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Abstract 

The collinear periodical array of microcracks ahead of a semi-infinite crack (macrocrack) is considered. A close 
form solution in terms of complex stress potentials is given, assuming that a remote, macroscale, stress intensity 
factor is given. The exact solution of the interaction of a macrocrack with a single microcrack is given. 

Results demonstrate that for relatively close location (with respect to crack length) of microcracks to the 
macrocrack tip, the microcrack spacing becomes important. For microcrack spacing (period) greater than 10 
crack lengths the interaction can be taken as for a single microcrack, and, for distance greater than two 
microcrack lengths, the local stress intensity factor can be taken as equal to that remotely applied (for cases with 
crack spacing greater than two crack lengths). 

In other cases the macro-microcrack interaction is significant. 

1. Introduction 

Frequent ly  in metals large cracks are observed being surrounded by large numbers  of 
microcracks, concentra ted in the vicinity of the crack tip. Many  fracture models deal with 
nucleat ion and  growth of microcracks in the vicinity of the tip of macrocrack. The 

incorpora t ion of microcrack interact ion in the theory of failure is especially impor tan t  for 
cases of britt le metals, rocks, and any theory concerning fracture on microscale. The 
ductile or time dependent  fracture mechanisms often also involve the microcracking. For  

example, high temperature  creep rupture  mechanism sometimes is represented as grain 
bounda ry  void (microcracks) nucleat ion and growth ahead of a macrocrack. However, 

quant i ta t ive  effects of macrocrack-microcrack interact ion usually are not  taken into 
account.  

The aim of this work is to give a quant i ta t ive relation for this interaction.  The a t tent ion 
here is l imited to a part icular  case which probably  can be taken as a statistical average of 
m a n y  possible configurat ions of plane problems of this type. 
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Figure 1. Macrocrack and semi-infinite array of microcracks. 
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The macrocrack is represented as a semi-infinite crack (small scale approach) and
a h e a d of the crack tip is located the semi-infinite array of periodically distributed collinear
cracks (Fig. 1).

The formulation is given in terms of complex potentials, and a close form solution. ,~vith
some approximation, has been derived.

2. Formulat ion

Consider an elastic plane with a semi-infinite crack along the negative x axis and an arra~
of cracks located at a + p k < x < b + p k , ( b > a > 0 ) where p is the period of crack
distribution p > b - a, and k = 0, 1, 2 .. . (Fig. 1). Introducing complex potentials 4}(:),
+ (z ) the standard [1] relations for stresses and displacements can be writ ten

%1 + 0 2 2 = 4 R e q ) ' ( z )

02, - ol~ + 2i012 = 2 ( ~ " ( z ) + ~b'(=)) (l)

2/*(u1 + iu 2) = K~ - z O ' -

here K = 3 - 4v for plane strain case, K = (3 - ~,)/(1 + v) for plane stress case, ~t is a shear
modulus and v is the Poisson's ratio.

Consider, for simplicity, mode I type of loading. Symmetry of the problem will give
0~2 = 0 along y = 0, so

l m ( ; ~ " + + ' ) = 0 on y = 0 or

lm(z¢)" + ~b') = 0 on v = 0 . 12)

Using the principal of analytical continuation one can write

+ ' ( z ) : - z ~ , " ( : ) (3)

(~b' and ¢/, both vanish at infinity) and the following relations on v = 0 take place

a_. 2 = 2 R e ~ ' ( x )

- ~ - - - I Im O ( x ) , } .... O. (4)
u 2 - 2/,

The remote stress is given as

(~),( Z ) _,_) /k~l ( O c )- as z ~ z c . (5)

here K j ( ~ ) represents remote stress intensity factor which should be found from the
problem on macroscale, and in this case considered as a given value. The boundary
conditions for the function 4)'(z) are specified on v = 0 as

R e ~ ' ( x ) = 0 on x < 0 and a + p k < x < b + p k

lm d / ( x ) = 0 0 < x < a , b + p k < x < a + p ( k + l ) (6)

k = O , 1 , 2 . . . .

Conditions (5) and (6) determine the analytic function in the upper half of complex plane
z up to the restriction on behavior at the points a + p k and b + p k ( k = O . 1 . 2 . . . . ).
Restricting this behavior to a singularity not stronger than integrable and adding the
requirement of a similar type of behavior at each point O, a + pk , b + pk ( k = O. 1 . 2 . . . . ).
one would obtain the only possible form of function ~'(z). That is the form of the
homogeneous solution of Keidysh-Sedov problem for half plane [2]. The form of ,#'(z)
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which satisfies all the above-mentioned conditions is 

1-v-I 
k=0 (7) 

zl-[(a+pi-z)(b+pi-z) 
V i=0 

where constants c k have to be determined, and by square root it is understood to be the 
branch that has positive values of eO'(x) for 0 < x < a. The function ~ '(z)  given by (7) can 
be defined, through analytical continuation over segments 0 < x < a and b + pk < x < a + 
p(k  + 1), in the lower half plane. Thus, function ~'(z)  is analytic on z in the plane with 
cuts. 

The constants c k have to be determined from the supplementary condition of the single 
valued displacement, that is 

~b++£klmep'(x)dx=O, k = O ,  1 ,2  . . . .  (8) 

From the symmetry of the problem, it is obvious that c k are real, and since they 
represent zeros of q¢(z), a + pk < c k < b + pk. c k represents position of maximal crack 
opening displacement, so from the geometry of the problem it can be stated 

a +pk < c k < (a + b) /2  +pk. (9) 

The form of solution (7) can be used for arbitrary collinear crack distribution with 
corresponding adjustment of crack tips location coordinates in (7). In the case of mode II 
type of loading, relation (2) should be replaced by 

Re[2q,' + zO" + q/] = 0, (10) 
on y = 0  

which follows from mode II symmetry condition %2 = 0 on y = 0. Then, proceeding in a 
similar pattern, one would obtain the solution. The mode lI solution follows from (7) by 
multiplying it by - i K n ( o o ) / K , ( o o  ). 

The problem now is reduced to determination of the constants. It is useful at this point 
to consider a special case of a single crack ahead of a macrocrack. 

3. A single mieroeraek 

In the case of a single microcrack relation (7) reduces to 

dp,(Z) = KI(OO) c - z  

2 272~ ( z ( a - z ) ( b - z )  (11) 

From condition (8) k = 0, c can be evaluated in terms of elliptic integrals of the first and 
second kind. Thus 

c = b E(1 - a/b)  
K(1 - a / b ) '  (12) 

where K(m) and E(m) are complete elliptic integrals of the first and second kind 
respectively [3]. The ratios of the local stress intensity factors are 

K,(O) ~ E(1 - a/b)  
K , ( o o ~ - V a  K ( l ~ a - - ~  

Kt(a)  b (  E ( 1 - a / b )  ) ~/~ 
K , ( m ~ ) - a  - ~  ~ 1 / - 1  

KI(b) (1 E ( 1 - a / b )  ) ~f~ a 
K , ( o o ) -  K(1 a/b)  / b"  

(13) 
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The highest value of the stress intensi ty factor is at .v = 0. and K~(a)  - +  KI(()) as ct ~ {). 
K l ( a ) ~ K l ( b )  as a ~ ¢ .  In Fig. 2 the values of K ( O ) / K ( ~ c )  versus posi t ion of 
microcrack are given. Finally,  it follows 

c ~  ( a  + # ) / 2  as a - ~  

and c satisfies (9) for k = 0. 

4 .  S e m i - i n f i n i t e  array  o f  m i c r o c r a e k s  

Cons ider  solut ion (7)• Each c, represents  the posi t ion of the maximal  crack opening  of the 
cor respond ing  microcrack.  As k ~ 2 ,  q, -~ d + kp, here d = (a  + b ) / 2 ,  In t roduce  value 

Ax = ( d + pk  - c A ) / p ,  ~14) 

and employ  known formula  [3} 

z l ' ( z )  - e " :  1 + ~ .  e : 

rewri te  (7) in the form (7  is Euler 's  constant )  

g, '(z ) - 2 v ~ 7  

× e,,~d :),t, d - :  Ak pk /," + 1  e-~,/ :~.f,A ( t5 )  

A k, as a funct ion of  k,  can be expanded  

1 , 1 
A~ =,L + f, 7{ + I-~ ~ + ' 

,/'i~ should be equal to zero since ka ~ 0 as k --> co. Approx ima t ing  A a as A / k  for k > ,~. 
and  writ ing 

i 1 +  
pk l, -~ " 

0 

t ~  

> -  

z 
taA 

z 

j 3  
L ~  

C/? 
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Figure 2. Stress intensity factor at the main crack versus position of the first crack in the microcrack array 
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with 

~,(z)=Tp-p + ~ +A 

2p V ~--~-P ] + A  

one can write for q~'(z) 

KI(OO) Z_Co~IY(~)F(~p -~ ) 
~ , ' ( z )  = - -  - -  

227'~-~ Ap F ( S t ( z ) )  F (82(z ) )  

U 
1 c k - z 

- 

N ! p  N d - z  
pk k 2 

(16) 

+ 1) (17) 

and A should be found from the system of first N + 2 unknown constants c o , c 1... c N 
N + 2 equations (8). N can be chosen from considerations of desired accuracy of results. 
In this study calculations were performed for N = 0, 1 and 2. 

A simple numerical scheme was employed. The algorithm of the computation is based 
on choice of A (with consequent repetition until (8), case k = N + 2, is satisfied up to 
specified accuracy), solving algebraic equation for c 0, c~, c 2, which arises after substitu- 
tion of (17) into (8) and performing the integration. Integrations were carried out by 
Gaussian-Chibyshev scheme, using the fact of square root singularity at the end points of 
each interval. 

The form of q~'(z) guarantees the right behavior at z ~ oo and approximation (17) 
gives the required accuracy in the desired region of radius b + p ( N  + 1). 

For calculation of the stress intensity factor (meaning ratio of local value to remote 
one) at the macrocrack tip the difference in the values obtained for N = 0, 1 or 2 was so 
insignificant that for any practical means N can be taken as N = 0. So 

K, (oo) Ap r(~l(0))r(~2(0)) (18) 

In Fig. 2 these values are plotted. Knowing the residue of F(z)  at simple poles z = - n  

res F ( z ) =  ( -  1 ) ' / n ! ,  

Z = - - n  

the stress intensity factors at the microcrack tips can be evaluated 

1 

K l ( a + p k  ) a + p k  c o -~. F _ p a + p k  

K l ( O O )  Ap F(~,(a+pk))r(82(a+pk)) 
1 r~ N ( c , - a - p k )  

× - -  11 (20) 

for the case of b + pk, a and b should replace each other in (20). N can be small (1, 2 for 
example) if only the first one or two cracks are analyzed. 
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The ratio Ki(a  + p k ) / K l ( m  ) is decaying with k--+ m because here the solution of a 
homogeneous problem only is given. That  means that for k large enough, the local stress 

intensi ty factors will not  be significantly affected by the-presence of a macrocrack, and 

mostly will be influenced by the local stress field, which is not  accounted for in this small 

scale approach. 

Dur ing  the calculations, the condi t ion (8) was checked for k > N + 2. Results demon-  

strated that even for N = 0, condit ions on all intervals are satisfied fairly accurately (up to 

10 -4 with dimensionless length uni t  equal to the crack length) for almost all values of 

parameters;  exceptions are cases of a being very small with respect to crack length 

(b - a). In  these cases the choice N = 1 or 2 is more appropriate.  Case N = 2 practically 

satisfies condi t ion (8) for any k. This indicates that formula (17) does represent the correct 

features of the solution, and approximat ion of ck(14 ) with A k = A / k  is close to reality. 
Certainly, the rigorous proof that (17) approaches the solution, as N ~ ~ ,  uni formly on z 

can be done routinely. 

5. Results and conclusions 

Solution of the problem dealing with macro-microcracks interact ion has been presented. 

Namely,  the exact solution for macrocrack interact ion with collinear microcrack has been 

given, as well as an approximate solution for macrocrack interact ion with semi-infinite 

array of periodically distr ibuted collinear array of microcracks. Both solutions give 

complete stress dis t r ibut ion in the plane through the complex potent ial  ff '(z) and, defined 

by (3) in case of mode I or by (10) in case of mode II, potential  + ' (z) .  
The results presented here are obtained for case N = 2 in (17). In  Fig. 2, the stress 

intensi ty factor ratios are given for the cases p / ( b - a ) =  1.1, 1.5, 2 and the case of a 

single crack versus location of the first crack of the array. For the very close posit ions the 

numerical  values are given in Table  1. 

Results demonstra te  that in the case of microcrack spacing p / ( b  - a) greater or equal 

to 10, the local stress intensi ty factor at the microcrack can be taken as in the case of a 

Table 1. Stress intensity factors K(O)/K(~). p is given in units of (b - a) 

a/(b - a) s.crack p = 1.1 p = 1.5 p = 2.0 p = 5.0 p = 10.0 

0.001 6.54887 7.62193 6.91722 6.73294 6.56946 6.55761 
0.011 2.66879 3.07970 2.81173 2.74054 2.67625 2.67149 
0.021 2.14848 2.46856 2.26081 2.20518 2.15445 2.15065 
0.031 1.90118 2.17693 1.99862 1.95059 1.90642 1.90308 
0.041 1.74962 1.99750 1.83774 1.79448 1.75442 1.75137 
0.051 1.64487 1.87300 1.72641 1.68653 1.64937 1.64651 
0.061 1.56716 1.78025 1.64369 1.60639 1.57142 1.56872 
0.071 1.50672 1.70782 1.57927 1.54402 1.51080 1.50821 
0.081 1.45810 1.64932 1.52739 1.49382 1.46203 1.45954 
0.091 1.41799 1.60087 1.48452 1.45239 1.42180 1.41939 
0.100 1.38738 1.56375 1.45176 1.42075 1.39110 1.38875 
0.110 1.35810 1.52810 1.42038 1.39046 1.36173 1.35944 
0.120 1.33279 1.49715 1.39321 1.36425 1.33633 1.33409 
0.130 1.31065 1.46997 1.36941 1.34132 1.31413 1.31193 
0.140 1.29111 1.44589 1.34837 1.32107 1.29452 1.29237 
0.150 1.27373 1.42437 1.32963 1.30304 1.27709 1.27497 
0.160 1.25816 1.40501 1.31281 1.28688 1.26146 1.25938 
0.170 1.24412 1.38749 1.29763 1.27230 1.24738 1.24533 
0.180 1.23140 1.37155 1.28285 1.25907 1.23462 1.23260 
0.190 1.21982 1.35697 1.27128 1.24702 1.22300 1.22100 
0.200 1.20923 1.34358 1.25977 1.23599 1.21237 1.21040 
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single microcrack. In the case of the distance of the closest microcrack tip greater than two 
crack lengths (a > 2(b - a)) and spacing greater than 3 crack lengths (p  > 3(b - a)) the 
macro-microcrack interaction can be neglected (with accuracy up to 2%) for the computa- 
tions of stress intensity factor acting at the macrocrack tip. In other configurations this 
interaction becomes significant and cannot be neglected. 
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R6sum6 

On prend en consid6ration le cas d'une rang6e de fissures p6riodiques et colin6aires qui se forment en avant 
d'une fissure macroscopique semi-infinie. On propose une solution de forme ferm6e, exprim6e en potentiels 
complexes de contraintes, et qui suppose l'existence d'un facteur d'intensit6 de contrainte s'exerqant h une 6chelle 
macroscopique. On fournit la solution exacte h l'interaction entre une macro-fissure et une simple microfissure. 

Les r6sultats pr6sent~s d6montrent que, pour les micro-fissures relativement proches de l'extr~mit6 de la 
macro-fissure, c'est leur espacement qui est important. Lorsque la p6riode caract6risant l 'espacement entre deux 
micro-fissures est sup6rieure ou 6gale a dix fois la Iongueur de la microfissure, l'interaction peut ~tre assimil6e 
celle d'une micro-fissure simple. Lorsque la distance qui s6pare la premi6re micro-fissure de l'extrbmit6 de la 
fissure est sup6rieure ~ deux fois la Iongueur de cette micro-fissure, et que la p6riode entre deux micro-fissures 
successives exc6de deux lois leur longueur, l'interaction entre micro et macro-fissure peut ~tre n6glig6e pour le 
calcul du facteur d'intensit6 de contrainte h extr6mit6 de la macro-fissure. 

Dans les autres configurations, l'interaction devient significative et ne peut 6tre n6glig&. 


