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Abstract. 

By utilizing methods recently developed in the theory of fluid interfaces, we provide a new framework for 
considering the localization of deformation and illustrate it for the case of hyperelastic materials. The 
approach overcomes one of the major shortcomings in constitutive equations for solids admitting localization 
of deformation at finite strains, i.e. their inability to provide physically acceptable solutions to boundary 
value problems in the post-localization range due to loss of ellipticity of the governing equations. 
Specifically, strain-induced localized deformation patterns are accounted for by adding a second deforma- 
tion gradient-dependent term to the expression for the strain energy density. The modified strain energy 
function leads to equilibrium equations which remain always elliptic. Explicit solutions of these equations 
can be found for certain classes of deformations. They suggest not only the direction but also the width of 
the deformation bands providing for the first time a predictive unifying method for the study of pre- and 
post-localization behavior. The results derived here are a three-dimensional extension of certain one-dimen- 
sional findings reported earlier by the second author for the problem of simple shear. 

I. Introduction 

In  two recent  pape r s  Ai fan t i s  and  Serr in  [1-2] examined  the equ i l ib r ium form of  f luid 
in terfaces  and  micros t ruc tures  by  in t roduc ing  second dens i ty  grad ien ts  in the depen-  
dence  of in ter fac ia l  stress, der iv ing a non l inea r  pa r t i a l  d i f ferent ia l  equa t ion  for the 
in ter fac ia l  densi ty ,  and  f inding  all  poss ib le  solu t ions  of  this equa t ion  in one d imens ion .  
They  were t rans i t ions  (mono tone  solut ions  wi th  d is t inct  l imits  at  infini ty) ,  reversals  
( symmet r i c  so lu t ions  abou t  a single m a x i m u m  or  m i n i m u m  with  a c o m m o n  def in i te  
l imi t  at  infini ty) ,  and  osci l la t ions  (per iodic  solut ions  wi th  f ini te  bu t  not  def in i te  l imits  
at  infini ty) .  Physical ly,  they  were ident i f ied  wi th  l iqu id -vapor  interfaces ,  thin films, and  
l ayered  structures,  respect ively.  

The  relevance of  these solut ions  to the loca l iza t ion  of  sol id micros t ruc tures  and  their  
re la t ion  to the loca l iza t ion  of  macroscop ic  de fo rma t ion  was d iscussed b y  Ai fan t i s  [3-7]. 
I t  was shown that  the dens i ty  of  dis locat ions ,  microvoids ,  and  o ther  ma te r i a l  micro-  
s t ructures  can  genera l ly  be  specif ied b y  equat ions  ana logous  to those  de t e rmin ing  the 
dens i ty  of  f luid micros t ruc tures .  Moreover ,  e l imina t ion  of  the mic ros t ruc tu ra l  var iables  
( in terna l  var iables)  f rom the const i tu t ive  equat ions  can  genera te  h igher  o rde r  grad ien ts  
in the s t ress-s t ra in  re la t ions  [6]. 
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For the one-dimensional problem of simple shear [6,7], in particular, the expression 
between shear stress and shear strain is similar to the relation between interfacial stress 
and fluid density in [1-2]. The form of the corresponding equilibrium equation is also 
analogous to that studied in [1,2] but the only solution of relevance here is the reversal 
since the strain has the same values at both ends. It thus turns out [7] that unlike the 
usual approach, the strain distribution is continuous with its maximum at the center of 
the shear band and its shape determining the size of this localized zone. The direction 
of the band was found to be parallel to the applied shear as in the classical approach 
but the onset of localization stress was found to be lower than the one predicted by 
classical analysis, in qualitative agreement with observations. 

The motivation for the present paper was to find generalizations of the above 
one-dimensional results for simple shear and examine the implications of the gradient 
approach to localization within a three-dimensional context. We were interested to 
compare the predictions of the gradient and the classical approaches and find a 
position for the loss of ellipticity condition of the classical approach within the 
structure of the gradient approach. Moreover, we wished to provide an estimate of the 
size of the narrow localized zone, a task which remains impossible within the classical 
approach, if a preexisting imperfection is not assumed. To accomplish clarity and 
maintain simplicity, we illustrate the method within a framework for hyperelastic 
materials. For  completeness, however, we give below a brief review of the main results 
of the classical approaches as they relate to the present gradient approach. 

The connection between localization of deformation and the loss of ellipticity in the 
governing equilibrium equations has been proposed in the context of elasticity by 
Hadamard [8] and in the case of non-elastic materials by Thomas [9], Hill [10] and 
Mandel [11]. The characteristic surfaces in this approach indicate the location and 
shape of the localized deformation zones. Considerable effort has been recently 
devoted to the study of localization phenomena and their dependence on the assumed 
constitutive models. Brief reviews on the subject can be found in the works of Knowles 
and Sternberg [12] for hyperelastic materials and Rice [13] for inelastic ones. 

The loss of ellipticity in the equilibrium equations approach, although adequate for 
predicting the zone direction and critical stress level, leaves the localized zone size 
unspecified. An effort to remedy the situation by introducing favorably oriented 
imperfections in the form of weak zones in the material has been developed in the 
context of localized necking in thin sheets (e.g. Marciniak and Kuczynski [14]). This 
method, however, is descriptive rather than predictive, it has the serious drawback of 
imposing artificial inhomogeneities, and the disadvantage of requiring unrealistic and 
physically non-observable imperfection orientations and amplitudes. 

The aforementioned absence of any characteristic length for the localized strain 
zone at the loss of ellipticity of the equilibrium equations, is the reason for the critical 
dependence of finite element calculations in related boundary value problems on the 
employed finite element mesh size. In addition, the post-localization calculations for 
such solids presents a high degree of difficulty due to mesh size related numerical 
problems and the results, whenever possible, are often physically unacceptable. More 
details on these aspects can be found in the article by Tvergaard, Neeldleman and Lo 
[15] and references quoted therein. 

The fact that there is plenty of experimental evidence for the development of small 
but finite size localized deformation zones in sufficiently strained initially uniform 
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materials * points to the need for an approach to localization which will automatically 
generate in a predictive and natural way localized deformation solutions at large 
strains. Such a procedure is possible by introducing higher-order deformation gradients 
in the constitutive equations as illustrated by Aifantis and Serrin [1,2] for the case of 
fluid microstructures and Aifantis [6,7] for the case of simple shear. 

In order to simplify our task, attention in this work will be focussed only on 
hyperelastic materials, whose equilibrium equations lose ellipticity at finite strains. It 
will be shown that a simple modification in the strain energy density function 
describing these materials produces the desirable localized solutions. This modification 
is accomplished by the addition of higher order deformation gradients ** in the strain 
energy density, much in the spirit of some recent work in the microscopic theory of 
phase transformations (e.g. Aifantis [16] and Alexiades and Aifantis [17]). In this 
connection, we also point out that although higher order gradients have been familiar 
objects to the workers in continuum mechanics for quite some time (e.g. Toupin 
[18,19], Mindlin [20,21], Green and Rivlin [22]), their use has been rather formal and 
their implications have not been investigated in the non-linear regime, as in the present 
case. 

The plan of the paper is as follows: In Section 2 we give the form of the modified 
strain energy function for hyperelastic materials and the resultant equilibrium equa- 
tions which now remain elliptic throughout the process of deformation. Section 3 
contains the analysis of the emergence of localized deformation bands in an infinite 
medium. It is shown that the direction of the band is determined by the loss of 
ellipticity condition for the unmodified material as in the classical analyses. In contrast 
to the classical results, however, a prediction for the width of the band is now possible 
and an explicit formula is provided. Finally, in Section 4 we apply our findings to the 
localization behavior of a particular class of hyperelastic materials (Blatz-Ko materials) 
for which explicit analytic solutions are possible. 

2. Modified hyperelastic materials 

We consider a continuum body occupying a region V in space with boundary 8V. A 
full Lagrangian description of the body's equilibrium equations is adopted here with 
the stress-free configuration chosen to be the reference one. Material points in the solid 
are identified by their position vector X in the reference state while the corresponding 
current position vector is denoted by x(X). The second rank tensor F = x7x is called 
the deformation gradient tensor and satisfies det F > 0 on V. For the sake of simplicity 
Cartesian coordinates will be used in this presentation and we will interchange direct 
and indicial notation according to convenience. 

As mentioned earlier, attention is confined to hyperelastic materials whose equi- 
librium equations lose ellipticity at adequately large levels of strain i.e. materials whose 

* I.e. homogeneous materials with uniform properties and no preassumed inclusions or imperfections of 
the size and shape of the subsequently developed localized deformation bands. 

** These higher order gradients may be thought of as a macroscopic manifestation of the various 
microprocesses including thermal ones that may occur at the microsale. 
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strain energy density per unit reference volume w(F) satisfies the condition * 

det[ Lijk,njn,] ~< O, Lijkl =-- 02w/OFijOFk,, (2.1) 

for some unit vector n and some deformation gradient F:g 1. For hyperelastic 
materials satisfying (2.1) Knowles and Sternberg [23] have shown the possibility of 
solutions with discontinuous deformation gradients across surfaces with normal n. In 
this connection, we remark that for rate independent elastoplastic materials also, 
condition (2.1), with L interpreted as the incremental moduli tensor relating the rate of 
the nominal stress tensor to the rate of the deformation gradient tensor, is necessary 
for the existence of solutions with localized shear deformation zones perpendicular to n 
(e.g. Rice [13], Hill and Hutchinson [24]). 

Motivated by the desire to introduce, in accordance with experimental observations, 
a physical length scale for the zone of localized deformations in materials satisfying 
(2.1), we propose to modify the strain energy function of such materials by incorporat- 
ing second gradients of deformation. This will eventually enable us to study post-lo- 
calization behavior in a manner free of the inconsistencies discussed in the introduc- 
tion. Although the existence of potentials for unstable regions and the generality of the 
variational approach as compared to a purely mechanical approach has been ques- 
tioned by Aifantis and Serrin [1,2], a common domain of validity has been found by 
Aifantis [16] and a related discussion has been given by Alexiades and Aifantis [17]. In 
this last paper Alexiades and Aifantis [17] also address the existence of minimizers and 
the stability of the solutions derived by Aifantis and Serrin [1,2], questions which are 
also essential for the present study. 

These aspects are not pursued here in depth, since we are mainly interested in 
providing only a simple illustration of the proposed mechanism for the determination 
of deformation band sizes. In the same spirit, we also adopt the framework of finite 
strain elasticity theory due to its clarity and relative simplicity as compared to some of 
the more complicated constitutive models for inelastic solids. Finally, and for the same 
reasons, we consider infinite domains so that we can dispense with questions con- 
cerned with the nature and interpretation of the correct boundary conditions, as well 
as the appropriate form of the stress tensor and the associated tractions. Different 
methods in arriving at appropriate forms of stress tensors (both asymmetric and 
symmetric) for gradient-sensitive materials have been suggested by various authors 
including Toupin [18-19], Aifantis [16], Dunn and Serrin [25] and Silhavy and Aifantis 
[26]. Their results will be useful in future discussions of finite bodies and boundary 
value problems related to the gradient-approach to localization. 

A modified hyperelastic material is defined by a strain energy density function ~, of 
the form 

¢ v = w ( F ) + K h ( F , G ) ;  G - V ' F ;  x > O ,  (2.2) 
where h is homogeneous and quadratic ** with respect to the third rank tensor 
G(Gi.ik = ~xi/~XjaXk), K is a positive constant (singled out for convenience) whose 

* If  a is a uni t  vector,  cond i t ion  (2.1) impl ies  the loss of s t rong  el l ipt ici ty,  i.e. Lij~taiaknjn t <~ 0 or 

[~2w/~Fij~Fkl]aiaknjnt ~ O. 
** I.e., h(F, )~G) = ~.2h(F, G) for al l  reals  ), ~ 0 and,  in par t icular ,  i)3h/~GijkbGlm,,bGpqr = O. In  actual i ty ,  

i t  turns  out  tha t  this  a s s u m p t i o n  can  be re laxed and  we on ly  need for h to be  homogeneous  of degree  two 

and  convex in G in order  for our  resul ts  to be still  valid,  i.e. (~2h/3G,jk~G,,~r)MijkM,,nr >1 0 for al l  
th i rd  r ank  tensors  M,  symmet r i c  in their  las t  two indices.  
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physical meaning will be discussed later, and w ( F )  is the energy density of the 
unmodified material which satisfies (2.1). Some additional requirements will be im- 
posed on h so as to ensure the non-negativeness and frame indifference of ft. Thus, 
h >~ 0 with the equality holding for F = Q and Q(Qij)  any orthogonal tensor constant 
in X; in addition h(Oxi/OX j, ~2Xk/OXIOXm)= h ( O x * / S X  i, 02x~JOXIOXm) for x* = 
Qijxj. Moreover, in the case of an isotropic material it will be additionally required 
that h(Oxi /OS j, 02xk/OX, OXm)= h(Oxi/OXff , 02Xk/OX,*OX * )  for gi* = QjiXj. The 
frame indifference and material symmetry requirements imposed on h (assuming of 
course that similar ones already hold for w) are a straightforward application of 
standard definitions in continuum mechanics (e.g. Truesdell and Toupin [27], as well as 
Cross [28] and Bowen [29] for higher order materials). 

Before proceeding to the study of localized deformations in hyperelastic materials 
whose strain energy densities are given by (2.2), it is instructive to present the form of 
the corresponding equilibrium equations and of the associated boundary conditions. If 
b denotes the body force per unit reference volume, the potential energy functional 
H ( x )  is defined as usual by 

II(x1 = fv d V -  f2" (x-  x) d V -  Boundary Terms. (2.3) 

On computing the first variation 81I of (2.3) and setting it equal to zero we obtain 
the pointwise equilibrium equations in V ( 8 I / =  0) in the form 

OXj + K - -  + + b i = 0, (2.4) 

while at the boundary, the following quantities are assumed to be prescribed 

( O h  0x i )  
x ~  nk or and 

0Gijk 

- x - ~ k  ~ + K ~ i j  ' + 0F/i j ]  j or xi , (2.5/ 

where n is the reference outward unit normal to 0V. For reasons explained in the 
introduction, the physical interpretation of the boundary conditions and their relation 
to the appropriate tractions will be addressed in the future. 

A closer examination of (2.4) reveals it to be a quasilinear differential equation in x 
with the highest order term being 

02h 04xI 
+ Lower Order Terms -- 0. (2.6) x ~GijkOGtm, OXm~X, OXkOXj 

In view of the assumed properties of h we have 

O~h h(F, ~r)= 1 " = , (2.7) 7GijkGt,,,,,Bijklm,(F), Bijkt,,, OGijkOGtm n 

for all possible * third rank tensors G. Thus, from the assumed positiveness of h for 

* Obviously, the higher order tensors G, B, etc., have certain inherent symmetries which, however, are not 
essential in the present development. 
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G v~ 0 and (2.7), the fourth order form associated with the partial differential operator 
on x in (2.6) is positive definite 

IcBijklmn ( F ) ~ialnjrlknmFln > O, (2.8) 

for all unit vectors a and n. Hence, the equilibrium equations (2.4) or equivalently 
(2.6), are strongly elliptic * at all stages of deformation, thus excluding solutions with 
discontinuous deformation gradients (at least up to fourth order) since no real 
characteristic surfaces exist. 

3. F i n i t e  l o c a l i z e d  d e f o r m a t i o n  z o n e s  

In order to follow the development of a localized zone of deformation, attention is 
focussed on a special class of deformations, namely those obeying 

x i = FiijXj + a i f ( z ) ,  z = ngXk,  (3.1) 

where b" is a constant (with respect to X)  second rank tensor with positive eigenvalues, 
a,  n are constant unit vectors and f ( z )  is an adequately smooth function of z. The 
aboveclass  of deformations corresponds to a localized deformation zone of shape f ( z )  
in a direction perpendicular to n and of amplitude a superimposed on a uniform strain 
field with deformation gradient F. 

On using (3.1) and primes to denote derivatives of a function with respect to its 
argument, one obtains from (2.2) and (2.3) that the associated potential energy in the 
absence of body forces is given in this case by 

+ 

where g is the derivative of the shape function f ,  w ( g )  =- w ( F +  ga ® n), h ( g )  - 2 h ( F  
+ ga ® n, a ® n ® n)  = Bijkt,,,,,(F + ga ® n)a ia in jnknmn, ,  and B.T. denotes the 
boundary terms in the potential energy [see (2.3)]. 

On seeking extrema of the potential energy in (3.2) with respect to f we obtain the 
following nonlinear ordinary differential equation of equilibrium in terms of g ( z )  

r d h  / ,~2 dw 
x h ( g ) g " + - ~ g g t g )  = ~ - ? ,  (3.3) 

where ? is a constant to be subsequently specified. The same result would have been 
obtained by introducing (3.1) into the general equilibrium equations (2.4). One can 
observe, by taking the deformation gradient in (3.1), that the imposed strain on the 
solid is increasing or decreasing proportionally to g and hence for simplicity in 
terminology g is to be hereafter referred to as the strain parameter. 

Next we assume that the medium is infinite and that the strain at infinity (along the 
n direction) is constant i.e. 

g ( z ) ~ g l  as z ~  + ~ ,  (3.4) 

Of interest here are localized strain type of solutions for g, i.e. bell shaped solutions 
that present a maximum say g2 at a single point in R and which at infinity approach 

* For a standard definition of strong eUipticity in systems of P.D.E.'s see, for example, Ficherra [30]. 
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asymptotically gl(gl < g2)- Such types of solutions of (3.3) satisfying (3.4) do exist and 
were called "reversals" by Aifantis and Serrin [1,2] who studied the behavior of a 
general class of nonlinear ordinary differential equations of the form a(g) g"+  
b(g)(g') 2= c ( g ) -  ~ in the context of a mechanical theory for fluid microstructures. 

A necessary (and, as it will be shown later, sufficient for our case) condition for 
reversals to exist (at some point of the medium) is 

dw dw g2 > for some < (3.5) g, g ,  g2 ,  

or equivalently, for adequately smooth w there exists a g (gl  < g < g2) such that 

d2w [ 0 2W ] 
- - < ~  0 ~  [ aft-W-r: laiaknjnl <~ O, (3.6) 
dg  2 ,,,ij,,l~kt J 

which is precisely * the loss of strong ellipticity condition given in (2.1). Hence the loss 
of strong ellipticity in w for the class of deformations adopted in (3.1) ensures the 
existence of localized deformation solutions. From the same reasoning it follows that 
as long as the unmodified material is strongly elliptic, i.e. the matrix defined in (2.1) is 
positive definite [ainj(32w/3Fij3Fkl)aknt > 0] for all possible deformation gradients, 
then no localized deformation solutions are possible in the proposed modified material. 

Appropriat ing results from Aifantis and Serrin [1,2], the solution to (3.3) and (3.4) is 
found to be (see also [17]) 

z = z o + r  t/2 h ( g ) / 2  w ( g ) - w ( g a ) - - ~ g l ( g - g l )  dg, (3.7) 

with z o being arbitrary and the minimum and maximum strain parameters  g~ and g? 
related by 

w(g2) - w( ga) = (dw/dgl)(  g2 - gl). (3.8) 

In view of the conditions at infinity (3.4), it also turns out that the constant ? in (3.3) is 
exactly (dw/dga) ,  i.e. the derivative of w with respect to g evaluated at g = ga. The 
form of the solution (3.7) is valid for - o ¢  < z  < z 2 with g ( z 2 ) = g 2 ,  is symmetric 
about  z 2, and is depicted in Figure 1; while the Maxwell condition (3.8) is illustrated 
in Figure 2. The graph of dw/dg  versus g can have either of the forms shown in 
Figure 2 and the line ? = dw/dg  a determining the maximum value g2 is drawn such 
that to cut equal areas above and below. 

The obtained reversal solution for g corresponds to the following physical situation: 
Consider a deformation process in which the strain parameter  at infinity has the value 
g~. If the maximum strain parameter  g2 in the medium is such that g2 <gm where gr~ 
satisfies dZw/dg 2 = 0, no reversal solution is possible (we are tacitly assuming that 
dZw/dg 2 > 0 for 0 ~< g < gin) and g = ga is the solution to (3.3). Once the maximum 
strain parameter  exceeds gin, i.e. g2 > gin, then a localized deformation (reversal) type 
solution is possible. For increasing g2 (and assuming d2w/dg 2 < 0 for g2 >/g > gin) it 
follows from (3.8) that the strain at infinity ga decreases. This is in agreement with 
observations in highly strained solids where unloading outside the localized zone 

* In actuality, (3.6)2 is implied by (2.1). 
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allows the onset of a localized area of deformation. Some interesting numerical 
alculations for this phenomenon in the case of hyperelastic and elastic-plastic materi- 

~Js have been presented by Tvergaard, Needleman and Lo [15] where post-localization 
.~alculations using the finite element method have also been made. 

The characteristic length L c of the localized deformation zone [a quantity which in 
all previous analytical or numerical studies depended on the size of the assumed 
imperfections a n d / o r  the size of the finite element mesh] is hereby defined to be the 
distance along n between the two points for which g =gm and hence from (3.7) 

- - g - d g .  ( 3 . 9 )  

The physical significance of the constant x in the model (2.2) is now apparent  since 
f rom (3.9) the width of the localized deformation zone is proportional  to x 1/2. 
Obviously for the case of the unmodified material, r = 0 . . . . .  and hence the size of the 
localization zone shrinks to zero. 

4 .  R e s u l t s  f o r  m o d i f i e d  B l a t z - K o  materials 

A hyperelastic constitutive model proposed some time ago by Blatz and Ko [31] 
became the basis for subsequent investigations (e.g. Knowles and Sternberg [12], [32] 
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and references quoted therein) pertaining to the material's loss of ellipticity at finite 
levels of strain. The strain energy density function w for the Blatz-Ko material is given 
by  [IIc ] 

WBK = 2 [  I I I c +  2 I I ~  - 5 , (4.1) 

where I¢, II¢, III~ are the three invariants of the right Cauchy-Green tensor C = FrF 
and g is the material's shear modulus at infinitesimal deformations. Using the above 
material as the unmodified one, we will investigate the localization of deformation 
properties of two modified versions called M1 and M2 of the type proposed in (2.2) 
with strain energy densities 

MI :  ¢v, = WBK + -~(OF+JOX~)(OF+j/OXk), 
(4.2) 

^ 

M2: w2 WBK + 

It can easily be verified from the discussion in Section 2.1 that both ~v~ and +2 are 
frame indifferent as well as isotropic. For  analytical simplicity of the resulting 
formulae attention will be restricted to the class of deformations in (3.1) with j5 = 1. It 
should be noted at this point that based on our analysis in the previous section, the 
choice of ~', a, n is only arbitrary. A more realistic choice in this case would have been 
Fiij = ~k iS i j  (no sum) where the principal stretches X i are in the neighborhood of the 
ellipticity boundary of the Blatz-Ko material in X i space, and a, n are the amplitude 
and characteristic direction respectively for the loss of ellipticity at the aforementioned 
strain F. This choice, based on results readily available from the work of Knowles and 
Sternberg [32], would provide information for the growth of a localized deformation 
zone * at the onset of the loss of ellipticity failure of the material, while the simpler 
choice adopted here provides information only for a restricted class of deformations. 
The considerable algebraic simplification as well as the similarity of the resulting 
analysis has prompted the approach adopted in this discussion. 

With (3.1), II~ and IIIc are found to be 

II~= ½[(C~k) 2 -  CijCij ] = 3  + 4(aini)g+ [1 + (aini)2] g2, (4.3) 

llI~ = det C~j = [1 + (aini)g] 2, 

and consequently the energy density for the Blatz-Ko material WBK assumes the form 

[(2+ )( 1;] WBK(g)=/.t + y  1 - - y  ; y--l+geo, d p = - - a i n i  . (4.4) 

Accordingly, the strain parameter g,~ corresponding to the first loss of ellipticity in the 
class of deformations (3.1), i.e. dZWBK/dg 2 = 0, is given by 

1+2q)2 [ 3 1 (4.5) 
gm= 2~(1 _ ~ 2 ) '  Ym 2 ( 1 - ( h  2) " 

* This need not be an actually observed localized zone as experiments do not reveal it for hyperelastic 
materials, although the corresponding constitutive equation exhibits this possibility. 
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Figure 3 

The relation between the maximum strain parameter g2 (or y:)  and the strain 
parameter at infinity gl (or Yl) is found from (3.8) to be 

(q, y l )  2 )'1 

X (y2 - Yl ), (4.6) 
and hence the characteristic length L c of the localized deformation zone for materials 
M1 and M2 is from (3.9) [using also (3.1) and (4.2)] 

2 [ /~ \1/2 rY2[ 0.5 xjl/2 

l/z (4.7) 

M2: L c = ~  ~ !  Jy.,\ H 

where 

1 _ 1 ) :  1 _ 1 

- Z Z (y-y1)-  (4.8) 
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The results from (4.7) are depicted in Figures 3 and 4 for the M1 and M2 materials 
respectively, where the dimensionless wavelength L c / ~  is plotted versus a strain 
concentration parameter  (g2- g])/g,. [defined to be the difference between the 
maximum (g2) and minimum (g l )  strain parameters  over the critical value of the same 
parameter  that corresponds to the onset of localization (g,.)]. For both  materials the 
calculations are performed for three different values of the parameter  9, the inner 
product between the amplitude direction a and the characteristic direction n, namely 
g) -- cos(30) ° = 0.866, (# = cos(64.4) ° = 0.431 and (/) = cos(89.4) ° -- 0.01. The case (# = 

0.431 (more precisely ~ = ~ - 5 / 2 )  corresponds to the minimum value of the strain 
parameter  gm for which localization starts as one can easily see from (4.5) by 
minimizing with respect to (#. 

For both materials, the characteristic length of localization Lc drops very rapidly 
f rom oo to its minimum possible value, for values of the strain concentration parame-  
ter ( g 2 -  g~)/gm between 0 [corresponding to the onset of the localization instability 
(g~ --g2 = gin)] and approximately 1, and then increases again. The smallest localiza- 
tion length for material M1 is found for (#--0, i.e. for the case where the amplitude 
vector a is normal to characteristic direction vector n and hence the corresponding 
deformation is one of pure shear, while for material M2 the smallest localization 
length appears to be near values of g) = 0.431. We also observe that in both cases the 
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localized zone length L c varies very little with the strain concentration parameter for 
values of ~ corresponding to the smallest possible Lc. Finally, we would like to point 
out the influence of the type of gradient term added to the initial strain energy density 
(here WBK ) on L~ by noting the order of magnitude difference between the M1 and 
M2 models. 
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