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Abstract. Dynamic crack growth is analyzed numerically for a plane strain bimaterial block with an initial central 
crack. The material on each side of the bond line is characterized by an isotropic hyperelastic constitutive relation. 
A cohesive surface constitutive relation is also specified that relates the tractions and displacement jumps across 
the bond line and that allows for the creation of new free surface. The resistance to crack initiation and the crack 
speed history are predicted without invoking any ad hoc failure criterion. Full finite strain transient analyses are 
carried out, with two types of loading considered; tensile loading on one side of the specimen and crack face 
loading. The crack speed history and the evolution of the crack tip stress state are investigated for parameters 
characterizing a PMMA/A1 bimaterial. Additionally, the separate effects of elastic modulus mismatch and elastic 
wave speed mismatch on interface crack growth are explored for various PMMA-artificial material combinations. 
The mode mixity of the near tip fields is found to increase with increasing crack speed and in some cases large 
scale contact occurs in the vicinity of the crack tip. Crack speeds that exceed the smaller of the two Rayleigh wave 
speeds are also found. 

1. In troduct ion  

Fracture along or near an interface between phases plays a major role in limiting the toughness 
and ductility of  multi-phase materials. This has motivated a substantial body of  work on failure 
at interfaces. Nevertheless, a fracture mechanics framework for interfacial crack initiation and 
growth has been developed only relatively recently, see e.g., Rice [1], Shih [2], Hutchinson 
and Suo [3]. This late development  is due, at least in part, to the fact that the identification 
of  crack tip characterizing parameters for interfacial cracks is much less straightforward than 
for cracks in macroscopically homogeneous solids. For example, the elastic crack tip fields 
for a stationary interface crack in a body subject to pure mode I loading have both mode I 
and mode  II components.  Furthermore, because these fields are oscillatory, the mode mixity, 
the ratio of  the mode I and mode II components,  varies with distance from the crack tip. As 
a further complication, the near tip fields become compressive and give rise to contact across 

the bond line. 
The extension of  static fracture mechanics for homogeneous solids to interracial fracture 

requires experiment  to provide the toughness as a function of  the mode mixity, with experi- 
mental studies showing that the apparent toughness increases as the ratio of  mode II to mode 
I increases, as discussed, for example, in Hutchinson and Suo [3]. Since the mode  mixity 
depends on distance from the crack tip, specification of  the mixity also involves a characteris- 
tic length parameter. This is in contrast to the situation for homogeneous brittle solids where 
mode I crack initiation is characterized by a scalar parameter, e.g., a critical value of  the stress 

intensity factor. 
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Interfacial fracture mechanics is even more complicated when crack growth and crack 
arrest under dynamic loading conditions are considered. For homogeneous brittle materials, 
the energy release rate as a function of crack speed (and possibly the amount of crack growth) 
is assumed to be a material property and known from experiment. Together with the singular 
elastic fields, which have an amplitude that depends on the loading, they give rise to a 'crack 
tip equation of motion,'  Freund [4]. A similar approach for interfacial cracks would involve 
assuming that the energy release rate as a function of crack speed, of mode mixity and of 
the amount of crack growth is characteristic of a particular interface. Furthermore, the mode 
mixity varies with crack speed, Yang et al. [5], and the possible dependence on the crack 
speed of the characteristic length parameter used for specifying the mode mixity needs to be 
considered. 

Theoretical studies of dynamic interfacial crack growth have been inhibited by the analyt- 
ical complexity of the problem (even for crack growth along a bond line between two linear 
elastic materials) and by uncertainty concerning an appropriate fracture criterion. In spite of 
these difficulties basic problems of dynamic interfacial crack growth have been addressed by 
a number of authors, for example, Willis [6], Brock and Achenbach [7], Yang et al. [5], Liu et 
al. [8], Lo et al. [9]. In particular, Yang et al. [5] have obtained the singular fields for a crack 
growing dynamically along the bond line between two linear elastic materials. Their results, 
which pertain to crack speeds up to the Rayleigh wave speed of the more compliant of the 
two materials, give an oscillatory singularity, with the oscillation index becoming infinite at 
the smaller Rayleigh wave speed. Liu et al. [8] have presented crack tip singular fields for 
crack speeds greater than the smaller Rayleigh wave speed that are quite different from the 
sub-Rayleigh wave speed fields; for example, the order of the stress singularity depends on 
crack speed and is less than 1/2. 

Recently, Rosakis and co-workers [8, 10, 11] have carried out a series of experimental 
studies of dynamic interfacial crack growth that give the crack speed history and the crack 
tip stress and strain fields under well-characterized conditions. The experimental results show 
crack speeds exceeding the smaller Rayleigh wave speed, increased mode mixity with increas- 
ing crack speed and the development of a contact region along the bond line. Several attempts 
have been made to develop interfacial fracture criteria that are consistent with the experimen- 
tal results, [12, 13]. Lo et al. [9] have carried out finite element crack growth computations 
to simulate the experiments of Tippur and Rosakis [10]. They used a node release method 
in conjunction with a mode mixity and crack speed dependent critical energy release rate 
criterion. An iterative technique was used to obtain a criterion that gave a crack speed history 
consistent with the measurements. The extent to which such a criterion is characteristic of 
the interface and is independent of the specimen configuration and imposed loading history 
remains to be determined. 

In this investigation, computations of dynamic interfacial crack growth are carried out 
where the crack speed history and the effect of inertia on the apparent toughness are direct 
outcomes of the analysis. The basis for the theoretical framework is the cohesive surface 
decohesion formulation in Needleman [14]. Crack initiation and crack growth are calculated 
directly in terms of the properties of the materials and of the parameters characterizing the 
cohesive surface separation law, which include a strength and the work of separation per unit 
area. Hence, a characteristic length enters the formulation. This framework has been used to 
address a variety of issues involving separation of surfaces in solids; in particular, quasi-static 
crack growth in homogeneous solids and along interfaces, Needleman [15, 16], Tvergaard and 
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Hutchinson [17, 18], and dynamic crack growth in homogeneous solids, Xu and Needleman 
[19, 203. 

The specific problem analyzed is a planar bimaterial block with an initial central crack 
on the bond line. Plane strain conditions are assumed to prevail. Two types of loading are 
considered. In one case, a tensile load is applied to the material on one side of the bond line, 
while the opposite side of the specimen is fixed. In the other case, a separation is prescribed 
along a portion of the crack faces. Here, there is a single cohesive surface along the interface 
between the two solids so that the crack is constrained to grow along the bond line. In a 
subsequent study, Xu and Needleman [21], potential surfaces of decohesion are interspersed 
throughout the material as in Xu and Needleman [19, 20], and crack growth off the bond line 
is possible. 

The focus in this investigation is on the evolution of the crack speed and of the crack tip 
stress and deformation fields for straight ahead crack growth. Calculations are carried out for 
a PMMA/A1 bimaterial. In order to explore the effects of elastic mismatch and of different 
wave propagation characteristics, calculations are also carried out for PMMA bonded to 
several artificial materials, the properties of which are tailored to explore the effects of various 
bimaterial characteristics on interfacial crack propagation. Also, for comparison purposes, 
calculations are carried out for a homogeneous PMMA specimen, but with a cohesive surface 
along the bond line that is identical to the one used in the bimaterial analyses. 

2. Problem formulation 

The cohesive surface formulation and numerical method follow Xu and Needleman [19], 
where further details are given. A convected coordinate Lagrangian formulation is employed 
with the initial undeformed configuration taken as reference, so that all field quantities are 
considered to be functions of convected coordinates, yi, which serve as particle labels, and 
time t. Relative to a fixed Cartesian frame, the position of a material point is denoted by x in 
the initial configuration and by ,~ in the current configuration. With the displacement vector 
and the deformation gradient defined as u = x - x and F = 0~/0x,  respectively, the principle 
of virtual work is written in the form (Xu and Needleman [22]) 

JV fS J& f O2n s: 5F dV - T .  ~SA dS = T .  5u dS - Jv P - ~  c~u dV, (1) 
int xt 

where s is the nonsymmetric nominal stress tensor, p is the density of the material in the 
reference configuration, A is the displacement jump across the cohesive surface and T = u .  s 
is the traction vector on a surface with normal u in the reference configuration. Also, If, Sext and 
Sint are the volume, external surface area and internal cohesive surface area, respectively. 

Computations are carried out for center cracked bimaterial specimens, with initial height 
2]3 and initial width 2w, as sketched in Fig. l(a). Plane strain conditions are assumed to 
prevail and a Cartesian coordinate system is used as reference, with the yl _ y2 plane as the 
plane of deformation. The specimen consists of two materials bonded along y; = 0 with a 
crack of initial length 2ai along the bond line. At t = 0, the body is stress free and at rest, so 
that u(y 1, y2, 0) = 0 and 6@ 1 , y2, 0) = 0. Attention is restricted to deformations that remain 
symmetric about yl = 0, with the region analyzed numerically being yl >1 0. 

Two types of loading are applied to the specimen. For both types of loading, symmetry 
about the y2-axis requires 

~t 1 = 0 ,  T 2 = 0 on yl = 0 (2) 
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Fig. 1. (a) Geometry of the center cracked specimen. (b) Sketch illustrating the crack face loading. 

and the lateral sides remain traction free, so that 

T a = 0 ,  T 2 = 0  on y l = w .  (3) 

In one case, tensile loading is applied to the boundary of the specimen along y2 = L and 
the opposite boundary (y2 = - L )  is fixed in the ya-direction. The boundary conditions on 
y2 = -4-L are, 

U 2 = j"  V(t) dr, T 1 = 0 on y2 = L, (4) 

u 2 = 0 ,  T 1 = 0  on y 2 = _ L ,  (5) 

T 1 = T  2 - 0  on y 2 = 0  and O<~yl<~ai. (6) 

In the other case, the loading is applied on the crack surfaces. The loading width is 2b so 
that T 1 --- T 2 = 0 on y2 = 0 and b < yl < ai. The loading is applied symmetrically about 
yl = 0 as indicated in Fig. l(b), with 

u z = / V ( t )  dt, T 1 = 0  on y 2 = 0  + and 0~<yl~<b,  (7) 

u 2 = / - V ( t )  dt, T 1 = 0  on y 2 = 0 -  and 0~<yt~<b,  (8) 

and with stress free boundaries so that in addition to (3), 

T 1 = 0 ,  T : = 0  on y 2 = + L .  (9) 
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Although the loading (7) and (8) on the crack faces is symmetrical, the crack tip is not loaded 
symmetrically because of the different wave speeds and elastic moduli of the bimaterial 
constituents. 

In (4), (7) and (8), V(t) is taken as 

Vlt/tr, for t  ~ t~; 
V(t) 

V1, for t > t~ ' 
(10) 

with V1 being a prescribed velocity and the rise time, tr, fixed at 0.1 #s, which is short enough 
to simulate impact loading, while being long enough to avoid numerical difficulties associated 
with step loading. The two loading cases are referred to subsequently as the 'boundary loading' 
and 'crack face loading' cases, respectively. 

As in previous work, e.g. [14], [19], the continuum is characterized by two constitutive 
relations; a volumetric constitutive law that relates stress and strain, and a cohesive surface 
constitutive relation between the tractions and displacement jumps across one or more cohesive 
surfaces. Attention is confined to a single cohesive surface along the line y2 = 0 in front of 
the initial crack, so that the crack is constrained to grow along the bond line. 

The volumetric constitutive law for each material is taken to be that for an isotropic 
hyperelastic solid so that 

OW 
S =  0E W =  ½E:L:E. (11) 

Here W is the strain energy density and L isthe tensor of isotropic elastic moduli with two 
elastic constants, Young's modulus E and Poisson's ratio u. The second Piola-Kirchhoff 
stress, S, and the Lagrangian strain, E, are given by 

S = s . F  -T E =  ! ( F T . F - I )  (12) 
2 

where I is the identity tensor, ( )-1 denotes the inverse, and ( ):r denotes the transpose. 
The constitutive law for a cohesive surface relates the traction and displacement jump 

across the surface and is taken to be elastic so that any dissipation associated with separation 
is neglected. The traction across the surface is given by 

T - 04  
0 A "  (13) 

Because the cohesive surface constitutive relation is one between the traction and displace- 
ment jump across the surface, a characteristic length is introduced. The behavior depends on 
the ratio of the specimen size to this characteristic length. The specimen dimensions in the 
calculations here are of the order of 103 - 104 times the cohesive surface characteristic length. 
In this regime, the response with a crack-like defect depends mainly on the cohesive surface 
strength and work of separation, and is not sensitive to details of the potential shape, [15, 
161. 

In two dimensions, the specific form used for the potential 4~ is one given in Xu and 
Needleman [23] that allows for tangential, as well as normal, decohesion 
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Fig. 2. (a) Normal traction, Tn, across the cohesive surface as a function of A. with At = 0. (b) Shear traction, 
Tt, across the cohesive surface as a function of At for An - 0. 

¢ ( A )  = q5 n + ¢ n e x p  - 

X [ 1 - r + - ~ ]  l r_  ql [ q+  (r----7-i -) ~ ]  e x p \  52 ] , (14) 

where An = n • A and A t = t • A, with n and t as the normal and tangent, respectively, to 
the surface at a given point in the reference configuration. Also, q = e t /¢n  and r = A*/an, 
where A~ is the value of An after complete shear separation with normal traction Tn = 0. 
The normal work of separation, en, and the shear work of separation, et,  can be written as 

d en = eCrmax~Sn et = rmax~St. (15) 

Here, e = exp(1), and O'ma x and rmax are the cohesive surface normal strength and tangential 
strength, respectively, and CSn and ~t are corresponding characteristic lengths. 

Figure 2(a) shows the normal traction across the surface, Tn, as a function of An with 
At = 0. The maximum value of -T~  is amax and occurs when An = 5~. The variation 
of shear traction Tt with At when An = 0, is shown in Fig. 2(b). The maximum value of 
ITtl = "/'max is attained when IAtl = v ~ t / 2 .  

Although a full finite deformation formulation is used, the overall response is accurately 
described by linear isotropic elasticity, except locally where new free surface is being created. 
Key parameters are the elastic wave speeds and the elastic mismatch parameters introduced 
by Dundurs [24]. For each material, the speeds of dilatational, shear and Rayleigh surface 
waves are (see, e.g., Freund [4]) 

t E(1 - u) ~/ E 
Cd = p(1 + u ) ( 1 -  2u) '  c, = 2p(1 + u) '  
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0.862 + 1.14u 
cR = cs (16) 

l + u  

For static plane problems of bimaterials, Dundurs [24] observed that isotropic elastic 
solutions depend on only two non-dimensional combinations of the elastic moduli. Dundurs' 
[24] elastic mismatch parameters are defined as 

E~(1 - u 2) - Eb(1 - u2) 
O~ 

E o ( 1  - + E (1 - 

1 E a ( 1  - + - Eb(1 - 2 a)(1 + (17)  
/3 = 2 E ~ ( 1 - u ~ ) + E b ( 1 - u  2) ' 

where the subscripts a and b refer to the two materials. 
For a stationary interface crack, the singular near-tip fields give rise to tractions o n  y2  _ 0 

directly ahead of the crack tip that have the form (England [25], Erdogan [26], Rice and Sih 
[27], Rice [1]), 

T2 + iT 1 (/1-(1 q- it(2)(yl)i~ i = V/-Ui -, (18) 
- 2 , / 5 7 £  

where 1(1 and K2 are, respectively, the mode I and mode II stress intensity factors and the 
oscillatory index e is defined by 

1 1 - 9  
c = - -  I n - -  (19) 

2re 1 + f l "  

The static interfacial crack tip fields differ from those for homogeneous materials in several 
significant respects, [1-3]. First, near-tip interface crack tip fields are mixed mode, involving 
both tension (mode I) and shear (mode II), for purely tensile remote loading. The ratio of 
shear to normal traction ahead of the crack tip varies with distance from the tip due to the 
oscillatory nature of the singularity. Furthermore, the normal traction on the bond line becomes 
compressive implying that contact occurs in the vicinity of the crack tip. The extent of the 
contact region and how close it is to the crack tip depends on the value of e and on the remote 
loading. For values of g characteristic of actual bimaterial systems and for tensile loading of 
the sort considered here, contact for a stationary crack occurs extremely close to the crack 
tip; at distances where the idealization of a mathematically sharp crack in a linear elastic 
medium is questionable (see, for example [3]). For a dynamically running interface crack, the 
value of e depends on the crack speed as well as on the elastic constants and, as the crack 
speed approaches the smaller of the two Rayleigh wave speeds, e --+ oo, Yang et al. [5]. The 
implications of this are that at high crack speeds (but at speeds less than the smaller Rayleigh 
wave speed) the strength of the mode II component increases with crack speed, and that 
contact occurs over a larger region and further from the crack tip than for the corresponding 
stationary crack. 

The generalization of Rice's [28] J-integral for dynamic loading conditions can be 
expressed as, Nakamura et al. [29], 

• [JA [ Ozui P--~-Ou i (Oui~ Jl dA, (20) J = f [ ( W  -t- t ~ ) d y  2 -  T*ls, i, 1 ds]- i -  l | P T t ~ i ,  1 - t 8t ) , l  JP L U~ - 
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where W is the strain energy density given in (11), [ (  is the kinetic energy 

K = lp  Oui Oui 
Ot Ot ' (21) 

P is a path in the reference configuration surrounding the crack tip (for the case where crack 
face loading r intersects the crack face in b < yl < ai) and A is the area inside the contour 
r .  For an interface crack constrained to grow parallel to the yl-axis, the value of J in (20) 
is independent of the particular path I ~ surrounding the crack tip. Also, for an ideal crack, J 
is the energy release rate in the limit F --+ 0 when certain conditions are met, Nakamura et 
al. [29], which involve, at least, the crack speed being less than the smaller Rayleigh wave 
speed. 

The finite element discretization is based on linear displacement triangular elements that are 
arranged in a 'crossed-triangle' quadrilateral pattern. When the finite element discretization of 
the displacement field is substituted into the principle of virtual work (1) and the integrations 
are carried out, the discretized equations of motion are obtained as 

M02U = R, (22) 

where U is the vector of nodal displacements, M is the mass matrix and R is the nodal force 
vector consisting of contributions from the area elements and the cohesive surfaces. A lumped 
mass matrix is used in (22) instead of the consistent mass matrix, since this has been found 
preferable for explicit time integration procedures, from the point of view of accuracy as well 
as computational efficiency, Krieg and Key [30]. An explicit time integration scheme that is 
based on the Newmark fl-method is used to integrate (22) to obtain the nodal velocities and the 
nodal displacements (Belytschko et al. [31]). Further description of the numerical procedure 
can be found in [19]. 

Initially, there is a well-defined crack tip location. Once crack growth initiates, this is no 
longer the case because of the continuous dependence of the cohesive surface tractions on 
the displacement jump A. For presentation of the results, the largest value of yl for which 
An ) 5~5n is recorded together with the current time. This value of yl is denoted by a and is 
identified with the current crack tip position. A quadratic polynomial is fitted through three 
points of the a versus t curve, say an- l ,  a,~ and an+a, and the slope of this quadratic at tn is 
taken as the crack speed at tn,/~n. In [19], it was shown that the predictions of crack location 
and crack speed were not sensitive to the choice of using other values of An to define the 
crack location. 

3. Numerical results 

The geometry of the specimen is specified by L = 2.8 mm, w = 3.05 mm, ai = 0.25 mm 
and, for the crack face loading cases, b = 0.2 mm (see Fig. 1). The specimen dimensions 
are taken to be small for numerical convenience, but are large enough, compared with the 
cohesive surface characteristic length, for crack-like response to be obtained. The main effect 
of the small specimen size is the relatively short time interval before wave reflections from 
the specimen surfaces reach the crack tip. 

The finite element mesh consists of 23,300 quadrilateral elements and 94,920 degrees of 
freedom, with a uniform region around the interface ahead of the initial crack surrounded by 
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a i 

Fig. 3. Finite element mesh near the initial crack tip. Each quadrilateral consists of four 'crossed' triangles. The 
uniform mesh region extends for 400 quadrilaterals in front of the initial crack tip, but an extent of only 43 
quadrilaterals is shown. In the computations here, ai is always taken to be 0.25 mm. 

a graduated mesh out to the specimen boundaries. The uniform region has 400 × 20 square 
elements, with side length 0.004 mm (see Fig. 3). 

The parameters characterizing the cohesive surface along the bond line are: O'max = 

162.0 M P a  ( E P M M A / 2 0 ) ,  7-max = 377.7 MPa and (5~ = ~t = 4.0 x 10 .7 m, so that q = 1 
with q~ = ~bt = 176.2 J /m 2. The remaining cohesive parameter ~ is taken to be zero. The 
magnitude of O'ma x is half that used to characterize homogeneous PMMA in [19], and the value 
of the work of separation is close to the value of the energy release rate at crack initiation 
(150 J /m  2) measured by Tippur and Rosakis [10] for a PMMA/A1 bimaterial. The side length 
of the quadrilaterals in Fig. 3 is 1.6 times that of the finest of the meshes in [19], where the 
same value of ~ was used. 

Experimental results, e.g., Liechti and Chai [32], show a strong dependence of interracial 
toughness on mode mixity (the ratio of shear to tension near the crack tip). However, this does 
not necessarily mean that the intrinsic toughness of the cohesive surface depends on the mode 
mixity. It may very well be that this effect arises because of the change in near tip fields. For 
example, as suggested by Liechti and Chai [32], increased shear can tend to facilitate inelastic 
deformation. In any case, in the present calculations, there is no intrinsic dependence of the 
interface toughness on the mode of separation. 

3.1. DYNAMIC CRACKING ALONG A PMMA/A1 INTERFACE 

The material parameters and elastic wave speeds for PMMA and aluminum are given in Table 
1. Dundurs' parameters (17) and the oscillatory index e in (19) for the PMMAJA1 combination 
are listed in Table 2. 

Figure 4(a) shows curves of crack speed, ~, versus time for boundary loading on the PMMA 
side with 171 = 15 m/s. (The very high frequency oscillations in the crack speed versus time 
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Table 1. Material properties 

Material E(GPa) u p(kg/m 3 ) ca(m/s) cs (re]s) cR(m/s) 

PMMA 3.24 0.35 1190 2090 1004 938 
A1 80.0 0.3 2700 6316 3376 3127 
Material A 6.44 0.15 5950 1069 686 616 
Material B 6.44 0.15 2380 1690 1085 974 
MatedalC 80.0 0.35 29380 2090 1004 938 

Table 2. Dundurs' parameters and oscillatory indices 

Bimaterial combination c~ /3 e (static) 

PMMA/A1 -0.9194 -0.21 0.06784 
PMMA/material A -0.2817 0.0 0.0 
PMMA/material B -0.2817 0.0 0.0 
PMMA/material C -0.9222 -0.2128 0.06879 

curves are a consequence of the numerics.) Crack growth starts soon after the arrival of the 
loading wave at t = 1.34 #s. Because of the impedance mismatch across the bond line, some 
of the wave is reflected and some is transmitted. The transmitted wave is reflected back by 
the fixed boundary at if2 = - L  and arrives at the interface at t = 2.23 #s which causes 
an increase in crack speed. The crack speed exceeds the Rayleigh wave speed of PMMA 
and then decreases a little when the compressive reflected wave arrives at t = 3.11 #s. For 
comparison purposes, crack speed versus time curves for a homogeneous PMMA specimen, 
with the same bond line cohesive properties, are shown in Fig. 4(a) for impact velocities of 
VI = 30 m/s and V1 = 15 m/s. Since both halves of the specimen are PMMA, there are no 
wave reflections along the bond line. Crack growth starts soon after the arrival of the loading 
wave at t = 1.34 #s and the crack speed rapidly reaches a constant. With V1 = 30 m/s,  
this constant is the Rayleigh wave speed while with V1 = 15 m/s, the limiting crack speed 
is 89 percent of the Rayleigh wave speed. For a given impact velocity, the interface crack 
reaches a higher speed than does a corresponding crack in a homogeneous solid. Also, the 
crack acceleration, the time interval over which the more or less steady crack speed is reached, 
is smaller for the interface crack than for the homogeneous solid. 

Curves of the J-integral (20) versus time are shown in Fig. 4(b) for the three cases in 
Fig. 4(a). Crack growth begins when J has increased to Cn (as it should, Rice [28]). The 
path integral J was computed on several contours ignoring any contribution of the cohesive 
surface; sufficiently far away from the current crack tip path independent J values were 
obtained. For homogeneous PMMA, J is nearly constant during the early stages of crack 
growth; with V1 = 15 m/s,  J slowly exceeds ¢~, while with V1 = 30 m/s,  J increases more 
rapidly. For the crack along the PMMA/A1 bimaterial interface, growth also initiates when 
J ~ Cn, J is then nearly constant for some time interval and then oscillates. The mean value 
of J increases as the crack speed increases. 
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Fig. 4. Crack speed, h, versus time, t, (a) and J-integral versus time (b) for an interface crack between PMMA 
and aluminum with boundary loading velocity V1 = 15 m/s. For comparison purposes results are also shown for 
homogeneous PMMA with V1 = 30 m/s  and V1 = 15 m/s. In (a) the dashed line indicates the Rayleigh wave 
speed of PMMA and in (b) the dashed line corresponds to J = q~,,. 

Since the crack is subject to tensile loading, the mode of crack growth in homogeneous 
PMMA is mode I. On the other hand, for the PMMA/A1 interface crack, the mode of crack 
opening involves both mode I and mode II components, with an increasing mode II contribution 
as the crack speed increases. This is seen in Fig. 5, which shows the normal, A~,, and tangential, 
At, displacement jumps across the bond line near the current crack tip at four stages of crack 
growth. Note that the steep slope of the curves of A~/8n versus y~ near the crack tip in Fig. 5 
indicate that the crack tip location is not too sensitive to the value of An/Sn used to identify 
it. In the latter three stages, Figs. 5(b), 5(c) and 5(d), the crack speed exceeds the PMMA 
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Fig. 5. Normal  and tangential components  o f  the displacement  jump across the bond line near  the current crack 
tip for an interface crack be tween P M M A  and aluminum with boundary loading velocity 1/l = 15 m / s .  (a) At  
t = 1.8/zs,  a = 0.394 mm and ~ = 784 m/s .  (b) At t = 2 .8/zs ,  a = 1.295 m m  and & = 961 m / s .  (c) At  
¢ = 3.0 #s,  a = 1.491 mm and/~ = 974 m / s .  (d) At t = 3.2/zs,  a = 1.684 mm and ~ = 970 m / s .  

Rayleigh wave speed. At t = 1.8 #s, Fig. 5(a), the crack opening mode is clearly mode I 
dominated. The relative magnitude of the tangential component increases and at t w, 2.3 #s, 
the normal and tangential opening components are about equal ahead of the crack. Figure 5(b) 
shows the situation at t = 2.8 #s, where A t / ~  exceeds An/~ ,  (recall that in the calculations 
here ~ = ~) .  At t = 3.0 #s(a  = 1.491 mm), a contact zone develops in front of the crack 
tip and at the last stage shown, the extent of the contact zone (where A~ < 0) is about 18 #m, 
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Fig. 6. Contours of physical components of Cauchy stress at t = t.8 #s(a = 0.394 mm and h = 784 m/s) for 
an interface crack between PMMA and aIuminum with boundary loading velocity V1 = 15 mJs. The upper half 
of the specimen is PMMA and the lower half is aluminum. The extent of the region shown is 0.083 mm in the 
5,1-direction and 0.076 mm in the y2-direction, (a) Axial component ~r22. (b) Shear component o~12. 

which is 45 ~.a. The  m a x i m u m  compress ive  displacement  in the contact zone in Fig. 5(d) is 
about 6~. In Fig. 4(b), the oscillation in the value of  J begins at ~ 2.4 #s,  which in Fig. 5 
corresponds to a shift f rom a mode  I to a mode  II  dominant  opening mode. Also, the frequency 
of  the oscillations in J increases at about 3.0 #s, with the initiation of  bond line contact. 
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The change in crack opening mode is reflected in the surrounding field. Figures 6(a) and 
6(b) show contours of the physical axial component of Cauchy stress, 0-22, and of the physical 
shear component of Cauchy stress, 0-12, at t = 1.8 #s, respectively. At this time, the crack 
speed is 84 percent of the Rayleigh wave speed of PMMA. Although the mixed mode nature 
of the stress field is evident in Fig. 6, the near-tip stress state is mainly tensile. 

Contours of the physical axial component of Cauchy stress, 022 , at four times are shown 
in Fig. 7, while contours of the physical shear component of Cauchy stress, 0-12, at the same 
times are shown in Fig. 8. The four times in Figs. 7 and 8 are t = 2.0, 2.8, 3.0 and 3.2 #s, 
with corresponding crack speeds of 93 percent, 102 percent, 104 percent and 103 percent of 
the Rayleigh wave speed of PMMA. Comparing Fig. 6 with Figs. 7(a) and 8(a) shows the 
effect of increasing crack speed below the smaller of the two Rayleigh wave speeds of the 
bimaterial, while the remaining plots in Figs. 7 and 8 show stress distributions for crack speeds 
that exceed the smaller Rayleigh wave speed. 

With increasing crack speed, the region of high axial stress contracts on the PMMA side 
and the region of high shear stress expands. When the crack speed is less than the PMMA 
Rayleigh wave speed, the highest values of 0-22 Occur near the crack tip (Figs. 6(a) and 7(a)). 
However, when the crack speed is greater than the PMMA Rayleigh wave speed the largest 
values of 0-22 occur well off the bond line. As a result of the compressive traction that occurs 
because of contact, a region of negative 0-22 develops in front of the apparent crack tip. In Fig. 
8, the distance between the location of the maximum magnitude of the shear stress and the 
location of the apparent crack tip along the bond line increases as the contact zone grows. 

The dynamics of crack growth are quite different for the case of crack face loading. Figure 
9(a) compares curves of crack speed, ~, versus time for a PMMA/A1 bimaterial specimen and 
for a homogeneous PMMA specimen. In both cases, the impact velocity is V1 = 30 m/s. Crack 
growth starts somewhat after the arrival of the PMMA Rayleigh surface wave at t = 0.053 #s. 
As in the case of boundary loading, the crack speed for the bimaterial is significantly greater 
than for the corresponding homogeneous solid. For the PMMA/A1 bimaterial in Fig. 9(a), 
the crack speed eventually exceeds in Rayleigh wave speed of PMMA. For homogeneous 
PMMA, the crack speed at the termination of the calculation in Fig. 9(a) is about 64 percent 
of the Rayleigh wave speed of PMMA. 

The evolution of the dynamic J-integral (20) in Fig. 9(b) is also different for crack face 
loading than for boundary loading. Of course, crack initiation still occurs when J = qS~, Rice 
[28]. For homogeneous PMMA, J decreases slightly. A similar decreasing trend is seen for the 
PMMA/A1 bimaterial, until t = 1.60 #s, at which point J begins to increase and undergo high 
frequency oscillations. This coincides with the crack speed exceeding the PMMA Rayleigh 
wave speed. 

Figures 10(a) and 10(b) show the normal and tangential displacement jumps across the 
bond line at t = 1.6 #s and at ~ = 2.0 #s for the PMMA/A1 bimaterial with crack face loading. 
At t = 1.6 #s, a = 1.344 mm and & = 935 m/s, the crack opening mode is mode I dominated, 
while at t = 2.0 #s, a = 1.727 mm and/~ =983 m/s, which is 4.8 percent above the PMMA 
Rayleigh wave speed, the normal and tangential components are about equal ahead of the 
current crack tip. With crack face loading, no contact zone develops over the range of the 
calculation. Corresponding contour plots of axial and shear stress at t = 2.0 #s are shown in 
Fig. 1 l(a) and 11(b). The largest value of the axial stress component 0-22 in PMMA occurs 
well away from the bond line. 

The calculations are terminated when the crack nears the end of the constant mesh region. 
Thus, the development of a contact zone may eventually take place for the PMMA/AI specimen 
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Fig. Z Contours of  the physical axial component of Cauchy stress, ~r22, for an interface crack between PMMA and 
aluminum with boundary loading velocity Vi = 15 rrds. The upper half of the specimen is PMMA and the lower 
half is aluminum. The extent of the region shown is 0.083 mm in the yt.direction and 0.076 mm in the y~-direction. 
(a) At t = 2.0 as, a = 0.562 mm and h = 871 rigs. (b) At t = 2.8 #s, a = 1.295 mm and h = 961 rrds. (c) At 
t = 3.0 #s, a = 1.491 mm and h = 974 trds. (d) At t = 3.2 #s, a = 1.684 mm and ~i = 970 m/s. 

w i t h  c r a c k  f a c e  l o a d i n g .  H o w e v e r ,  t he  c a l c u l a t i o n s  h e r e  i n d i c a t e  tha t  i t  w o u l d  at l ea s t  r e q u i r e  

m o r e  c r a c k  g r o w t h  to  d e v e l o p  a c o n t a c t  z o n e  f o r  th i s  t y p e  o f  l o a d i n g  than  f o r  t e n s i l e  b o u n d a r y  

l o a d i n g .  
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Fig. 8. Contours  o f  the phys ica l  shear  c o m p o n e n t  o f  Cauchy  stress,  o12, for an interface crack be tween  P M M A  and 
a l u m i n u m  with bounda ry  loading veloci ty ½ = 15 rrds. The  upper  ha l f  o f  the spec imen  is P M M A  and the lower  
ha l f  is a luminum.  The  extent  o f  the region shown  is 0.083 m m  in the yl_direction and 0.076 m m  in the  y2-direction. 
(a) At  t = 2 .0  #s ,  a = 0 .562 m m  and h = 871 rrds. (b) At  t = 2.8 #s ,  a = 1.295 m m  and ~ = 961 m/s .  (c) At  
t = 3.0 #s ,  a = 1.491 m m  and h = 974 rrds. (d) At t = 3.2 #s ,  a = 1.684 m m  and / t  = 970 rrl/s. 

3.2. P A R A M E T E R  S T UDY 

In order to explore the role of stiffness and wave speed mismatch across the bond line 
on the crack growth response, calculations are carried out for various PMMA bimaterial 



Numerical simulations of dynamic crack growth 305 

1 2 0 0 . 0  . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  

1000.0 

800.0 

"~ 600.0 

400.0 

200.0 

0.0 
0.0 

V1=30 m/s, PMMA/AI 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

s, PMMA 

0.5 1.0 1.5 2.0 2.5 3.0 

t (gS) 

(a) 

2 5 0 . 0  . . . .  ~ . . . .  ~ . . . .  ~ . . . .  , . . . .  , . . . .  

200.0 

150,0 

~100.0 

50.0 

PMMA 
V1=30 m/s 

/ 
PMMA/AI 

V1=30 m/s 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

t ( ~ s )  

(b) 

Fig. 9. Crack speed, g, versus time, t, (a) and J-integral versus time (b) for an interface crack between PMMA 
and aluminum with crack face loading velocity V1 = 30 m/s. For comparison purposes results are also shown for 
homogeneous PMMA with Vi = 30 m/s. In (a) the dashed line indicates the Rayleigh wave speed of PMMA and 
in (b) the dashed line corresponds to J = ~bn. 

combinations. The elastic constants and density of the artificial materials in Table 1 are 
chosen to obtain certain mismatch characterfstics. The combination of properties so chosen 
are termed material A, material B and material C, with the corresponding PMMA bimaterial 
characteristics given in Table 2. Subsequently, for the case of boundary loading, the material 
on the loading side will be listed first; for example, PMMA/MA will be used to refer to the 
PMMA - material A bimaterial with loading on the PMMA side and MA/PMMA to refer to 
the PMMA - material A bimaterial with loading on the material A side. The material on the 
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Fig. 10. Normal and tangential components of the displacement jump across the bond line near the current crack 
tip for an interface crack between PMMA and aluminum with crack face loading velocity Vl = 30 m/s. (a) At 

= 1.6 tts, a = 1.344 mm and & = 935 m/s. (b) At t = 2.0 #s, a = 1.727 mm and & = 983 m/s. 

loading side occupies the part of  the specimen where ?/2 > 0. With crack face loading, P M M A  
is taken to occupy the region y2 > 0. 

Material  A has elastic properties for which the Dundurs '  parameter  fl in (17) and therefore 
the oscillatory index e in (19) is zero. Material A also has elastic wave speeds that are smaller  
than those of  PMMA.  The parameters/3 and c are also zero for material B,  but with the elastic 
wave  speed mismatch  much smaller than for the P M M A / M A  combination.  Additionally, both 
the shear wave  speed, ca, and the Rayleigh wave speed, cR, for material  B are greater than 
for PMMA.  The Dundurs '  parameters  for the P M M A / M C  combinat ion are essentially the 
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Fig. I1. Contours of physical components of Cauchy stress at t = 2.0/zs(a = 1.727 mm and d = 983 m/s) for 
an interface crack between PMMA and aluminum with crack face loading velocity ~ = 30 m/s. The upper half 
of the specimen is PMMA and the lower half is aluminum. The extent of the region shown is 0.083 mm in the 
yl.direction and 0.076 mm in the y2-direction. (a) Axial component cr22, (b) Shear component ~rlz. 

same  as for  PMMA/A1 ,  but with the elastic wave  speeds o f  material  C and P M M A  being  the 

same. 

A n o t h e r  poss ib ly  relevant  wave  speed is the Stonely  wave  speed. Stonely  waves  are 
interfacial waves  and whether  or  not  they can occur  depends  on  the material  proper ty  mi sma tch  

across the interface,  see e,g, Achenbach  [33]. The  P M M A / M C  bimaterial  is the on ly  one o f  
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Fig. 12. Crack speed, ~, versus time, ~, (a) and J-integral versus time (b) for interface cracks with e = 0 
(PMMA/MA and MA/PMMA). The loading velocity for PMMA/MA (boundary loading on the PMMA side) is 
V1 = 30 m/s and is V1 = 11.73 m/s for MA/PMMA (boundary loading on the material A side). In both cases, the 
stress carried by the wave is 74.6 MPa. In (a) the dashed lines indicate the Rayleigh wave speed of PMMA (1) 
material A (2), and in (b) the dashed line corresponds to J = ~bn. 

the four bimaterial combinations considered for which there is a real Stonely wave speed, 
which is 948 m/s. 

Figure 12 shows crack speed,/t, and J-integral versus time curves for PMMA/MA and 
MA/PMMA bimaterials subject to remote tensile loading. For PMMA/MA, where impact 
tensile loading is applied on the PMMA side, V1 = 30 m/s, while for MA/PMMA, the loading 
is applied on the material A side with VI -- 11.73 m/s. In both cases, the stress carried by 
the wave is 74.6 MPa. With the loading applied on the PMMA side, the crack starts to grow 
after the wave reaches the initial crack tip at t = 1.34 #s. The crack speed increases very 
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rapidly and reaches a plateau of 985 m/s, which exceeds the Rayleigh wave speed of PMMA 
by 5 percent. Perhaps more significantly, the crack speed is 160 percent of the Rayleigh wave 
speed of material A and is even close to (92 percent of) the dilatational wave speed of material 
A. When the loading is on the material A side, crack growth begins after the arrival of the 
loading wave at t = 2.62 #s, the crack accelerates and then grows at a rather constant speed 
that is the Rayleigh wave speed of MA (616 m/s). The transmitted wave is reflected back by 
the fixed boundary a t  y2 _ - L  and arrives at the bond line at t = 5.29 #s. The crack speed 
then increases to 670 m/s. 

In Fig. 12(b), for both PMMA/MA and MA/PMMA, crack growth begins when J has 
increased to ¢~ and the value of J is relatively constant while the crack speed increases. For 
PMMA/MA, J increase sharply at around 1.9 #s, which is when the crack speed reaches the 
Rayleigh wave speed of PMMA (which is the larger Rayleigh wave speed for the PMMA/MA 
bimaterial). At the end of the calculation, it is seven times ¢~. On the other hand, for loading 
on the material A side (MA/PMMA), J remains relatively constant at ¢~ and only increases 
slowly when the crack speed exceeds the Rayleigh wave speed of material A. 

The partitioning of kinetic and strain energy between PMMA and material A is shown in 
Fig. 13. In Fig. 13(a), which is for the case of boundary loading on the PMMA side, the strain 
energy and the kinetic energy in PMMA increase monotonically until t = 1.34 #s, which is 
when the wave arrives at the bond line. Since material A is stiffer, the reflected wave is tensile 
and the strain energy of the PMMA side continues to increase while the kinetic energy of 
the PMMA side decreases slightly. At t = 2.68 #s, the reflected wave reaches y2 = L, after 
which both the strain energy and the kinetic energy in PMMA increase. Due to the transmitted 
tensile wave, the strain energy and kinetic energy in material A increase monotonically. In 
Fig. 13(b), as the loading is on the side of the stiffer material (material A), the initial tensile 
wave is reflected back as a compressive wave at t = 2.62 #s. The strain energy in material 
A decreases but the kinetic energy increases until the reflected compressive wave reaches 
y2 z L at t = 5.24 #s. The transmitted tensile wave is reflected by the fixed boundary 
(y2 = - L )  at t = 3.96 #s after which the strain energy in PMMA increases while the kinetic 
energy in PMMA decreases. Since the material constitutive relations and the cohesive surface 
constitutive relation are elastic, no energy dissipation mechanisms are incorporated into the 
formulation. Although not shown here, it should be noted that the energy balance was checked, 
namely that the work done by the imposed loading was equal to the sum of the material strain 
and kinetic energies and the elastic energy stored in the cohesive surfaces. 

The contour plots in Fig. 14 show that when loading is applied on the PMMA side, the 
crack tip fields have a strong shear (mode II) component in the latter stages of crack growth. 
The largest values of the opening stress o-22 occur off the bond line. However, the largest shear 
stress magnitudes (negative values of a12) do occur near the current crack tip. The asymptotic 
crack tip field of Liu et al. [13] for an elastic solid bonded to a rigid substrate, with the crack 
speed greater than the shear wave speed of the elastic solid, has a singular line emanating 
from the crack tip across which infinite stress and velocity jumps occur. The orientation of this 
singular line is a function of the ratio of the crack speed to the shear wave speed of the elastic 
solid. Identifying material A with the elastic solid in the analysis of Liu et al. [13] because the 
elastic wave speeds of material A are much less than those of PMMA, even though Young's 
modulus for material A is greater than that for PMMA (see Table 1), gives a crack speed to 
shear wave velocity ratio of 1.44. This corresponds to the singular line being ~ 135 ° from 
the bond line, which is in good agreement with the location of the concentration in Fig. 14(a). 
The oscillating contours in Fig. 14 also suggest 'stress wave trapping' near the crack tip due 
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Fig. 13. Energy variations in PMMA and material A as a function of time for PMMA/MA and MA/PMMA (the 
energy is calculated for a unit thickness, 1 m, out of the plane of deformation). (a) For PMMA/MA (boundary 
loading on the PMMA side). (b) For MA/PMMA (boundary loading on the material A side). 

to the relatively slow wave speeds of  material A. On the other hand, for MA/PMMA where 
the loading is applied on the material A side, Fig. 15, the crack speed is much slower and the 
peak value of  cr22 is near the crack tip. Note that the near tip shear stress is positive in Fig. 
15. Figure 16 shows that the opening mode is shear dominated for PMMA/MA but tensile 
dominated for MA/PMMA. In addition, contact occurs for the PMMA/MA case while no 
contact occurs for the MA/PMMA case. 

A calculation was also carried out for the PMMA/MA bimaterial with crack face loading. 
Curves of  crack speed, ~, versus time and of  the J-integral  versus time, with V1 = 30 m/s, are 
shown in Figs. 17(a) and 17(b), respectively. For comparison purposes, results of  a calculation 



Numerical simulations of dynamic crack growth 311 

Fig. 14. Contours of physical components of Cauchy stress at t = 3.0 #s (a = 1.674 mm and/~ = 985 m/s) for 
PMMA/MA (boundary loading on the PMMA side) with Vj = 30 m/s. The upper half of the specimen is PMMA 

l and the lower half is material A. The extent of the region shown is 025 mm in the y -direction and 0.23 mm in 
the y~-direction. (a) Axial component ~r22. (b) Shear component crib. 

for homogeneous  P M M A  and V1 = 30 m/s are also shown. The crack speed curve for  the 
bimaterial  is about  15 percent below that for homogeneous  PMMA,  but the J versus t ime 
curve is about  the same. The crack speeds remain less than either o f  the Rayleigh wave speeds 

and, in contrast  to the boundary loading calculations, the value of  J decreases with time. The  
crack tip opening mode  is mode  I dominant  over  the range of  the calcuIation and contact does 
not occur. 
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Fig. 15. Contours of physical components of Cauchy stress at t = 5.68/ts (~ = 1.83g mm and b~ -- 670 m/s) for 
MA/PMMA (boundary loading on the MA side) with V~ = 11.73 rrds. The upper half of the specimen is material 
A and the lower half is PMMA. The extent of the region shown is 0.25 mm in the y~-direction and 0.23 mm in the 
y2-direction. (a) Axial component cr22. (b) Shear component crl2. 

Figures 18(a) and 18(b), respectively, show curves of  crack speed, h, versus time and 
J- integral  versus t ime for PMMA/MB,  with boundary loading on P M M A  side. The elastic 
constants o f  materials A and B are the same, but the density of  material B is 40 percent 
that of  material A. From the densities and elastic wave speeds, the amplitude of  the reflected 
wave from PMMA/MB is about 50 percent of  the reflected wave for PMMA/MA (e.g., 
Achenbach [33, p. t87]). The crack speed reaches a value of  976 m/s, very similar to that 
for the corresponding PMMA/MA calculation, but the value of  d increases rather slowly to a 
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Fig. 16. Normal and tangential components of the displacement jump across the bond line near the current crack 
tip. (a) For PMMA/MA (boundary loading on the PMMA side) at ~ = 3.15 #s, a = 1.824 mm and g = 985 rrdso 
(b) For MA/PMMA (boundary loading on the material A side) at t = 5.6 #s, a = 1.778 mm and A = 670 m/s. 

value which is only slightly larger than q~n. The contour plots in Fig° 19 show that the region 
of high values of  the axial stress component o22 is much larger on the material B side than 
on the P M M A  side. Even though the crack speed is very similar to that for PMMA/MA,  the 
crack tip fields in Fig. 19 differ substantially from those in Fig. 14. Figure 20(a) shows that 
the opening mode is mainly tensile, although the shear displacement jump is substantial, and 
that contact does not occur~ 

Results for a PMMA/MC bimaterial, with boundary loading magnitude V1 = 15 m/s 
applied on the PMMA side are shown in Fig. 21. In Fig. 21(a), the crack speed increases 
and reaches the Rayleigh wave speed, similar to the case of homogeneous PMMA with 
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Fig. 17. Crack speed,/~, versus time, t, (a) and J-integral versus time (b) for an interface crack in PMMAJMA 
with crack face loading velocity V1 = 30 m/s. For comparison purposes results are also shown for homogeneous 
PMMA with V1 = 30 rrds. In (a) the dashed lines indicate the Rayleigh wave speed of PMMA (1) and material A 
(2), and in (b) the dashed line corresponds to J = q~n. 

V1 = 30 m/s. This may be due to the stress level after the wave reflection from the bond line 
at ff2 = 0 in the PMMA/MC specimen being about the same as that in homogeneous PMMA 
with V1 = 30 m/s. The value of J in Fig. 21(b) is nearly constant at ~b~ as the crack speed 
increases and J increases when the crack speed becomes constant. For PMMA/MC, the crack 
opening mode changes from being tensile dominated in the early stages of crack growth to 
being shear dominated in the later stages of crack growth. On the other hand, the crack opening 
mode remains tensile for homogeneous PMMA. For PMMA/MC, the oscillation in J starts 
at 2.2 #s, which is when the crack tip opening mode becomes shear dominated. The value 
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Fig. 18. C r a c k  speed, &, versus t ime,  ~, (a) and J - i n teg ra l  versus t ime  (b) f o r  an in ter face c rack  in P M M A / M B  
(bounda ry  l oad ing  on the P M M A  side) w i t h  171 = 30 m/s. Fo r  compar i son  purposes results are also shown  f o r  
PMMA/MA with 171 = 30 m/s. In (a) the dashed lines indicate the Rayleigh wave speed of PMMA (l), material 
A (2), and material B (3), and in (b) the dashed line corresponds to J = ~ .  

of J increases sharply at 3.0 #s, which is when the crack speed reaches the Rayleigh wave 
speed (both materials have the same wave speeds). A plot of the opening mode at t = 3.2 #s 
is shown in Fig. 20(b). Similar plots at various times between 2.0 #s and 3.2 #s (not shown 
here) indicate that contact has not occurred in this case. 

Figure 22 shows corresponding curves of crack speed, ~, versus time and of the J-integral 
versus time for PMMA/MC with crack face loading having 1/1 = 30 m/s. In Fig. 22(a), 
the crack speed curve for the PMMA/MC bimaterial is about 15 percent above that for 
homogeneous PMMA. The J versus time curve for the PMMA/MC bimaterial in Fig. 22(b) 
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Fig. 19. Contours of physical components of Cauchy stress at t = 3.0 #s (a = 1.678 mm and/~ = 976 m/s) for 
PMMA/MB (boundary loading on the PMMA side) with V1 = 30 m/s. The upper half of the specimen is PMMA 
and the lower half is material B. The extent of the region shown is 0.25 mm in the yldirection and 0.23 mm in the 
y2-direction. (a) Axial component 0-22. (b) Shear component o-12. 

decreases rapidly while that for homogeneous PMMA only decreases slightly. The contour 
plots in Fig. 23, although differing in detail, having a qualitative similarity to those in Fig. 6, 
where the crack speed is also less than the smaller of  the two Rayleigh wave speeds. 

Lambros and Rosakis [12] have proposed an interface crack growth criterion based on a 
constant shear displacement to opening displacement ratio behind the crack tip. Therefore, the 
ratio of  the opening displacement jump to shear displacement jump, A ~ / A t ,  was computed at 



Numerical simulations of dynamic crack growth 317 

5.0 

4.0 

3.0 

2.0 

1.0 

0.0 

-1.0 

1.76 

+L/__ 
, + , t i i , , I . . . .  I , , , , I , , , , I , , , + I , , , 

1.78 1.80 1.82 1.84 1.86 1.88 1.90 

yl (mm) 
(a) 

5.0 

4.0 

~,~ 3.0 

-o  

~" 2.0 

" ~  1.0 

0.0 

. . . .  I . . . .  I . . . .  l i '  ' ' t . . . .  I . . . .  I . . . .  

 °/8o /i  

-1.0 

1.62 1.64 1.66 1.68 1.70 1.72 1.74 .76 

yl (mm) 

(b) 
Fig. 20. Normal and tangential components of the displacement jump across the bond line near the current crack 
tip for (a) PMMA/MB (boundary loading on the PMMA side) at t = 3.15 #s, a = 1.798 mm and/~ = 976 m/s 
and (b) PMMA/MC (boundary loading on the PMMA side) at t = 3.2 #s, a = 1.676 mm and A = 935 rrds. 

several t imes and at several locations behind the crack tip for the case shown in Figs. 22 and 

23. The qualitative shape of  the opening mode  plots are like the one in Fig. 5(a) for the entire 

t ime interval computed  (the crack speed remains less than the smaller  Rayleigh wave speed, 

Fig. 22(a)). To illustrate typical variations, A~/At at 0.1 m m  behind the current crack tip is 
23.4 at t = 1.0 #s, 14.3 at t = 1.6 #s  and 12.5 at t = 2.0 #s. At 0.2 m m  behind the current 
crack tip An~At is 45.6, 25.0 and 20.9 at these three times. The corresponding crack speeds 
are 719 m/s,  660 m/s and 605 m/s at t = 1.0 #s, t = 1.6 #s  and t = 2.0 #s, respectively. 
The values of  An/At are fairly close at the last two times, but so are the crack speeds. At 
earlier t imes An/At can vary substantially f rom the above values, but this may be due to the 
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Fig. 21. Crack speed, ~, versus time, t, (a) and J-integral versus time (b) for an interface crack in PMMA/MC 
(boundary loading on the PMMA side) with V1 =15 m/s. For comparison purposes results are also shown for 
homogeneous PMMA with Vl = 30 m/s. In (a) the dashed line indicates the Rayleigh wave speed of PMMA 
(the Rayleigh wave speed of material C is the same as that of PMMA) and in (b) the dashed line corresponds to 
J = ~ .  

proximity of the crack face loading region. Also, when A~/At is slowly varying so is the 
mode mixity of the crack tip stress field. 

4. Discussion 

Dynamic interface crack growth has been analyzed using a framework where the crack growth 
history is a direct outcome of the analysis, determined by the cohesive properties along the 
bond line, by the properties of the materials on either side of the bond line and by the imposed 
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Fig. 22. Crack speed,/~, versus time, l, (a) and J-integral versus time (b) for an interface crack in PMMA/MC 
with crack face loading velocity V~ -----30 rn/s. For comparison purposes results are also shown for homogeneous 
PMMA with V] = 30 m/s. In (a) the dashed line indicates the Rayleigh wave speed of PMMA (the Rayleigh wave 
speed of material C is the same as that of PMMA) and in (b) the dashed line corresponds to J = ~b,~. 

loading. In the calculations here, the crack is constrained to grow along the bond line and the 
cohesive properties are fixed. Furthermore, regardless of the mode of separation (tensile or 
shear), the work of separation is 176.2 J/m 2. Nevertheless, the time history of J ,  (20), varies 
considerably depending on the mode of loading and on the elastic property and wave speed 
mismatch across the interface. 

The identification of J with the energy release rate for transient crack growth requires 
several conditions, in addition to having a square root singularity, to be met, including; (i) 
that the size of the region over which cohesive surface separation occurs is small compared to 
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Fig. 23. Contours of physical components of Cauchy stress at t = 1.8 #s (a = 1.206 mm and fi = 615 m/s) for 
an interface crack in PMMA/MC with crack face loading velocity Iv'] = 30 m/s. The upper half of the specimen 
is PMMA and the lower haIf is material C. The extent of the region shown is 0.25 mm in the yl-direction and 
0.23 mm in the y2-direction. (a) Axial component ~r22. (b) Shear component ~r~2. 

specimen dimensions, Rice [28], and (ii) that both the 0( ) / 0 t  and the transport (hO()~Off ~) 
contributions to the change in field quantities near the crack tip are o f  the same order, Nakamura 
et al. [29]. These conditions for d in (20) to equal the energy release rate and, hence, the work 
of  separation are not necessarily fulfilled in the present computations. 

The values of  d reported are taken on contours that are outside the uniform mesh region 
(see Fig. 3) and thus some distance from the fracture process region. At the initiation of  
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crack growth, the crack along the bond line is essentially an ideal crack and in all cases J 
is, to a very good approximation, equal to the work of separation. During crack growth, the 
value of J computed on the various remote contours remains contour independent but can 
differ significantly from the work of separation. For example, in Fig. 12 for PMMA/MA, the 
value of J is much greater than the work of separation when the crack speed is greater than 
the smaller Rayleigh wave speed, while for MA/PMMA, with the loading on the material A 
side, J remains close to the work of separation during crack growth. On the other hand, for 
the PMMA/MC bimaterial with crack face loading, Fig. 22, J decreases substantially during 
crack growth. In this case, the fact that Stonely waves are available to carry energy from the 
process region along the cohesive surface may play a role. The present results indicate that 
a J versus crack speed relation for dynamic interface crack growth depends on the material 
mismatch and on the nature of the loading, as well as on the bond line cohesive properties. 

At crack speeds less than the smaller of the two Rayleigh wave speeds, the crack tip fields 
show an increasing shear (mode II) component with increasing crack speed (Figs. 6, 7(a) 
and 8(a)), which is consistent with the analysis of Yang et al. [5], although no quantitative 
comparison with the asymptotic analyses has been made. Figures 7, 8, 11 and 14 show crack 
tip stress fields at instants where the crack speed exceeds the smaller of the two Rayleigh 
wave speeds (the crack speed in Fig. 14 is actually somewhat greater than the larger Rayleigh 
wave speed). The stress fields in these figures are quite different. However, a common feature 
is that the peak axial stress occurs away from the bond line. In Fig. 15, the crack speed is also 
larger than the smaller Rayleigh wave speed, but the peak axial stress occurs near the bond 
line. 

Liu et al. [13] have presented asymptotic crack tip fields for an isotropic elastic solid 
bonded to a rigid substrate, with the crack speed above the Rayleigh wave speed of the elastic 
solid. Their analysis predicts no singularity for crack speeds greater than the Rayleigh wave 
speed but less than the shear wave speed, a singularity with exponent less than 1/2 for crack 
speeds greater than the shear wave speed, a crack speed range where contact occurs, and, as 
noted previously, infinite stress and particle velocity jumps that can occur across a singular 
line emanating from the crack tip. As a consequence of the order of the singularity being less 
than 1/2, the energy release rate is zero. In contrast, the subsonic asymptotic analysis of Yang 
et al. [5] gives a finite energy release rate as the smaller Rayleigh wave speed is approached 
from below. Hence, it is worth emphasizing that in the computations the work of separation 
for the cohesive surface is independent of the mode of crack opening and of the crack speed. 
One issue with asymptotic fields concerns their range of dominance. If the range of dominance 
of the asymptotic fields is not greater than the size of the fracture process region, which can 
be identified with the extent of the region affected by the non-zero compliance of the bond 
line cohesive surface, then the asymptotic fields do not govern. Of course, it is also possible 
that the asymptotic fields do characterize the near tip stress field, but over a length scale that 
is not resolved in the computations. 

The calculations here have been carried out using a single finite element mesh. Xu and 
Needleman [19] considered the effect of mesh spacing on dynamic crack growth in homoge- 
neous PMMA, with the crack constrained to grow along a single cohesive surface and found 
good agreement for the crack speeds obtained with meshes for which the node spacings in 
the uniform mesh region differed by a factor of 7.5. The side length of the quadrilaterals 
in the uniform region in Fig. 3 is 10~n, which is 1.6 times that of the finest of the meshes 
in [19]. However, it is possible that some of the oscillation in Fig. 14 is induced by the 
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numerics because of large gradients in the actual solution that cannot be resolved by the 
discretization. 

Associated with the strong mode mixity of dynamic interface crack tip fields is contact of 
the crack faces, Yang et al. [5], Liu et al. [13]. In the calculations here, contact does develop 
in some cases (Figs. 5 and 16(a)), depending on the bimaterial combination and the imposed 
loading, but only when the crack speed is greater than the smaller Rayleigh wave speed. 
Contact occurs even when the oscillatory index ~ defined in (19) is zero (Fig. 16(a)) and the 
size of the contact region is much larger than the cohesive surface characteristic length. There 
is a change in sign of the normal traction across the bond line when contact occurs. However, 
the periodic oscillation associated with the singular fields (at crack speeds less than the smaller 
Rayleigh wave speed) is not seen in the numerical results. 

An issue of some controversy, see e.g. Atkinson [34], Willis [6] and Yang et al. [5], has been 
whether or not the interface crack speed can exceed the smaller of the Rayleigh wave speeds 
of the bimaterial constituents. The experimental observations of Liu et al. [8] and Lambros 
and Rosakis [11] show that the crack speed can exceed the smaller of the two Rayleigh wave 
speeds. Although the loading conditions and the material properties in the computations here 
differ from those in the experiments of Liu et al. [8] and Lambros and Rosakis [11], the 
qualitative features of the numerical results for the crack speed history and the evolution of 
the near tip fields are remarkably consistent with the general trends found experimentally. 
Additionally, the simulations explore a broader range of property mismatch conditions than 
are, at least readily, accessible experimentally. It is interesting to note that the fastest crack 
speed found is approximately the greater of the two Rayleigh wave speeds (Fig. 12(a)). It may 
well be that this serves as a limiting speed for an ideal interface crack because it is the fastest 
speed at which surface displacements can propagate on one of the crack surfaces. The crack 
speed in Fig. 12(a) exceeds the greater Rayleigh wave speed, perhaps because of the finite 
stiffness of the bond line cohesive surface, which leads to 'lift-off' as discussed in [19]. 

For the PMMA/A1 bimaterial, the crack speeds are greater than for the corresponding 
homogeneous PMMA specimen (Figs 4(a) and 9(a)), as is the case for the PMMA/MC 
bimaterial with crack face loading (Fig. 22(a)). However, whether or not the crack speeds for a 
bimaterial combination are greater than for a corresponding homogeneous situation depends on 
the material mismatch and loading conditions (Fig. 17(a)). For a given bimaterial combination, 
subject to boundary loading, the resulting crack speed for a given stress amplitude, depends 
strongly on whether the loading is on the side with the smaller or larger Rayleigh wave speed. 
In Fig. 12, for PMMA/MA, the crack speed is much greater than the smaller of the two 
Rayleigh wave speeds and for MA/PMMA, there is~a jump from one crack speed plateau to 
another with the arrival of a loading wave. Lambros and Rosakis [12] and Liu et al. [13] have 
suggested the possibility that there is an unfavorable range of crack speed greater than the 
smaller Rayleigh wave speed over which steady crack growth is not likely to occur due to 
crack face contact. Here, contact in the vicinity of the crack tip is found at crack speeds that 
are both much larger than (Fig. 16(a)) and slightly larger than (Fig. 5) the smaller Rayleigh 
wave speed. 

There is interest in formulating simple phenomenological criteria for dynamic interface 
crack growth. Lo et al. [9] used a mode mixity and crack speed dependent critical energy 
release rate characterization of crack growth, while Lambros and Rosakis [12] have suggested 
an interface crack growth criterion based on a constant shear displacement to opening dis- 
placement ratio behind the crack tip. The present calculations (see Fig. 5 and the discussion 
of the PMMA/MC bimaterial subject to crack face loading) do not support the notion of a 
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self-similar opening profile. When the crack speed is less than the smaller Rayleigh wave 
speed, there can be a time range over which the ratio A ~ / A t  at a given location changes 
slowly, but the present computations do not support this as a general criterion. The results 
here also show that even with a crack speed and phase angle independent characterization of 
the bond line cohesive properties (14), the evolution of remote crack parameters, such as d in 
(20), may be specimen dependent. 

In fact, it would seem that a phenomenological criterion for dynamic interface crack 
growth would depend on whether or not large scale contact occurs near the crack tip. The 
present computations indicate that whether or not this takes place depends on the nature of the 
loading as well as on the bimaterial mismatch. Hence, general possibilities for crack speed 
histories may not be revealed in studies of a single loading mode. However, in all computations 
crack growth initiates when J equals the work of separation and, from the point of view of 
applications, the characterization of crack initiation in brittle solids is undoubtedly of primary 
importance. For crack growth, a cohesive surface description as used here seems capable of 
describing a broad range of phenomena characteristic of dynamic interfacial crack growth in 
brittle solids. 
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