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Abstract 

The development of non-linear ordination techniques has stemmed in part  f rom work suggesting that 
species behave non-linearly to changing environmental  factors or gradients. Developments in this area can be 
seen in two related phases: new algorithms, and the incorporation of new resemblance measures. Emphasis in 
this paper is placed on resemblance measures incorporated into a method of multi-dimensional scaling. The 
results show that a resemblance measure which reflects the non-linearities of the data can produce significant 
improvement  in ordination, if the standardizations have not been too 'severe'. 

Introduction 

The investigation and ordering of vegetation un- 
its with respect to known or presumed underlying 
environmental  gradients has long been a major ob- 
jective of ecological studies. More recent ecological 
ordinations have evolved f rom the central idea that 
the manner  in which species respond to environ- 
mental influences must be considered. This implies 
that optimality of the solutions is tied to the me- 
thod's  success in incorporating suitable response 
models. R. H. Whittaker 's  contributions were most 
influential in this area in that they established a 
theoretical f ramework incorporating the notions of 
gradient, response, and utility. It is largely a conse- 
quence of his influence that shortcomings in linear 
ordinations were revealed. This in turn lead to the 
development of methods which assume non-linear 
species responses. 

The literature (reviewed by Orl6ci, 1978) illus- 
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trates that early efforts were largely concerned with 
multi-dimensional configurations where individu- 
als (vegetation plots) occupied positions and the 
species served as dimensions. An ordination, by 
contrast,  is visualized as a configuration of individ- 
uals in a space where major  physical (environmen- 
tal) factors serve as the axes. Hence the problem 
involves finding the best way to transfer or map 
individuals in species space into factor space with 
minimum distortion, and to identify these factors 
with greatest certainty. In other words, non-lineari- 
ties need to be unfolded as much as possible so as to 
obtain a linear ordering. 

The complexity of vegetation data can result 
f rom a number  of factors, such as random variation 
(noise) and indeterminacy in measurement.  More 
important ,  however, is the type of species response. 
This has been demonstrated in both field data and 
simulation experiments (see van Groenewoud, 1965; 
Noy-Meir  & Austin, 1970; Gauch & Whittaker, 
1972). If  the response is linear, complexity is not 
great and efficient ordination algorithms are readi- 
ly available. In dealing with non-linear data, how- 
ever, it becomes important  that the technique used 
incorporates devices to handle this non-linearity. 
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Fig. 1. Response trajectories for two species along a gradient with species response (a) linear and (c) Gaussian with their respective joint 
scatters (b) and (d) in species space. 

Different cases are illustrated in Figure 1. Con- 
sider the simplest case where species respond linear- 
ly to an environmental  gradient (such as changes in 
elevation up a mountainside), excluding noise. If  
individuals (vegetation plots) are placed at regular 
intervals along the gradient, and if two recorded 
species respond linearly to the gradient, a situation 
as in Figure la would be obtained. If  the same 
information is graphed in species space, where the 
two species serve as coordinate axes, a straight line 
is obtained (Fig. lb). If  an ordination seeks to ob- 
tain an ordering of individuals, which is meaningful 
with respect to some environmental gradient (eleva- 
tion in this case), a t ransformat ion is required. In 

the linear case this t ransformation is not complex 
since the ordering of individuals along the line of 
joint response in species space (Fig. l b) is the same 
as the ordering along the abscissa of Figure la. A 
principal components analysis (PCA) using a Eu- 
clidean distance measure will return this line on the 
first axis. If  the example is extended to more than 
two species, a straight line will still be obtained in 
species space. Clearly, since a linear species re- 
sponse produces a linear configuration in species 
space, a linear resemblance measure would be the 
most meaningful. In fact, since this is a Euclidean 
space, the Euclidean distance is an appropriate re- 
semblance measure. 



If a non-linear species response is assumed, a 
configuration such as shown in Figure lc (Gaussian 
curves) might be obtained. The same information in 
two-dimensional species space is shown in Figure 
ld. Again, the same basic shape (in multi-dimen- 
sional space) will be obtained no matter how many 
species there are. In this ease the configuration as 
represented in species space has a horseshoe shape. 
Hence the transformation, which takes individual 
points on this horseshoe and maps them onto a 
straight line, is necessarily complex. This paper 
focuses on the development of resemblance mea- 
sures which can be used in the transformation from 
a horseshoe to a straight line. 

Method 

The algorithm used in the analysis accomplishes 
multi-dimensional scaling (MDS). Lucid descrip- 
tions of the method are given by Fasham (1977) and 
Brambilla & Salzano (1981), after the original out- 
line in Kruskal (1964a, b). Attention is drawn here 
to a few salient features of the algorithm before 
remarks concerning the choice of a resemblance 
measure are made. 

MDS works iteratively toward a final solution by 
comparing distances obtained from the raw data 
with those from a 'proposed' solution. The choice of 
a distance measure for the 'proposed'  solution 
therefore determines whether MDS is a linear or 
non-linear method. In this respect MDS differs 
from other methods which attempt to handle non- 
linearity in the data. These include methods which 
fit curved axes (e.g. Phillips, 1978) or specified re- 
sponse curves (e.g. Johnson, 1973; Gauch, Chase & 
Whittaker, 1974; Johnson & Goodall, 1979), and 
those which use regression analysis and scaling to 
reduce the curvature of an ordination configuration 
(e.g. Hill & Gauch, 1980). 

The version of MDS used here begins either With 
a random initial point configuration, or one speci- 
fied using the maximum variance criterion. By this 
criterion, the p most variable species are used to 
define an initial configuration, where p is the 
number of dimensions (D) for which a solution is 
sought. Kendall (1971) has suggested that the 
(p + I)D solution o f a p D  data set is an appropriate 
strategy, since this reduces the chance of selecting a 
local minimum as a solution. Since the data sets 
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tested in this paper all have a single underlying 
gradient (1D), two-dimensional solutions were 
sought in all cases. 

The choice of an appropriate resemblance mea- 
sure for data with non-linear species responses is 
difficult. Numerous possible resemblance measures 
are conceivable, each specific to a given species 
response type (cf. Austin, 1979). In any case, the 
familiar metric resemblance measures are non-op- 
timal when non-linear species responses occur. As a 
simple example, consider PCA of the data in Figure 
1 d using Euclidean distance. The result would be a 
horseshoe, since the algorithm involves a simple 
geometric rotation in species space. Similarly, when 
a data set with Gaussian species responses is sub- 
jected to MDS analysis incorporating Euclidean 
distance, the result is again a horseshoe-shaped 
curve (Fig. 2). A straight line, representing the un- 

Fig. 2. Results from MDS in ordination space using a Gaussian 
data set with the linear distance option. Axis 1 is the abscissa and 
axis 2 the ordinate. Horseshoe-shaped, stress = 0.0079. 

derlying gradient to which species are responding, 
is more desirable. In both cases a linear measure is 
inappropriate since it does not reflect the response 
structure of the data. For a curved configuration in 
species space, the problem amounts to developing 
an appropriate measure of the distance between 
two points A and B. A linear resemblance measure 
will give the distance of line A B, whereas a suitable 
non-linear measure will give a close approximation 
to the distance of arc A B .  

Orl6ci (1978) and Hill & Gauch (1980) have not- 
ed that quantitative methods have specific uses and 
that the user must be careful in applying them. In 
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addition, many authors (e.g. Austin, 1976, 1979, 
1980; Werger et al., 1983) have found a variety of 
species responses in nature such as Gaussian, bim- 
odal, skewed, plateau, and so on. The subject is still 
very much in the exploratory stage (Feoli & Feoli 
Chiapella, 1980). However, if a few simplifying as- 
sumptions are made, some progress may be made in 
developing a resemblance measure in which provi- 
sion is made for the actual curvatures found in 
nature. An example of this type of approach has 
been described by Ihm & van Groenewoud (1975) 
who, assuming Gaussian species responses, applied 
appropriate transformations to the product mo- 
ments prior to an eigenanalysis. 

In developing appropriate distance measures, the 
first assumption we make (which will be relaxed 
later) is that of a single underlying gradient. It is 
further assumed that all species responses are of the 
same form, although the actual response type re- 
mains open to choice. The objective is that of pre- 
dicting the ordering of individuals along an un- 
known gradient based on species scores. The mea- 
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Fig. 3. Response trajectories for several species along a gradient 
(a) and a standard average trajectory (b). 

sured responses Yfor a set o fp  species are assumed 
to be a function of the levels of an environmental 
influence to be approximated by a set of ordination 
scores X (Fig. 3a). Hence Y = f l X l m ) ,  where m 
represents a set of parameters of the response 
graphs. For any point X on the gradient (abscissa) 
in Figure 3b, a linear distance (A) tO a second point 
X + A is defined. The figure shows that this dis- 
tance is related to the species response distance 
f i X ) - f i X +  A). Although this new distance de- 
pends on the position of X along the gradient, a 
distance which is unique to the type of curve which 
fiX] m) expresses can be derived. Furthermore, the 
restriction regarding a single gradient can be re- 
laxed and a similar construction on each of t gra- 
dients can be produced, assuming the same type of 
species response. 

Now, let A = IX i j -  Xikl be the ith gradient dis- 
tance between individualsj and k. Then the unique 
distance between individualsj  and k on gradient i 
(the compositional distance of Orl6ci, 1978, 1980) is 

d2q, kli) =~Y b'(Xlm) - f i x +  Aim)}2 dX (1) 

The power 2 was chosen because the integration is 
possible and because it leads to an interpretable 
formula. The composite compositional distance, 

dZU, k) = Z deU, kli), i= 1 . . . . .  t (2) 

gives the distance between individualsj and k. What 
has been accomplished is a definition of the gra- 
dient distance in relation to a distance based on an 
assumed non-linear species response. Since this dis- 
tance uses information about the actual species re- 
sponses, it can be expected to have potential utility 
when linear species responses cannot be assumed. 

Next, a few specific types of species responses are 
selected, and equation (1) solved to give actual dis- 
tance (resemblance) measures. 

The symmetric Gaussian curve was chosen since 
responses of this type (bell-shaped) have been re- 
ported many times in the literature and are thought 
to be common (Whittaker, 1956, 1967; van Groe- 
newoud, 1965). The second choice was the skewed 
Gaussian, since this response type has also been 
noted (Austin, 1979). Finally, a parabolic curve, 
which has the basic bell shape but lacks the tails, 
was chosen. In nature such a response might be 
expected since a species might be out-competed or 



otherwise selected against at the extremes of its 
potential range (Forsythe & Loucks, 1972). 

Der iva t ion  

The integral in equation (1) is now solved. It is 
noted that standardization of various parameters 
preceded integration in order to obtain a distance 
measure independent of these parameters. Note, 
however, that a substantial loss of general utility 
may be a consequence of standardizing too many 
parameters. 

For the Gaussian function, 

y = B e  - ( x  - a)2/2s (3) 

where B & s are related to height and width respec- 
tively, only standardization to unit height and 
width (m = (a, I)) is needed since the constant a (the 
level of influence at which response is maximal) 
drops out following integration. After transforma- 
tion, the function becomes, 

y = e - ( X - a ) 2 / 2  (4) 

Thus 

d2(j, kli) = ~ {e -(X- ai)2/2 - e-( X + A ai)2/2}2 d X  (5) 

¢c 2(1 - sijk) 

where sqk = e-A2/4. A similar form was first report- 
ed by Gauch (1973). 

For the skewed Gaussian function, 

y = a X  b e cX (6) 

the standardization involves setting the parameters 
a, b and c to unity. Since the mode or abscissa of 
vertex Xm -- b / c ,  an 'extra' or 'more severe' stan- 
dardization is used compared to the Gaussian. The 
distance derived following integration is 

d2(Lkli)oc 1 + (2(A2 + A - l ) e - 2 a -  2Ae A (7) 

For the parabolic function 

y = - a X  2 + b X  + c (8) 
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the standardization involves setting a = b = 1 and 
c = 0. This is 'more severe' than that of the skewed 
Gaussian, since Xm = - b  / 2a. The derived distance is 

d2Gk l i )  oc 3A4 + A2 (9) 

Test ing 

The next phase is testing the technique (resem- 
blance measure plus method). MDS can incorpo- 
rate any one of the distance formulae as options for 
the ordination configuration. The original configu- 
ration distances vary, conforming to the ordination 
configuration distances. In this early stage of devel- 
opment it has been necessary to make some restric- 
tions before generating the test data sets. They are: 
l) a single gradient, 2) a few species (10) with the 
same type of response, and 3) random parameters 
for the response curves, within certain ranges. The 
gradient is conceived as being very broad, ranging 
between two extremes. A range of individual posi- 
tions was defined between these two extremes 
where species optima would have an equal (ran- 
dom) chance of occurring. Ranges of constant 
probability were also chosen for parameters defin- 
ing the height and width of the curves. The con- 
struct simulated the random appearance and dis- 
appearance of species along the gradient and im- 
plied that individuals (vegetation plots) had fewer 
species the further they were located from the mid- 
dle of the gradient. 

One data set was generated with Gaussian species 
responses whereas six sets each were generated for 
skewed Gaussian and parabolic responses. This was 
done in order to compare the results for consistency 
due to the 'extra'  standardization. Beta diversity 
(Whittaker, 1972) ranged from 0.06 hc for the 
Gaussian set to 3.5 hc for the parabolic sets. 

Results 

The Gaussian data set produced 2D ordinations 
as illustrated in Figure 4. The first (Fig. 4a) resulted 
from the maximum variance option. Repetitions 
with the random option resulted in the same basic 
open shape as shown in Figure 4b. This was the only 
combination of distance measure and option which 
produced an ordination which is distinctly not a 
horseshoe. Results from the skewed Gaussian and 
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Fig. 4. Results from MDS using a Gaussian data set: (a) horseshoe-shaped, stress = 0.0089 and (b) open-shaped, stress = 0.013. 

parabol ic  data  sets, using the m a x i m u m  variance 
opt ion,  are given respectively in Figures 5 and 6. 
The curves are asymmetr ic  horseshoe-shaped in 
both distance options. 

Discuss ion  

In general, two aspects of  ordinat ion efficiency 
need to be considered.  The first is the possibility 

that  a solution may represent a scrambling of  the 
true ordering, even though  the a lgor i thm and re- 
semblance measure used are theoretically approp-  
riate. Problems of  this sort may  arise, for example, 
f rom r a n d o m  variat ion (noise) in the data. In addi- 
tion, a complex ordinat ion algori thm like M D S  has 
certain idiosyncrasies (particularly the problem of 
local minima) which may result in a misordering. 
The second aspect is the arch or  horseshoe effect. 
Two examples are given (one in P C A  and another  

O 
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Fig. 5. Results from MDS using skewed Gaussian data sets: (a) involuted, asymmetric horseshoe-shaped, stress = 0.117 and (b) 
involuted, asymmetric horseshoe-shaped, stress = 0.118. 



Fig. 6. Result from M DS using a parabolic data set. Asymmetric 
horseshoe-shaped with much involution, stress = 0.077. 

in MDS, Figs. Ic, d and 2) showing that a linear 
resemblance measure used in ordinating non-linear 
data produces an involuted, horseshoe-shaped or- 
dination configuration. Kendall (1971) points out 
that the involution of the horseshoe implies that, 
without knowing the number of gradients a p r i o r i ,  

an ordering of individuals may be scrambled. This 
can be visualized by taking a 2D involuted horse- 
shoe and projecting it onto a single dimension 
(line). The points at the involuted ends will be 
mixed in with the middle ones so that the ordering 
produced is very different from the true one. While 
some have felt that a linear ordering is necessary 
and have developed approaches to straightening 
the ordination configuration (Kendall, 1971; Hill & 
Gauch, 1980), .others (Feo!i & Feoli Chiapella, 
1980) suggest that the horseshoe effect is revealing 
rather than detrimental to interpretation of the re- 
suits. 

Our approach in deriving an improved ordina- 
tion has been to focus on the use of resemblance 
measures and to illustrate their importance in effec- 
tively mapping the data structure from species 
space into ordination space. Derived measures are 
combined with the MDS method to produce a non- 
linear ordination technique. The results using two 
distance measures derived for the skewed Gaussian 
and parabolic response are considered first. It has 
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been noted that 'extra' standardization was needed 
in developing these measures in comparison with 
the Gaussian. We attribute the relative lack of suc- 
cess of these measures in handling the arc A B  to 
these 'extra' standardizations in their derivation. 

With respect to the Gaussian measure, MDS per- 
formed differently depending on which initializa- 
tion option was used. Since the algorithm is one of 
minimization, different solutions may be obtained 
from different initial configurations: various local 
minima are conceivable, each returning a different 
solution. In general the maximum variance option 
produced less desirable results than the random 
option. This is because there is no bias in the ran- 
dom option as to the shape of the initial configura- 
tion. As such the final result is more a consequence 
of the distance measure and the method. Other 
approaches for initializing MDS include using the 
results of a linear ordination such as PCA. This also 
tends to give a 2D configuration like Figure ld, 
since the initial PCA configuration is a horseshoe. 
From a developmental and exploratory perspec- 
tive, the Gaussian measure derived here in conjunc- 
tion with MDS and the random option has been 
shown to be workable within the given set of as- 
sumptions. 

The Gaussian measure was derived by integrat- 
ing a single response function. Why were not all 
response curves treated individually so as to Obtain 
a more effective measure? Each curve could be inte- 
grated, providing the widths of response curves 
were first standardized. The results for each species 
would be the same (of. equation (5)). Equation (5) 
could then be used as the collective function relat- 
ing species to gradient position. Hence the only 
difference so far is the approach. Another question 
relates to the standardization of the widths (a) of 
the response graphs. If the width for a single species 
(h) can be made more realistic by incorporating o 2, 
integration will give the result d2(j, kli, y(o~)) which 
is related to equation (5) but differs by some func- 
tion of the width. The compositional distance then 
becomes, 

dZU, klO = daU, kli, flo~)), h = 1 . . . .  ,p  

where p is the number of species. The problem is 
that since a is a measure of X, until the gradient is 
determined, the o 3 remain unknown. This suggests 
a possible feedback algorithm, in which the dis- 
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tance measure could be made more effective at each 
step. 

Finally, since the perspective of  ordinat ion,  and 
indeed that of  data  analysis, is often exploratory,  
concern  is often directed towards  obtaining in- 
sights. At tent ion in this paper  has been focused on 
using resemblance measures which are in some way 
based on the same type of  non-l ineari ty as in the 
data.  However ,  it is not  always possible apriori to 
know much about  the data  structure. In reference 
to Figures 4b, 5 & 6, distinctive curves or 'signa- 
tures '  are produced in the analysis, depending on 
the measure used, which reflect the underlying data  
structure. This would also be expected to happen 
for  data  with noise. In such a case, a cloud may 
result showing an overall trend much like one of  the 
known  signatures. Hence, it is possible, by trial, to 
obtain insight into the type of  non-linear species 
response. 

The M D S  approach  to ordinat ion used here is 
one of  many  which may give an improvement  in the 
handl ing of  non-linearities in the data. The others 
include curve fitting, scaling, and a posteriori de- 
trending. There are essential differences a m o n g  
these approaches  in the conceptual iza t ion of  the 
objective and the definition of  optimality. With the 
methods  tested here, a solut ion is regarded as being 
opt imal  if the ordinat ion succeeds in unfolding a 
non-l inear  configurat ion.  (In this respect, only the 
Gaussian response measure has been shown to be of  
utility, since the parabolic  and skewed Gaussian 
measures both  returned the horseshoe.) This im- 
plies that the type of  species response assumed in 
the derivat ion of  the distance measure is most  likely 
correct. I f  a horseshoe type ordinat ion configura-  
t ion is obtained,  the original assumpt ion  is deemed 
inappropria te .  The actual  shape of  the ordinat ion 
conf igura t ion  may,  however,  suggest what  type of  
response is depicted by the data.  In other  words,  
even if the solut ion of  M D S  is not  optimal,  the 
ordinat ion still conveys informat ion  about  proper-  
ties of  the data  which relate to non-linearity. 

Similar advantages  can be seen with curve fitting, 
such as in the polynomial  ordinat ion of  Phillips 
(1978). Here, however,  the curvature  anticipated by 
the model  before fitting is not  concerned directly 
with the type of  response exhibited by the species. 
Thus as in M D S ,  non-l inear trends are not removed 
before the user has a chance to detect their presence. 
By contrast ,  de t rending (Hill & Gauch,  1980) re- 

moves trends f rom the data  that  the user of  non-li- 
near ordinat ions  hopes to detect. This may be com-  
pletely justifiable and may help greatly in scru- 
tinizing the ordinat ion results, but it cannot  be 
condoned  as a general strategy. 
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