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SUMMARY 

As is well-known, an efficient numerical technique for the solution of Cauchy-type singular integral equations 
along an open interval consists in approximating the integrals by using appropriate numerical integration rules 
and appropriately selected collocation points. Without any alterations in this technique, it is proposed that 
the estimation of the unknown function of the integral equation is further achieved by using the Hermite 
interpolation formula instead of the Lagrange interpolation formula. Alternatively, the unknown function 
can be estimated from the error term of the numerical integration rule used for Cauchy-type integrals. Both 
these techniques permit a significant increase in the accuracy of the numerical results obtained with an 
insignificant increase in the additional computations required and no change in the system of linear equations 
solved. Finally, the Gauss-Chebyshev method is considered in its original and modified form and applied to 
two crack problems in plane isotropic elasticity. The numerical results obtained illustrate the powerfulness of 
the method. 

1. Preliminaries 

The numerical solution of  Cauchy-type singular integral equations appearing in several fields o f  

mathematical physics has become a topic of  intense research in recent years. A sufficiently 

extensive literature on the subject is contained in Ref. [1 ]. Here we will restrict our attention 

only to singular integral equations along an interval (a, b) of  the real axis, which may be finite 

or infinite. In this case, the most frequently used technique for the numerical solution of  a 

singular integral equation consists in approximating the integral terms by using an appropriate 

numerical integration rule and applying the singular integral equation at appropriately selected 

collocation points (see e.g. Refs. [2-6], as well as the references mentioned in Ref. [1]). After 

the determination of  the unknown function at the abscissas used, this function is approximated 

along the whole integration interval through the Lagrange interpolation formula in its general 

form or after adaptation to the numerical integration rule used [5, 7-8]. Thus, if the number of  

abscissas used in numerical integrations is n, the unknown function of  the singular integral 

equation is finally assumed to be a polynomial o f  degree (n-l). Hence, if this function is a 

polynomial of  degree greater than (n-l), its approximation will not be exact. 

On the other hand, generally Gaussian (Gauss-type, Radau-type and Lobatto-type) numeri- 

cal integration rules are used for the numerical solution of  singular integral equations, their 

accuracy being of  the order of  2(n-l)  and not only (n-l)  as happens with the Lagrange 
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interpolation formula. In this way, although the values of the unknown function are suffi- 
ciently accurate at the abscissas used, where they are obtained directly from the numerical 
solution of the system of linear equations to which the singular integral equation is reduced, the 
accuracy of the unknown function at other points of the integration interval is not satisfactory 
because of the relatively low accuracy of the interpolation formula. Of course, in special cases, 
like crack problems in plane elasticity, it was suggested [4] that the points of the integration 
interval where the values of the unknown function are primarily required be included among 
the abscissas of the numerical integration rule used although this fact reduced slightly the 
accuracy in numerical integrations. In any case, the final numerical results at the points of 
interest were obtained with much more accuracy than that obtained when interpolation had to 
be used. For example, in the case of crack problems in plane isotropic elasticity, the application 
of the Lobatto-Chebyshev numerical integration rule, accurate for polynomial integrands of 
degree (2n-3), gives much more accurate results at the crack tips than the application of the 
Gauss-Chebyshev rule, accurate for polynomial integrands of degree (2n-l), but requiring the 
use of an extrapolation formula, accurate for polynomials of degree (n-l) only, for the estima- 
tion of the stress-intensity factors at the crack tips [4]. Furthermore, it is evident that in most 
cases the greater is the degree of a polynomial function for which a numerical technique is 
exact (like numerical integration or interpolation), the greater will be also the accuracy of the 
numerical results for non-polynomial functions since, in general, all well-behaving functions can 
be approximated by a polynomial. 

Under these conditions, the authors feel that it is not reasonable to use highly accurate 
numerical integration rules in the numerical solution of singular integral equations and, hence, 
obtaining highly accurate values of the unknown function at the abscissas used, but having 
afterwards to approximate the unknown function along the whole integration interval by using 
the less accurate Lagrange interpolation formula. Two techniques to avoid this inconsistency, 
one based on the use of the Hermite interpolation formula and the other on taking into account 
the error term due to the Cauchy integral in numerical integration (as will become clear in the 
sequel) are proposed in this paper. It should be emphasized that these techniques concern only 
the interpolation scheme used at the points of the integration interval not coinciding with the 
abscissas and not the system of linear equations solved and the values of the unknown function 
at these abscissas. Since the formation and solution of this system of equations constitutes the 
main part in the numerical solution of a singular integral equation, it is evident that the 
proposed techniques improve the numerical results with almost no increase in the required 
number of numerical computations. (Of course, some computations are required even when 
applying the elementary Lagrange interpolation formula as was done up to now). 

2. Application of the Hermite interpolation formula 

We consider the following singular integral equation along the real interval (a, b): 

£ B(x)w(x)g(x) + w(t)K(t,x)g(t)dt =f(x) ,  a < x < b, (2.1) 

where B(x) and f (x)  are known functions, w(x) is the weight function (determined in advance 
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from theoretical considerations), K(t, x) the kernel of the singular integral equation, which is 
assumed to consist of a Cauchy-type term of the form A(x)/(t-x)and a regular Fredholm term 
k(t, x), that is, 

K(t,x) = A(x)/(t-x) + k(t, x). (2.2) 

By taking into account the results of Refs. [1-6] and particularly those of Ref. [6], we reduce 
Eq. (2.1) to the following system of linear equations: 

n 

~, AiK(ti, xk)Y(ti)=f(Xk), k= 1 , 2 , . . .  ,no, (2.3) 
i =  1 

where A i and t i are the weights and abscissas respectively of the numerical integration rule 
used (evidently compatible with the integration interval [a, b] and the weight function w(t)): 

n 

fba W(t)g(t)dt: ~, Aig(ti)+ En, (2.4) 
i = 1  

E n denoting the error term, and y(x) denotes the approximation of g(x) along [a, b]. The 
number no of Eqs. (2.3) may be equal to n or (n-I). In the latter case, one more linear equation 

resulting from some physical condition, e.g.: 

Jba w(t)g(t)dt = C, (2.5) 

where C is a constant, has to be taken into account. Finally, the collocation points x k in Eqs. 
(2.3) are determined as the roots of the following generally transcendental equation: 

qn(Xk) =0, k = 1,2 . . . . .  no, (2.6) 

where 

1 b 
qn(xl= ~ f~ 

with 

w(t) on(t) 

x - t  
at (2.7) 

/'1 

o n (x) = ,'~=1 (x-ti) (2.8) 

if B(x) = 0, and in a somewhat more complicated way if B(x) ~ O. These results have been 
well-established in Refs. [1-6] and the additional references mentioned in Ref. [6]. 

Here we wish to apply the Hermite interpolation formula [9, § 8.2] instead of the Lagrange 
interpolation formula. The Hermite interpolation formula, which serves also for the classical 
derivation of Gaussian numerical integration rules, has the form 

n n 

y(x) = i~=l hi(x)y(ti) + i~=l h* (x)y' (ti), (2.9) 

where y(ti) and y'(ti) are the values of the functiony(x) under consideration and its derivative 
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at the abscissas t i used (which need not be related to Gaussian integration rules) and hi(x ) and 
h*(x)  denote the following functions [9, § 8.2]: 

h i (x)= [1-2£~(ti) ( x - t i ) ]£  ~ (x),  

h* (x)  = ( x -  ti)£ 2 (x),  

(2.10) 

(2.11) 

where 

£i(X ) = O n (X )/[!(X-ti) O' n ( t i ) ] ,  (2.12) 

o , ( x  ) being determined from Eq. (2.8). For comparison purposes, we can mention that the 
Lagrange interpolation formula, not taking into account the values ofy ' (x)  at the abscissas ti, 
has the form [9, § 8.2] 

71 

y ( x )  = i~=l 9~i(x)y (ti). ( 2 . 1 3 )  

Of course, Eqs. (2.9) and (2.13) can be simplified when using special, and particularly Gaussian, 
numerical integration rules as was done for Eq. (2.13) in Refs. [5, 7-8]. 

The Hermite interpolation formula (2.9) is exact whenevery(x)isa polynomial of degree 
(2n-l), whereas the Lagrange interpolation formula (2.13) is exact whenever y ( x )  is a poly- 
nomial of degree ( n - l )  only as already stated. From the numerical solution of Eqs. (2.3), 
probably supplemented by the linear equation 

n 
~, A i Y ( t i )  = C ,  (2.14) 

i= 1 

resulting from Eq. (2.5), we can determine the approximations y( t i )  to the values ofg( t i ) .  These 
values are exact only if k( t ,  x)g( t )  is a polynomial of degree m (with respect to t), where m is 
the maximum degree of a polynomial for which Eq. (2.4) is exact. If k(t ,  x )  = O, then the values 
y (ti) are exact (that is y (ti)  = g( t i )  ) ifg(x) is a polynomial of degree (m + 1) as is clear from the 
developments of Refs. [4-6]. In any case, in most cases, and particularly in those when Gaussian 
integration rules are used, the numerical resul tsy( t i )  for g(ti) are sufficiently accurate to justify 
the use of the Hermite interpolation formula. 

Now, in order to use this formula, (2.9), we have to determine the values y ' ( t i )  approxi- 
mating the derivative of the unknown function g(t)  at the abscissas used. This can be easily 
done by taking into account the numerical integration formula [10] 

f ~  _ _  n g( t i )  
b w( t )g ( t )  d t  = r, A i  ~ + A m g ' ( t m ) - 2 g ( t m ) A  n (t m )  + E  n , (2.15) 

t - t  m i= 1 t i - t  m 
i:/:m 

which is valid for Cauchy-type principal value integrals only when the variable x coincides with 
an abscissa t m (m = 1 ,2  . . . . .  n). In this formula A n (x) is the function [10] 

A n (x)  = [q'n (x)  + A m o n (x ) /4] /a '  n ( x ) ,  (2.16) 
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where qn(X) and on(x ) are determined from Eqs. (2.7) and (2.8) respectively. More explicit 
formulas for An(x ) are given in Ref. [10] for some common numerical integration rules. By 
taking into account Eq. (2.15) and applying it to Eq. (2.1) (for x = tin) , we can find directly 
the values o fy ' ( t  m) at the abscissas t m without solving any system of equations. Hence, we can 
now determine directly the interpolating function y(x )  from the Hermite interpolation formula 
(2.9) along the whole interval [a, b]. It is finally worth-mentioning that in the above procedure 
the abscissas t m have been used as additional collocation points, besides the initial collocation 
points x k (k = 1, 2 . . . . .  no) determined from Eq. (2.6) (ifB(x) = 0) or some other similar 
equation (if B(x) ~ 0). 

3. Estimation of the unknown function from the error term 

In some cases it is more convenient to determine the approximation y(x )  along [a, b] without 
using interpolation formulas but directly from the part of the error term of the Cauchy-type 
integral due to the simple pole of the integrand inside [a, b]. By taking into account the 
following form of Eq. (2.4)valid for Cauchy-type principal-value integrals [10]: 

n g(ti) 
ba W ( t ) g ( t )  d t =  F_, A i - 2 g ( x ) K n ( X ) + E n ,  x 4 : t i ( i  1,2,. ,n), (3.1) 

t - x  i= 1 t i - x  

where 

K .  (x) = q,  (x)/on (x) , (3.2) 

and applying it to Eq. (2.1), we clearly see that, once the approximate values Y(t i )  of the 
unknown function g(t)  at the abscissas t i have been determined from the numerical solution of 
the system of linear algebraic equations (2.4) (and, probably, (2.14)), then the application of 
Eqs. (2.4) and (3.1) to Eq. (2.1) for x 4: t i ( i  = 1, 2 . . . . .  n ) ,  aftery(ti) have been already 
determined, converts this equation into a formula providingy(x) along the whole interval [a, b]. 
In this case, the valuer(x0) of the right-hand side function at a point x = Xo is evidently always 
taken into account for the estimation ofy (Xo). It should also be mentioned that this technique, 
not making use of interpolation formulas, is analogous to the corresponding technique used 
long ago for Fredholm integral equations of the second kind [ 11 ]. Finally, we can remark that 
this technique cannot be successfully used if the integral in Eq. (2.1) contains one or more 
simple poles near the integration interval. Such poles contribute significantly to the error term 
in numerical integrations. Of course, their influence can be taken into account, in an approxi- 
mate way, as proposed in Ref. [12]. 

A third method for estimatingg(x) along [a, b] can also be used. This method consists in 
using the Lagrange interpolation formula (2.13) based both on the values of Y(t i )  at the 
abscissas t i (determined from the system of Eqs. (2.4) and, probably, (2.14)) and on the values 
of the same function at an arbitrary number of other points of the interval (a, b) determined 
as proposed in the previous paragraph. It is recommended that the number of these additional 
points is (n-l), n or (n + 1) and coincide with the middle-points of the subintervals in which the 
interval [a, b] is divided by the abscissas used or other reasonably selected points. In this way, 

Journal of Engineering Math., Vol. 13 (1979) 213-222 



218 P. S. Theocaris and N. I. Ioakimidis 

g(x) is now approximated by an interpolation polynomial y (x )  of degree (2n-2), (2n-l) or 2n, 
completely compatible with the accuracy of Gaussian numerical integration rules. 

4. Application to crack problems 

As an application we consider crack problems in the classical isotropic plane elasticity. These 
problems are easily reducible to Cauchy-type singular integral equations (see e.g. [3-5]). The 
values of the unknown function of the singular integral equation at the end-points of the 
integration interval (that is at the crack tips) are proportional to the values of the corresponding 
stress-intensity factors k at these tips, which are of particular importance in fracture mechanics. 
At first, the Gauss-Chebyshev numerical integration rule has been widely used (and remains in 
use) for the solution of the singular integral equations of crack problems and the determination 
of the stress-intensity factors at the crack tips [2, 3]. In Ref. [4] it was proposed that this rule 
could be replaced by the Lobatto-Chebyshev rule for a more accurate determination of the 
stress-intensity factors. In fact, this rule was of the form (2.4) with [a, b] --- [ -1 ,  1 ] and 

2 I 
w(t)  = ( 1 - t ) - 1 ,  (4.1) 

t i =cosI ( i -1 ) l r / (n -1) ] ,  i = l , 2 , . . . , n ,  (4.2) 

A i = n / ( n - 1 ) ,  i = 2 , 3  . . . .  , n - l ,  A l = A n = l r / [ 2 ( n - 1 ) ] ,  (4.3) 

whereas the collocation points Xg were determined from Eq. (2.6) as 

x k = cos [(k-O.5)Tr/(n-1)], k = 1,2 . . . . .  n - l ,  (4.4) 

under the valid assumption that Eq. (2.1) was of the first kind. As clear from Eq. (4.1), the 
end-points (_+ 1) of the integration interval [ -1 ,  1] (representing the crack tips)were included 
among the abscissas used and, thus, the stress-intensity factors were determined in general with 
higher accuracy, the remarks of Sec. 1 taken also into account. 

Yet, the Gauss-Chebyshev numerical integration rule is accurate for polynomial integrands 
of degree (2n-l) for regular integrals and degree 2n for Cauchy-type principal value integrals 
[4], while the corresponding numbers for the Lobatto-Chebyshev numerical integration rule are 
(2n-3) and (2n-2). This means that, if we avail ourselves of the results of this paper, we can 
obtain more accurate values for the stress-intensity factors by using the technique based on the 
Gauss-Chebyshev rule (properly modified) than by using the technique based on the Lobatto- 
Chebyshev rule in a series of cases, contrary to what would be expected in the past. Two simple 
examples will illustrate this fact. 

We consider the simple problem of a straight crack of length 2a inside a plane isotropic 
elastic medium. This problem is described by the Cauchy-type singular integral equation (see 
e.g. [3,5]) 

1 f~_ w(t)g(t)  dt - f ( x ) ,  (4.5) 
7r 1 t - x  

Journal of Engineering Math., Vol. 13 (1979) 213-222 



Singular integral equations 219 

where f (x)  is the loading distribution along the crack edges and w(t) is given by Eq. (4.1). This 
singular integral equation was solved both by using the Gauss-Chebyshev method [2] with 

ti= cos[(i-O.5)~r[n], i= 1,2 . . . . .  n ,  (4.6) 

A i = n / n ,  i = 1 , 2  . . . . .  n ,  (4.7) 

xg=cos(kTr/n),  k = 1 , 2  . . . . .  n - l ,  (4.8) 

and by using the Lobatto-Chebyshev method described by Eqs. (4.1-4.4). Of course, the con- 

dition of single-valuedness of displacements, 

'f~ w(t)g(t)dt = 0, (4.9) 
1 

has been taken also into account. 
The reduced values of the stress-intensity factors kl/(Oa½ ) = _+g (+_ 1), where o is a constant and 

the sign (+) is valid for x = +1 whereas the sign ( - )  is valid forx  --- -1  ([5]), were obtained for 

f (x)  = ax 4 , as well as for f (x)  = o exp x. These results are presented in the second and third 
columns of Tables 1 and 2 respectively with n = 3(1)6 in the first case and n --- 3(1)10 in the 
second case. Of course, in the case of application of the Gauss-Chebyshev method the stress- 

intensity factors were determined at the crack tips by the simple extrapolation method re- 
ported in Ref. [8]. Finally, in the fourth columns of Tables 1 and 2 the values of the stress- 

intensity factors were determined on the basis o f  the same values ofy(ti)  as in the first column 
of these tables (that is by using also the Gauss-Chebyshev method) but by applying the tech- 
nique presented in the first paragraph of Sec. 3. Thus, from Eqs. (3.1), (4.5) and (4.7) we 

obtain 

~(  Y(ti) .~ 
g(_+l)~y(_+l)=~- +-l)+ln i=1 ~ t ~ l - J  /n '  (4.10) 

TABLE 1 

Reduced values of the stress-intensity factor at the tips x = +- 1 of a simple crack under normal loading 
f(x) = ox'. 

Method Gauss-Chebyshev Lobatto-Chebyshev Modified Gauss-Chebyshev 

n kl/(Oa 1/2) = +_Y(+_ 1) 

3 0.062500 0.250000 0.375000 
4 0.250000 0.375000 0.375000 
5 0.312500 0.375000 0.375000 
6 0.375000 0.375000 0.375000 

Theoretical 
value 0.375000 
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TABLE 2 

Reduced values o f  the stress-intensity factors at the tips x = +1 o f  a simple crack under normal loading f{x) 
= aexpx. 

Method Gauss-Chebyshev Lobatto-Chebyshev Modified Gauss-Chebyshev 

n kl[(O~ v2) = +_ y(+_ 1) 

Crack tip x = +1 

3 1.648721 1.803313 1.831543 
4 1.803313 1.830907 1.831227 
5 1.827922 1.831223 1.831225 
6 1.830907 1.831225 1.831225 
7 1.831199 1.831225 1.831225 
8 1.831223 1.831225 1.831225 
9 1.831225 1.831225 1.831225 

10 1.831225 1.831225 1.831225 

Crack tip x = -1 

3 0.606531 0.717871 0.700679 
4 0.717871 0.701135 0.700905 
5 0.698690 0.700908 0.700907 
6 0.701135 0.700907 0.700907 
7 0.700887 0.700907 0.700907 
8 0.700908 0.700907 0.700907 
9 0.700907 0.700907 0.700907 

10 0.700907 0.700907 0.700907 

where y ( x )  denotes again the approximation of  the unknown function g ( x )  obtained from the 

numerical solution of  Eqs. (4.5) and (4.9). To obtain Eq. (4.10), we have taken into account 

that in the case of  the Gauss-Chebyshev method we have [ 10] 

qn (x)  = - ( n / 2 ) U  n_ 1 ( x ) ,  (4.11) 

a n ( X ) =  Tn(X) ,  (4.12) 

where T n (x)  and U n (x )  denote the Chebyshev polynomials of  the first and the second kind 

respectively. Hence 

K n (x) = - (7r/2) U n_  1 ( x ) / T  n (x)  (4.13) 

and further 

K n (+- 1) = ~-nlr/2. (4.14) 

The superiority of  the results of  this modified form of  the Gauss-Chebyshev method over 

the results of  the Gauss-Chebyshev method in its ordinary form, as well as the results of  the 
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Lobatto-Chebyshev method is clearly seen from Tables 1 and 2. In Table 1 the unknown 

function g(x) is evidently a polynomial o f  fifth degree and the exact value for the stress-inten- 

sity factors kt/(oa~) = 0.375 is obtained by the three methods used in accordance with their 

accuracies, (n-l), (2n-2) and 2n respectively. Similarly, in Table 2 the unknown funct iong(x)is  

evidently a polynomial of  infmite degree, like the exponential function, but the relative accu- 

racies of  the three methods used remain unchanged. The modified Gauss-Chebyshev method is 

slightly superior to the Lobatto-Chebyshev method and of  about double accuracy compared 

with the Gauss-Chebyshev method in its ordinary form. 

5. Two remarks 

The authors have unsuccessfully tried to generalize their present results to the case o f  Cauchy- 

type singular integrodifferential equations considered in Ref. [ 13]. As is clear from the results 

of  this reference, if a numerical integration rule with n abscissas is used, the unknown function 

is determined at 2n points of  the integration interval and not only n as happens in the case of  

Cauchy-type singular integral equations. Hence, the interpolating funct iony (x) is a polynomial 

of  degree (2n-l)  and any further attempt to increase this degree by using techniques similar to 
those of  the present paper has no essential meaning. 

Finally, it is evident that the results of  the present paper are also applicable to the case of  

systems of  uncoupled Cauchy-type singular integral equations. Such systems of  equations arise 

often in practical problems. 
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