
International Journal of Fracture 74: R23-R30, 1995. R23 
© 1995 KluwerAcademic Publishers. Printed in the Netherlands. 

DETERMINATION OF RESIDUAL STRESS DISTRIBUTIONS FROM 
MEASURED STRESS INTENSITY FACTORS 

H.J. Schindler 
Swiss Federal Laboratories of Materials Testing and Research (EMPA) 
Oberlandstrasse 129, CH-8600 Duebendorf, Switzerland 
Tel: +41-1-823 55 11; Fax: +41-1-821 62 44 

If a crack or a machined cut is introduced in a body that contains residual 
stresses, the latter are released at the newly created surfaces and cause the stress 
field to be rearranged in the entire body (Fig. la). From the change of stress due 
to progressive cutting as measured at any location (e.g. on the rear surface, as 
shown in Fig. lb), it is possible to calculate the stress that acted along the 
corresponding axis x in the initial, uncracked state. This method of determining 
residual stress fields, called the crack compliance method, is described in a series 
of papers by Cheng and Finnie e.g. [1,2]. Since the corresponding analytical 
formulas are based on principles and relations of linear-elastic fracture mechanics, 
the stress intensity factor (SIF) Kt~(a ) due to the residual stress field at the tip of 
the introduced crack or cut can be readily obtained by progressive cutting from a 
single strain measurement as follows [3]: 

E '  deM 
Kit'(a) - Z(a) d a 

(i) 

where e u denotes the strain measured at an arbitrary location M during the cutting 
process, a the actual length of the cut, E' the generalised Young's modulus and 
Z(a) a geometry-dependent function which reflects the sensitivity of the strain at 
M with respect to stresses released at the crack tip. Z(a) can be analytically or 
numerically determined as described in [3]. Hence, functions K~.(a) can be 
relatively easily obtained experimentally by using (1). 

On the other hand, K~.(a) depends on the distribution of the normal residual 
stresses acting prior to cutting, c,,(x) (the axis being chosen such that it coincides 
with the crack line, or cut plane, respectively), by the general relation 

~0 & Kl, s(a) = h(x ,a ) .  ~,s(x). d x  (2) 

where h(x,a) denotes the so-called wieght function, which is universal for a given 
crack geometry [5,6]. Weight functions are known for several crack configura- 
tions (see e.g. [7]). 
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Thus from a known SIF as a function of crack depth, K~,(a), it is possible to 
calculate therefrom the residual stress distribution ~ (x )  by inversion of (2). A 
straightforward way to solve this problem is by a step-by-step procedure as 
follows. The residual stress distribution G,,(x) is approximated by a series of 
small steps as shown schematically in Fig, 2.~.,so the stress level at each step can be 
calculated by applying (2) to a hypothetical, incrementally prolonging crack. The 
average stress of the first increment, G 0, which represents the average stress acting 
near the front surface in the range 0<x<a 0 (where ao<<W ) is obtained from the 
well known relation between the stress and the SIF of a short edge crack [4] as 

~o-  
Kt,,(ao) 

1 . 1 2 . ~ - a o  
(3 )_  

In order to calculate the average stress level G 1 of the next step (i.e. the average 
stress in the range ao<x<a0+Aa), we extend the hypothetical crack by the 
increment Aa. According to (2) ,  the following equation holds for the prolonged 
crack 

~0 a° ~ a°+Aa Kl,,(ao +A a) = G o • h(x,ao+A a) • d x+G 1 • h (x,ao+A a) • d x J% (14) 

From (4), G~ can be calculated. In the same way, by an additional virtual crack 
prolongation Aa, the average stress a,  in the next interval a0+Aa<x<ao+2.Aa is 
obtained, and so on. By repeating this procedure of incremental crack extension 
Aa, the stress profile is determined. Denoting the length of the hypothetical crack 
after i increments Aa by a i (i.e., ai=a0+i.Aa), and the average stress in the 
corresponding interval a~.~<x<a i by Gi, the latter can be obtained from the 
following relation 

f0 a0 i = 1 ~fj fai~ Kl,,(a/) = o 0 • h(x,al), d x+ Y. o/.  h(x,al), d x+o  / • h(x,ai), d x 
j = l  -I  -1 

(5) 

The step-shaped approximation converges to the exact solution as Aa--o0. Hence, 
the accuracy of the approximation can be adjusted to the purpose by choosing a 
sufficiently small step length Aa. 

In principle, (3)-(5) deliver the complete stress distribution across the 
considered cross section. However, some difficulties usually arise in the region 
near the rear surface, because, as pointed out in [8], weight functions, which in 
general are derived by approximation techniques, often fail to be accurate for 
W-a<<W. Thus, the stresses can be inaccurate in the corresponding range of x. 
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There are two ways to overcome this difficulty: either by using a weight function 
derived according to [8], which is sufficiently accurate in the whole range of 
crack depths, or changing the calculation procedure as explained in the following. 

For W-a<<W, which practically is fulfilled for about a>3W/4, it can be 
shown that the SIF can be approximated by the asymptotically exact equation: 

3.97M(a) 1.46F(a) 
K/,,(a) - + ( W -  a) 3'2 ( W -  a) 1'2 

+ 2. o,,(x = a). ~ / 2 q  • ( W -  a) (6) 

where M(a) and F(a) denote the stress resultants of ther released residual stress 
with respect to the neutral axis of the ligament, i.e., 

~0 a M(a) = ~,,(x) • [0.264. W -  x+0.736 • a]d x (7) 

F(a) = a,,(x) • d x (8) 

The first two terms of (6) are based on dimensional considerations and the 
corresponding asymptotic solutions for (W-a)-->0 as given in [4]. However, they 
do not account for the singular behaviour of weight functions as x--->a. This 
special contribution is added by the third term: since the stress ~,,(x=a) in the 
range (a-q.(W-a))<x<a, where q<<l (i.e. in a narrow range in the vicinity of the 
crack tip), can be assumed to be approximately constant, the integration of the 
singular term of the weight function delivers the third term of (6). The factor q, 
which characterises the width of the corresponding near-tip region of the crack 
surface, turned out to be in general about 0.03. However, q can be considered to 
be an unknown factor that is determined by the condition of a continuous and 
smooth transition from the stresses resulting from (2) to the ones resulting from 
(6). 

If we define a natural number k such that it represents the number of 
calculation steps i=k at which the hypothetical crack is long enough for the 
approximation (6) to become valid, i.e., a0+k.Aa_~_3W/4, the stresses ~i for i>k 
shall be determined no longer by (5) but by 

gz,,(ai) = ~ 13"97%" 
j =0[ 

where ai=a0+i.Aa 

A a.[0.264W + 0.736 ai-(ao+j. Aa)] 

(W - a f  a 
l'46a~'Aa 1 + 2c i~ /2q .  (W_ ai ) 
(W - a/)l'2J 

(9) 

This procedure to obtain stresses from SIFs given as a function of crack 
length can be validated by applying it to a case of hypothetical residual stress 
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distribution where the exact solution of the SIF is known. As an examaple, 
consider a radial edge crack of length a in a circular disk of a diameter D 
containing (in the uncracked state) a stress field given by 

1 ~r,(x) = t~0 • ~ - ~ - 6 d +  1 (1o) 

where the x axis coincides with a radial plane. For this case, the SIF can be 
obtained by the superposition of the exact solutions for the two basic load cases 
that (10) consists of (constant and parabolic), as given in [9] and [10]. This 
solution is shown in Fig. 3. The weight function for the corresponding crack 
configuration is given in [7]. The calculated stress distribution (solid line for the 
results of (5), dashed line for the results of (9)) is shown in Fig. 4. It is in good 
agreement with the exact one (thin line), although the incremental steps Aa were 
chosen relatively large (Aa=D/50). If desired the accuracy could be easily 
improved by choosing a smaller Aa. As expected because of the inaccuracies 
discussed above, the deviations between the stress calculated by means of (5) and 
the exact one increase as the rear surface is approached. In this range (of about 
a>3W/4), (9) delivers obviously better results than (5). 

As a real practical example, the SIF obtained experimentally for a radial 
edge crack (length a) in a cylinder of a diameter D=140mm by two strain gages 
(as reported in [12]) is considered (Fig. 5). Applying the procedure described 
above and usin~ the weight function given by (6) leads to the stress distribution 
shown in Fig. 6, The agreement with the stress distribution obtained by the usual 
procedure ot tlae crack c mpliance method (as described in [12]) is reasonable. 
Again, the agreement in le range x>0.75D is improved by using (9) instead of 
(5). 

These examples shov, that the procedure as described in this report work 
satisfyingly. It seems to be numerically stable, so the results converge to the 
exact solution as the chosen crack increments are decreasing. Compared with 
superposition - based methods (as used in [1,2,13]) it has the advantage that no 
pre-assumptions of the stress distribution have to be made, so arbitrary stress 
distributions, containing e.g. steep gradients, local peaks or non symmetrical 
components, are expected to be calculable with about the same accuracy as the 
ones shown above as examples. 
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Figure i. Schematic representation of an arbitrary 2D-5ody containing 

residual stresses (left) and the same body with rearranged residual 
stresses due to an edge c~ack or cut (right). 
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Figure 2. Approximation of the residual stress profile by a step 
function. 
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Figure 3. SIF of a radial edge crack in a disk loaded by the stress 
distribution given by (i0). 
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Figure 4. Comparison of calculated stress with the theoretical one as 
given by (i0). The diameter D was assumed to be 140ram. 

I,.'000 

eoo 

Z ,~oa 

,'~o~ T 
I 

1'2~0 i 

"°' !t " 

II 
20C ' ~  

oi 
0 0.1 0.2 0.3 O,a 0.5 O.G 0.7 5.~ C ) 

nondimensional crack depth a/D 

Figure 5. Experimentally determined SIF for a radially edge cracked 
disk under residual stresses. 
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Figure 6. Residual stress derived from the SIF as given in Fig. 5. 
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