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Abstract. A numerical analysis has been performed on a system involving a crack near a single particle with 
the objective of finding a general relation for the size and shape of the elastic, crack-particle interaction zone 
which necessarily exists near particles in two-phase composites. In order to quantify the zone boundaries, various 
crack-particle geometries were modelled and a single characterization parameter was developed. Results show 
that a zone in which the energy release rate and direction of crack propagation are significantly affected can be 
simply defined near a particle as a function of the crack-particle geometry and elastic mismatch. A wide range of 
elastic combinations was examined with the result that for any significant crack deflection to occur away from the 
particle the magnitude of the first Dundurs parameter, I~1, must be greater than ,,~ 0.2. Numerical results show 
good agreement with experimental fatigue crack path data. 

1. Introduction 

Potential structural and high performance materials are often toughened by mechanisms 
involving increased energy dissipation based on crack-particle interaction, therefore cracks 
must intersect or pass very near the particles in order to realize an improvement in mechanical 
properties. For example, in zirconia-stabilized ceramic systems, residual stresses around the 
zirconia particles combine with stress-induced, martensitic zirconia phase transformations to 
increase fracture resistance [1--4]. Other examples involve the residual thermal stresses near 
particles which retard crack propagation and fracture [5-10]. For fiber- or whisker-reinforced 
ceramic composites such as SiC-reinforced alumina the main toughening mechanisms are 
proposed to be crack bridging, fiber pull-out and crack deflection [11-13]. Some composites 
combine ductile, softer second-phase particle inclusions in a brittle matrix to attract cracks 
and increase toughness through localized plastic energy dissipation combined with subsequent 
crack-bridging mechanisms [ 14-17]. In a random microstructure, the number of crack-particle 
intersections is statistically proportional to the inclusion volume fraction. Increasing the 
number of intersections through crack deflection must therefore increase the toughening 
effects. It is thus advantageous to generalize the range of crack-particle interaction so that 
when designing a material microstructure or analyzing fracture properties, consideration can 
be given to the interaction effects which extend past the particle boundaries. 

The interaction between a crack and a material inhomogeneity such as a hole or a parti- 
cle has previously received a great deal of analysis [18-29]. These and many other works 
have analyzed quasi-static crack trajectories and driving forces analytically, numerically and 
experimentally. In every case, a deterministic geometry and material combination was used 
in which the crack-particle interaction was strong. However, no extension has been made to 
simply define the zone in which interaction occurs for an unspecified crack-particle geometry 
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or general material combination. One statement is that for a cracked plate which contains 
a hole, the interaction zone extends beyond the hole a distance roughly equal to the diameter 
[19]. Only an empirical basis was given for this statement and no mention was made of other 
geometrical factors such as crack length or crack-particle orientation. For models containing 
cracks near particles, no similar, simply applicable generalization has been given. 

The objective of the current work is therefore to define a crack-particle interaction zone 
for non-homogeneous bodies as a function of geometry and elastic mismatch in which quasi- 
static crack deflection will occur or crack driving force will be significantly changed. Crack 
trajectories will not be strictly analyzed, rather a region in which crack deflection occurs will 
be defined based on the geometric and elastic parameters of the system. Finally, in order to 
verify the accuracy of the general zone prediction, calculated and experimentally observed 
points of  crack deflection will be compared. 

2. Model 

The crack-particle interaction in a composite material will be quantified using a simpli- 
fied plane strain model of a single crack and particle as shown in Fig. 1. The presence 
of additional particles will be neglected because it is believed that only the particle in the 
immediate neighborhood of the crack tip will strongly influence propagation. For maxi- 
mum generality, internal and edge cracks with traction free crack surfaces are examined 
using both the Boundary Element Method and the Finite Element Method, respectively. 
The wide range of crack and particle geometries investigated are intended to reveal the 
effects of crack length a, particle size R, crack-particle separation distance d, and parti- 
cle orientation angle ¢ during the initial stages of fracture in an actual composite. The 
modelled area is We "~ 25 mm by He ,'~ 50 mm for the width and height of the edge cracked 
specimen, and Wi ,'~ 200 mm by Hi ,-~ 200 mm for the width and height of the internal 
crack specimen. Quantities a, d and R are in the range between 0.1 and 4mm. Because the 
most critical loading for crack propagation is typically the opening mode, only this far field 
loading configuration will be considered. Displacement boundary conditions for the edge- 
cracked specimen are therefore: u~(x = 0, y = 0) = uy(x = 0, y = 0) = 0, ux(x > 0, y = 
O) ~ O, uy(x > O,y = O) = O,u:~(x = O,y = He) = O, ux(x > O,y = He) ~ 0 and 
Uy(X >1 O, y = H~) = Uext where Uext is an input constant.The vertical edges of the model 
(x = O, y /> O) and (x = We, y /> O) are not restricted in their motion. These conditions 
correspond to a pure mode I loading. The internal crack model is loaded by a far-field, uniaxial 
stress boundary condition cruy(x >1 O, y = O) = aext = auy(x >1 O, y = Hi) while the other 
surfaces are traction free. In both geometries the particle and matrix are perfectly bonded 
so that at the interface u~(m) = u~(p) and Uy(m) = Uy(p). Under this interfacial bonding 
condition, stress components normal to the interface must be continuous while those tangent 
to the interface can be discontinuous. The two geometries will also show the importance of the 
interaction effects between the specimen edge and the particle. No stress field disturbances 
due to thermal or residual stresses will be considered. All stresses are assumed to remain 
in the elastic range of both the matrix and the inclusion. Finally, because mesh resolution 
between the crack tip and inclusion is critical, the mesh is refined until the results converge to 
a constant value. 

Consideration must also be given to the possible elastic constants of the particle and matrix 
because modem engineering materials are often nonhomogeneous mixtures of phases. To 
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Fig. 1. Schematics of Finite Element (edge crack) and Boundary Element (internal crack) model showing the 
geometry of the problem and boundary conditions. 

characterize the elastic mismatch between the particle and the matrix, the Dundurs parameters 
c~ and/3 are conveniently defined in plane strain as 

Ei - Em 
c~ - (1) 

Ei + E.~ 

and 

(1- 2u) 
/3 = ½a ( i  --'~)) ' (2) 

where Em and Ei are the Young's moduli of the matrix and the inclusion, and u is the 
Poisson's ratio of both materials if ui ,-~ um ,,o u [30]. If the Poisson's ratios of the matrix 
and inclusion are sufficiently different that these simplified expressions cannot be used, the 
more complicated expressions must be used [31]. The limiting values of a and/3 have been 
previously shown to be - 1  ~< a ~< 1 and (a  - 1)/4 ~< fl ~< (a  + 1)/4 due to the limited 
values of 0 < u < 0.5, #i/#m > 0 and k = 3 -  4u < 3 for plane strain conditions [31, 32]. 
Typical engineering composites have a and/3 values that range from - 0 . 6  < a < +0.6 and 

= ¼a + 0.1 [33]. A hole in any material is specified by a = - 1  because void space cannot 
support load. The a values examined here will be in the range - 1  < a < -0 .15  which 
corresponds to particles which are softer than the matrix and thus attract cracks. Positive 
values of a will not be considered because previous investigations on similar geometries have 
shown that changing only the sign of a results in essentially the same level of interaction 
between a crack and a particle with a reversed sense [34]. Specifically, for the geometry of 
d = 0.8mm, R = 1.6mm, a = 0.8 mmand~b = 22.5 °, i f~  = +0.6,then for a given external 
load, K1 and Kn are 95.8 and - 2 . 6  MPa ~ ,  respectively, but ift~ = -0 .6 ,  KI and Kn are 
136.3 and 2.8 MPa ~ ,  respectively [35]. 
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3. Method 

In order to define a zone of interaction and deflection near a particle, the geometry and elas- 
tic parameters must be analyzed in terms of their effects on crack driving force and crack 
propagation angle. The extent of interaction will be gauged by normalizing the maximum 
energy release rates for the composite by the maximum energy release rate for the homo- 

r2c°mp/r-2h°m° The proper determination of the total energy release rates and geneous case ,-,max / ' - 'max • 
stress intensity factors is thus critical. The modified virtual crack closure method is used to 
determine the relative mode I and mode II energy release rates GI and GII at the crack tip as 
a function of possible crack propagation angles in the edge-cracked geometry [36, 37]. The 
criterion of maximum total energy release rate is applied to determine the direction of crack 
propagation. This method is equivalent to the criterion of maximum circumferential stress, 
~r00, or minimum KII. Friction on the crack faces is neglected therefore the mode II energy 
release rate as calculated will likely be an overestimation of actual values. The BE method is 
used to directly calculate both KI and KII values for the internal crack geometry [38, 39]. The 
quasi-static crack propagation angle 8cr will subsequently be determined by the KI and Kn 
values according to the equation [40] 

0 cr = arccos KI 2 + 9KI~ . (3) 

Direct comparison of internal and edge cracked data is possible following the calculation of 
normalized energy release rate from the stress intensity factors as 

K ?  + 1( 2 ,-,maxd2c°mp 

2, (~homo K app ~max 
(4) 

where KI, app is the externally applied mode I stress intensity factor in the homogeneous 
case.  

As an example of this series of calculations consider crack propagation in a body such 
as is shown in Fig. 1 without an inclusion. Following the application of a uniaxial boundary 
displacement Uext normalized components of mode I and II energy release rate are shown as a 
function of angle as calculated by FEM in Fig. 2. As expected from symmetry considerations, 
the orientation of the maximum energy release rate 0max is at 0 ° and the crack propagates 
perpendicular to the loading axis. Notice the total energy release rate curve is very flat around 
the maximum and a value greater than or equal to 98 percent of Gtor~ x is observed over a range 
of roughly 20 degrees. This shows that slight variations in fracture resistance may greatly 
affect the actual cracking angle. Such deviations may physically arise from features such as 
component interfaces, grain boundaries or specific crystallographic planes. However, a simple 
continuum model which ignores these effects will be considered in all calculations here. 

4. Results 

The effects of crack-particle separation on the crack driving force are the most significant 
and will thus be examined first by varying d while the other geometrical parameters are 
held constant. Figures 3a and 3b show that the particle (R = 1.6 mm, a = -0 .35)  must 
be brought to within ,,~ 2 mm (~b = 22.5 °) of the crack tip (a = 0.8 mm) in order to 
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Fig. 2. M o d e  I ,  I I  and total energy release rates, B,  for a cracked body loaded in uniaxial tension. The values are 
normalized to the maximum, total energy release rate for relative comparison. 
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Fig. 3. Crack driving force results for constant crack length and particle size for a particle which is a variable 
distance from the crack t i p .  ( a )  M a x i m u m  energy release rate values. Co) Orientation of  maximum energy release 
rate. 

affect a significant change in the maximum total energy release rate and less than ,,~ 0.4 mm 
to cause a shift in 0 max, or 0 or. A slight difference exists between the internal and edge cracked 
geometries because of  the edge-particle interaction. However, for either case, these plots 
indicate that 2 critical distances, dcrit "~ 2 mm and ,~ 0.4 mm, can be defined for calculating 
crack-particle interaction. Only the smaller will be considered further because crack deflection 
is of  current interest. The effects of  ~b, R, a and a on dcri t will be shown below. 

The influence of  particle orientation is revealed through a series of  similar energy release 
rate calculations for geometries in which ¢ is variable and a, d, R and a are held constant. The 
small crack-particle separation, d = 0.1 mm, is used in order to observe effects which might 
not occur for larger separations. Results plotted on Fig. 4 for a = - 0 . 3 5  show the expected 
result that a particle has the strongest influence on the crack driving force when situated 
symmetrically ahead of the crack. Again, there is a difference between the edge cracked and 
internal cracked data due to edge-particle interaction. The crack exhibits a tendency to deflect 
toward the particle as ~b increases but crack deflection in this case (~ < 70 °) is never greater 
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Fig. 4. Normalized maximum energy release rate results for various particle orientation angles shown for both 
internal- and edge-cracked geometries. The particle has the largest effect when placed directly in the crack path. 

than 15 ° . The remaining factors of crack length and particle size as related to crack driving 
force and deflection angle were subsequently examined and will be plotted below. 

Summarizing the calculations for the various geometries in a consistent manner requires 
not only an indicator for crack driving force, but also a single dimensionless function of the 
geometric variables to measure the relative scale of the crack, particle and separation distance. 
For example, efforts to define the geometry of similar problems as a function of two variables, 
such as normalized crack length and crack-particle separation, a i r  and d/R, have been 
successful, although one of the two ratios must be constant for unambiguous comparisons of 
results [21, 34]. Here and in Part I of this investigation it has been shown that data fitted to a 
single parameter of the form (d(d + a)/a_R)f(¢) are readily compared in various geometries 
[41]. The ratio d(d + a)/aR effectively groups the geometric factors, and the function f ( ¢ )  
is introduced here to include the influence of particle orientation. Of the many functions that 
could be used for the angular dependence, f ( ¢ )  = 1/cos ¢ is chosen for its simplicity and 
consistency with results in the range of 0 < ¢ < 70 °. Figure 5 shows the results for both 
internal and edge cracked configurations over a wide range of all geometric variables under 
this format for a = -0.35.  Abscissa values are in the range of 0.1 < x < 4.5 where 

d(d+a) 
x -  

aR cos ¢ 

and a, d, R and ¢ are defined above. The data now show the single trend that increasing 
abscissa values correspond to decreasing ordinate values. Although the data now fall into a 
consistent band, the parameter is not able to completely focus the wide range of investigated 
geometries into a single, well-defined curve. 

In order to make this analysis applicable to many different material combinations, all 
calculations above were repeated for various elastic combinations as plotted on Fig. 6. The 
magnitudes of the slopes and y-intercepts of lines fitted to the data increase with the magnitude 
of a,  as expected from the fact that crack-particle interaction must increase with elastic 
mismatch. However, for I 1/> 0.35 two distinct regimes emerge with the transition at x ,.~ 1.0. 
In the x > 1 regime, the driving force shows a weak dependence on x while the opposite is 
seen for 0. 1 < x < 1.0. The case of a = - 1 applies to the maximum elastic mismatch and 
calculations reflect this extreme in crack driving force. 
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Fig. 5. Summary of normalized maximum energy release rata data plotted as a function of a new geometrical 
parameter including crack length, particle orientation. A single trend is seen for a wide variety of modelled 
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Fig. 6. Normalized crack driving force data plotted for various values of t~ as a function of the dimensionless 
geometric parameter. The data for c~ = - 1 correspond to the extreme case of a crack approaching a hole. 

5 .  D i s c u s s i o n  

In order to analyze crack deflection and its effect on composite toughness, the underlying forces 
which drive a crack out of  its plane must be first examined. If  the crack tip is in a homogeneous  
medium, the crack will follow the direction of  maximum energy release rate as described by 
(3) provided that the driving force is greater than the material fracture resistance. It is seen 
in Fig. 3 that this condition is satisfied in the current model if  the maximum energy release 
rate is greater than the homogeneous  driving force by roughly 35 percent. However,  driving 
force increase alone is no valid crack deflection criterion. In the case of  a crack symmetrically 
approaching a hole, the maximum energy release rate may be higher than the homogeneous  
case by a factor of  2, as shown in Fig. 4, with no crack deflection. It must be clarified that 
the current analysis is primarily concerned with cracks that do not symmetrically approach 
particles, 20 ° < ~b < 70 °. For these nonsymmetric  cases it is apparent that a given change in 
driving force coupled with a large asymmetry is a reasonable crack deflection criterion. This 
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will be shown to be true by means of a comparison to experimental results below. Figures 
3 and 4 also show that the driving forces for internal and edge cracked geometries can be 
significantly different if the particle is less than ,-~ ½R from the specimen edge. This dffference 
is eliminated by the normalizing geometrical parameter as in Fig. 5. 

Given the empirical criterion for crack deflection as above, it now remains to define a 
crack-particle geometry which satisfies this criterion, thereby defining a zone in which crack 
deflection will occur near a particle. It can be seen by the smooth monotonic trends in 
Figs. 5 and 6 that an increasing z-value corresponds to a decreasing particle effect. Therefore 
geometries with correspondingly low x-values will exhibit crack deflection while those with 
high x-values will not. The question now arises as to the threshold z-value at which crack 
deflection begins. Recall that the driving force must be increased by ,,, 35 percent over the 
homogeneous case and the particle-crack orientation angle must be sufficiently high for a 
crack to be deflected. An ordinate value of ,,, 1.35 can thus be used to define a threshold 
configuration for crack deflection as determined from the data. Figures 5 and 6 show the 
threshold values o f x  ,-- 0.6 for a = -0 .35 ,x  ,,, 2 for a = - 0 . 6  and x ,,~ 4 for a = -1 .  It 
is also reasonable to conclude that for la] ~< 0.2, the limited difference in the driving force 
implies that little or no crack deflection is possible in the 0.1 < x < 4.5-range. The size of 
the deflection zone, d, is therefore determined as a function of angle, 20 ° < ¢ < 70 °, by 
the magnitude of the threshold, or critical x-value and the particle radius according to the 
relation 

[ d(d + 
X - -  a R  c o s  C J  G c°mp = Xcrit 

Ghom o "1.35 

(5) 

and thus 

(6) 

The quantity that remains unknown is the crack length. Because the initial stages of fracture 
are of primary interest, a crack length on the order of the particle size will be taken, as indicated 
schematically in Fig. 1. 

The accuracy of the deflection zone calculated in this analysis can now be demonstrated by 
comparing experimental and numerical results. Previously published experimental results are 
reproduced in Fig. 7, showing an enlarged section near the hole in a side-cracked specimen 
from 3 different experimental fatigue crack trajectories [18, 19]. This literature is chosen 
because the modelled geometry and loading conditions as well as the quasi-static crack 
advance, Fig. 1, and the experimental conditions are the same. Furthermore, the material used 
experimentally, PMMA, was observed to have only a small crack-tip plastic zone. The 3 cases 
refer to cracks which approach the hole 2.5 mm (I), 3.5 mm (II), and 4.5 mm (III) above the 
center of  the hole with R = 1.5 mm. The boundary of the zone is shown by the cross-hatched 
band as calculated using (5) and (6), given the hole size and crack lengths which correspond to 
the actual edge-cracked configuration. Case I shows that the zone boundary is crossed by the 
crack but only slight crack deflection occurs until ¢ ,,~ 60 °. For Case II, crack deflection begins 
when the boundary is reached because crack driving force and ¢ are both sufficiently high. 
The crack in Case III never crosses the zone boundary and no significant crack deflection 
is expected or seen. It is therefore reasonable to conclude that if a crack crosses into the 
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Fig. 7. Good agreement is seen between experimental data for three cracks approaching a hole and the deflection 
zone defined here. If a crack passes into the deflection zone it will experience significant crack deflection near the 
hole when the orientation angle, ~b, is sufficiently high. 
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Fig. 8. Experimental and calculated crack trajectory data show good agreement with the generalized zone boundary 
near a hole in a CCT specimen. 

deflection zone, significant crack deflection will occur either directly upon crossing or when 
~b is roughly greater than 40 °. The correlation here is considered very good considering the 
analysis of Rubinstein who showed that the actual crack deflection observed experimentally 
can be as much as 15 degrees away from the calculated maximum energy release rate angle 
[18]. Another comparison is given in Fig. 8 for a Center Cracked Tension (CCT) specimen 
as calculated for a = - 1  [20]. This case is given as an example because experimentally 
the material and geometry are similar to the model. Good agreement is again seen between 
the zone boundary and the onset of calculated crack deflection, while the observed crack 
deflection lags slightly behind. The discrepancy is due to a reduced KII at the crack tip which 
results from crack surface friction. The salient feature in these comparisons is that if the crack 
crosses the zone boundary significant deflection is expected and observed. 
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Fig. 9. Two crack trajectories, (a) and (b), near particles in a CCT specimen (a = -0.6). Neither crack begins in a 
plane which intersects the particle. However, because both cracks cross the zone boundary, deflection is expected 
and calculated. 

The validity of the zone predictions can also be verified for the case of a crack approaching 
a particle rather than a hole. Figure 9 shows the geometry as in Fig. 8 with two calculated crack 
paths for cracks which approach a particle (a  -- -0 .6)  from different starting planes marked 
as (a) and (b). Notice that the crack deflection zone as calculated using an Zcrit-value of ,'~ 2 
does not extend as far into the matrix as for the case of a hole. The BEM-calculated crack 
paths verify that the general zone approximation is again accurate for this combination of 
materials, although experimental data is not available. This is a very powerful result because 
now the zone of crack deflection can easily and accurately be determined for a general 
crack-particle geometry for many material combinations without the use of more difficult and 
time-consuming, conventional FE or BE method calculations. 

The deflection zone calculated here will apply most accurately to the initial stages of 
fracture where the crack length is roughly on the order of the particle size as shown in the 
examples above. This is perhaps the most critical phase of failure. Stable subcritical microcrack 
growth has been shown to contribute significantly to the strength of polycrystalline alumina 
while increasing the macroscopic steady state KIc has a smaller effect on strength [42]. 
If other brittle matrix composites behave similarly, then strength, toughness and ductility 
models would necessarily require consideration of increased microcrack stability through 
crack deflection. 

Based on the fact that a crack is able to deflect toward and intersect particles which are well 
out of its original plane, overall composite toughening models must be carefully reconsidered. 
For example, a single particle (a  = -0 .6 ,  Fig. 9) with radius R has a deflection zone profile 
which is ~ 60 percent larger than the diameter. Therefore composite toughening models which 
assume a planar crack front and a number of crack-particle intersections proportional to the 
volume fraction will be neglecting this very significant increase in effective particle size. 
Specifically, the deflection effects will be responsible for a warped or twisted crack front as 
well as a significant increase in the number of crack-particle intersections. Note that on Fig. 9, 
both cracks (a) and (b) are calculated to strike the particle although they begin on planes which 
do not intersect the inclusion. The most significant influence on crack stabilization will likely 
be the increased amount of energy dissipation (plastic deformation or phase transformation) 
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which accompanies the increased number of particle-crack intersections. Additionally, when a 
crack front is twisted out of the plane normal to the applied stress or pinned between particles 
a locally decreased mode I stress intensity factor is seen [23, 24, 43, 44]. The decreased Kl 
at the crack tip will be reflected as an overall increase in Kit and failure strength. Finally, the 
greater number of particles which are intersected for a deflected crack front than for a planar 
crack indicates that more load will be carded behind the crack tip and that the wake zone will 
play a larger role. 

6. Summary and conclusions 

A general basis has been given to determine the zone boundaries near particles within which 
quasi-static cracks are deflected due to the local stress field disturbances. Global material 
toughness and strength will be strongly influenced by these deflection effects. In the initial 
stages of failure microcracks can be stabilized by the particles to an extent greater than the 
volune percent alone indicates because particles are effectively 'larger' due to their ability to 
attract cracks which would otherwise not intersect them. Results show good agreement with 
experiments and specific numerical examples. The method accounts for variable crack length, 
particle diameter, elastic mismatch and crack-particle separation and orientation. The distance 
which the zone extends into the matrix is calculated using a critical value of a dimensionless 
geometric parameter, Zerit '~ 0.7, 2.0 and 4.0 for a = -0.35,  - 0 . 6  and - 1.0, respectively. 
Below < 0.2, no significant crack deflection is expected. The empirically-based criterion 
which determines the zone boundary is defined as the point where the crack driving force 
increases roughly 35 percent over the homogeneous case and the particle orientation angle, ~b, 
is simultaneously greater than approximately 20 ° . 

The limitations of this work are that a continuum model and macroscopic examples are 
used to study the interaction between a crack and a particle in which no grain-based or 
atomistic effects are considered, while for a very small particle these effects may be large. 
Also, because only a single, circular particle was modelled, these zones are not expected to be 
accurate for particles that are highly elongated or have sharp comers, or have other particles in 
close proximity. Differences may also arise between observations and predictions due to the 
simplification of plane strain compared to an actual 3-D particle. Finally no consideration has 
been given to the effects of plasticity. Particle plasticity will increase the size of the deflection 
zone as calculated here due to the fact that the stress in the plastically deformed particle will 
be much lower than stress calculated using a purely elastic relationship. Matrix plasticity will 
most likely modify the results given here. 

Acknowledgments 

Financial support for PL as a visiting scientist from Professors H .  Fischmeister and E .Arzt 
as well as the Max-Planck-Gesellschaft is gratefully acknowledged. 

References 

1. D.L. Porter and A.H. Heuer, Journal of the American Ceramic Society 60 (1977) 183. 
2. T.K. Gupta, EE Lange and J.H. Bechtold, Journal of Material Science 13 (1978) 1464. 
3. F.E Lange, in Proceedings of 3rd International Conference on Mechanical Behavior of Materials, Vol 3, 

K.J. Miller and R.F. Smith (eds), Pergamon Press (1980) 45. 
4. Science and Technology of Zirconia, II, M. Ruhle, N. Claussen and A. Heuer (eds) (1982). 
5. A.G. Evans, Journal of Material Science 9 (1974) 1145-52. 



92 P Lipetzky and Z. Knesl 

6. W. Kreher and R. Janssen, JournalofEuropean Ceramic Society 10 (1992) 167-73. 
7. P. Lipetzky and W. Kreher, Mechanics of Materials 20 (1995) 225-240. 
8. M. Taya, S. Hayashi, A. Kobayashi and H. Yoon, Journal of the American Ceramic Society 73 (1990) 

1382-91. 
9. D. Baril, S. Tremblay and M. Fiset, Journal of Material Science 28 (1993) 5486-94. 

10. R. Brett and P. Bowen, Composites 24 (1993) 177-83. 
11. P.F Becher and G.C. Wei, Journal of American Ceramic Society 67 (1984) C267-C271. 
12. EF. Lange, Fracture Mechanics of Ceramics, Vol 4, R.C. Brandt, D.P. Hasselman, and EE Lange (eds), 

Plenum Press (1978). 
13. B. Budiansky, J.W. Hutchinson and A.G. Evans, Journal of the Mechanics and Physics of Solids 34 (1986) 

167-189, 
14. V.D.Krstic•P.S.Nich••s•nandR.G.H•ag•and•J•urnal•ftheAmericanCeramicS•ciety64(•98•)499-5•4. 
15. V.D. Krstic, PhilosophicalMagazine A, 48 (1983) 695-708. 
16. L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking and A.G. Evans, Acta MetaUurgica 36 (1988) 

945-953. 
17. M. Bannister, H. Shercliff, G. Bao, E Zok and M. Ashby, Acta Metallurgica 7 (1992) 1531-37. 
18. A. Rubinstein, lnternational Journal of Fracture 47 (1991) 291-305. 
19. A. Chudnovsky, K. Chaoui and A. Moet, JournalofMaterials Science Letters 6 (1987) 1033-38. 
20. Z. Knesl, Acta TechnicaCSAV5 (1987) 603-20. 
21. E Erdogan, G.D. Gupta andM. Ratwani, Journal of Applied Mechanics 41 (1974) 1007-1013. 
22. S.A. Meguid, Engineering Fracture Mechanics, Elsevier, NY (1989) 158. 
23. D.J. Green, P. Nicholson and J. Embury, Journal of Material Science 14 (1979) 1413-20. 
24. Ibid., 1657-61. 
25. W. Muller and S. Schmauder, International Journal of Fracture 59 (1993) 307-43. 
26. W. Muller and S. Schmauder, lnternational Journal of Solids and Structures 29 (1992) 1907-18. 
27. E Erdogan and G. Gupta, International Journal of Fracture 11 (1975) 13-27. 
28. E Lange, PhilosophicalMagazine 22 (1970) 983-92. 
29. P. Trusty and J. Yeomans, Ceramic Engineering Science Proceedings 14 (1992) 908-13. 
30. M. Meyer and S. Schmauder, Zeitschrift MetaUkunde 83 (1992) 524-27. 
31. J. Dundurs, Journal of Applied Mechanics 36 (1969) 650-52. 
32. D. Bogy, Journal of Applied Mechanics 38 (1971) 377-86. 
33. T. Suga, G. Elssner and S. Schmauder, JournalofComposite Materials 22 (1988) 917-21. 
34. W. Muller, S. Schmauder, A.G. Evans and R.M. McMeeking, International Journal of Fracture, in press. 
35. Z. Knesl and H. Maschke, KovoveMaterialy 27 (1989) 175. 
36. F.G. Buchholz and H. Richard, Advances in Fracture Research, Vol 3, K. Salama (ed.), Pergamon Press 

(1989) 2301-2308. 
37. E.E Rybicki and M.E Kanninen, Engineering Fracture Mechanics 9 (1977) 931-938. 
38. J.C. Brebbia, J.C.E Telles and L. Wrobel, in Boundary Element Technique-Theory and Applications, NY 

(1984). 
39. H. Maschke, TechnischeMechanik 6 (1985) 17. 
40. F. Erdogan and G.C. Sih,ASME, JournalofBasic Engineering 85 (1963) 519-527. 
41. P. Lipetzky and S. Schmauder, lnternational Journal of Fracture 65 (1994) 345-58. 
42. A. Krell and W. Pompe, Materials Science and Engineering 89 (1987) 161-68. 
43. K.T. Faber and A.G. Evans, Acta MetaUurgica 31 (1983) 565-76. 
44. Ibid., 577-84. 


