensitive to deformation gradients of orders in excess of n, 

12 ~y+(cg) denotes  the group of proper  or thogonal  tensors on T'. 
~3 With obvious notat ion we have, by frame-indifference, Mr*n * =  O ( M r n ) O  7: where  n * =  Qn. Thus ,  by 
linearity, Yv, w ~ ~,  

(Mr*Qv)w = O(Mrv)Or~ = o(Mr(oT~)r) = O((MTOT)%)~, 

so that 

M*Q = O( l lKrOT)  r. 
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deformations may be partit ioned into equivalence classes, any pair in any such class 
having gradients up to order  n which coincide (at the point in question) and hence 
elicit identical material response. Ljubicic TM (cf. [4]) was the first to realize that the 

theory of jets was the most natural mathematical vehicle for a general discussion of 
such non-simple materials. 

5. If, for the sake of example, construction of response functions for a specific 
second-grade material is desired, it must be noticed that these are restricted not only 
by frame-indifference, but also by thermodynamic requirements. For elastic materi- 
als these place restrictions upon ~ ,  + ~ and/17/, + ~ and the specific manner  of 

their dependence upon G (c.f. [5], [8]). 
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