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Abstract 

This paper presents the development of an anisotropic elastic damage theory. This is achieved by deriving a modified 
damage effect tensor M(D) for the effective stress equations capable of including the effect of anisotropic material 
damage. The modified tensor removes the restriction of a priori knowledge of the directions of principal stresses 
imposed by a damage effect tensor developed earlier and can now be made for general practical engineering 
applications of failure analysis. Reduction of the proposed tensor to a scalar for isotropic damage is shown to be 
possible when it is expressed not only in the principal directions but also in any arbitrary coordinate system, a 
necessary condition to verify the validity of the proposed tensor. Uniaxial tension and pure torsion are chosen to 
illustrate the application of the theory as well as associated damage variables that may be experimentally determined 
using laboratory size specimens. The measured damage variables confirm the presence of anisotropic damage from an 
initially isotropic material specimen and the magnitude is more pronounced at higher stresses and strains. 

1. Introduction 

The concept of continuum damage mechanics due to Kachanov [1] has been developed to a 
stage where the concept can be effectively used to supplement the design of practical 
engineering structures based on the theory of fracture mechanics [2-23]. Although the damage 
mechanics provide a measure of material degradation at the micro-mechanics scale due to 
nucleation and coalescence of voids, cavities, and micro-cracks, the damage variables are 
introduced to reflect average material degradation in an element at a macro-mechanics scale 
normally associated with the classical theory of continuum mechanics. This enables the 
variables to be measured experimentally using laboratory-size specimens recommended for 
conventional testing standards, thus making possible the application of the concept to solve 
practical problems using, for example, the finite element analysis [20]. 

Practising engineers are concerned with the assessment of reliability and life expectancy of 
engineering components with or without the presence of pre-existing flaws. Accuracy of the 
assessment based on failure analysis can only be considered acceptable if the analysis chosen 
yields a reliable stress-strain field at a possible failure site of a structure under service loading 
conditions. Recent experimental evidences indicate that structural failures are often associated 
with the development of anisotropic material damage [2,23] even if the initial material 
properties are isotropic. 

Constitutive equations of anisotropic damage have been proposed recently and used to 
perform a forming limit analysis of metal plates [23]. The damage effect tensor M(D) developed 
for the effective stress equations was assumed to have a prior knowledge of the principal 
directions. The assumption was considered acceptable due to the nature of metal forming 
analysis under investigation. The required knowledge of principal stress directions, however, 
restricts the application of the effective stress equations developed to general failure analysis. 
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This paper presents the development of a generalized anisotropic damage theory in elasticity. 
This is achieved by introducing a modified damage effect tensor M(D) for the effective stress 
equations which can be applied for general structural analysis. Equations, after coordinate 
transformation for the tensor, are derived that can be readily incorporated into conventional 
finite element analysis. Two example cases, namely uniaxial tension and pure torsion, are 
chosen to illustrate the application of the constitutive equations derived and used to quantify 
associated damage variables determined experimentally. 

2. D a m a g e  variables and ef fect ive  s tresses  

Based on the theory of continuum damage mechanics, the phenomena of progressive material 
degradation are introduced in the theory by a number of damage parameters which include 
effective stress tensor 6 and damage tensor D of second order, reflecting the damage state of 
the material under service loading. The damage tensor D may be experimentally determined. 
The physical implications of the damage variable may be illustrated by considering a damage 
volume element at macro-scale level shown in Fig. 1. The introduction of the scale level allows 
the size of the element to be considered to be large enough to contain numerous defects but 
sufficiently small as a material point that the concept of damage mechanics may be brought 
within the scope of continuum mechanics. 

Let S shown in Fig. 1 be the overall cross-sectional area of the element before loading with 
its orientation defined by n_. The area S becomes the effective resisting area S after loading due 
to material degradation caused by the presence of microcracks and cavities, microstress 
concentrations in the vicinity of discontinuities, and the interactions between the closed defects. 
If these cracks and cavities are assumed to be uniformly distributed in all directions, S no 
longer depends on n and the isotropic damage variable D may be defined as 

S- q 
D -  S (2.1) 

The effective Cauchy stress tensor 8 based on the effective area S is related to the usual 
Cauchy stress tensor o by 

S o 
8 = . - ~  - 1 - D"  (2 .2 )  

J r 

J 

Fig. 1. Damaged material element. 
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For the anisotropic damage, the effective stress of (2.2) may be expressed in a generalized form 
as~ 

6 =  M ( D ) :  o (2.3) 

where the symbol ( : ) means the tensorial product contracted on two indices, and M(D) known 
as damage effect tensor is a linear symmetric operator represented by a 4th order tensor. In 
general, M(D) has 21 independent components and may be reduced to a scaler 1/(1 - D) if the 
damage effect is isotropic. 

Structural analysis with rigorous treatment of material damage through the damage effect 
tensor M(D) may be mathematically expedient but could prove to be prohibitively time 
consuming, if not impossible to resolve for practical engineering problems. The question of 
mathematical tractability is compounded by physical measurement difficulties associated with 
21 independent components of the 4th order tensor. The formulation of the damage effect 
tensor may however be approximated by introducing the concept of proportional loading [12]. 
The extent to which this approximation yields reliable prediction of material damage from 
general structural analysis under arbitrary loading condition will be the subject of a separate 
investigation although initial results have shown promise. When the principal axes of effective 
stresses 6 and material damage during loading are assumed to coincide with the conventional 
stresses 6, the components of M(D) may be expressed, in the principal coordinate system as 

Mijkl (19) = Aij (19) 8ikSjl (no summation for i and j ) .  (2.4) 

If the following notations are chosen, 11111 lcxl 0" 2 0"22 [ E 2 
0"3 0"33 ~ £3 

04 = 0.23 ( a n d  £4 

0.5 0.31 / 1~5 

0"6 0"12I % 

(11 
E22 

g33 

= ~2E23 

2c31 
~2q2 

(2.5) 

(2.3) and (2.4) become 

6 i = M i j ( D ) ~  (2.6) 

Mij ( D ) = A i ( D ) 8ij (no summation for i ). (2.7) 

There are many possible formations of the damage effect tensor Mij. One of the simplest forms 
is to introduce material damage in the principal directions only [12,23]: 

[ / i j ( m ]  = 

1 
0 

1 - D 1 

1 
0 0 

1 - D 2 

1 
0 

1 - D 3 

(2.8) 

where D 1 ,  O 2 and D 3 are the damage variables at their respective principal axes. When the 
directions of the principal stresses are unknown, the damage effect tensor of (2.8) must be 
suitably modified. One obvious criterion for developing such a generalized form of the damage 
effect tensor is that it should be reduced to a scaler for isotropic damage. This reduction should 
be made possible not only in a principal coordinate system but also in any coordinate system. 
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One formulation which satisfies the above criteria is developed and expressed, for the first 
instance, in the principal coordinate system as: 

1 
0 0 0 0 0 

1 - D 1 

1 
0 0 0 0 0 

1 - D 2 

1 
0 0 0 0 0 

1 - D  3 

1 
0 0 0 0 0 

¢ ( 1 - - D 2 ) ( 1 - - D 3 )  

1 
0 0 0 0 0 

¢(1  - , ) , ) ( 1  - 
1 

0 0 0 0 0 

[ M, Ao)] = 

¢ ( 1 -  D1)(1 - D2)- 

(2.9) 

It is obvious that Mu(D ) of (2.8) is a particular case of (2.9) which can be readily reduced to a 
scalar for isotropic damage when D 1 = D 2 = D 3 = D. The damage variables D1, D 2 and D 3 in 
(2.9) refer to, as before, the principal damage components. As 04 = 05 = o 6 = 0, (2.6) becomes 

1 
51 (°1 / (1-D1)]  

52 / °2/(1 - D2) / 

63 = { o 3 / ( 1 - O 3  }. (2.10) 

54 

When D 1 = D 2 = D 3 = D, which is the case for isotropic damage, (2.10) is reduced to (2.2) 
expressed in the principal coordinate systems. A later section will prove that similar reduction 
is also possible in any coordinate system. 

3. Hypothesis of elastic energy equivalence 

Lemaitre [24] proposed a hypothesis of strain equivalence for isotropic damage by replacing the 
conventional stress with the effective stress in the constitutive equation. The hypothesis 
unfortunately has been proved to lead itself to asymmetry of the stiffness matrix when 
anisotropic damage is considered. To overcome this inconsistency, the use of the elastic energy 
equivalence concept was proposed by Sidoroff [12] who postulated that the complementary 
elastic energy for a damage material is the same in form as that of an undamaged material, 
except that the stress is replaced by the effective stress in the energy formulation. Since the 
complementary elastic energy we(a, O) of an undamaged material (D = 0) is 

we( , ,  0) = lo'r:  C-1 :  o' (3.1) 

then the complementary energy of a damage material is expressed as 

we(o, JD) = we(a, 0) = 1 6 T : c - I :  5=-120r: ( M r : C - l :  M ) : o  (3.2) 

where C is the elastic stiffness tensor. Defining the effective stiffness tensor I~ as 

I~ = M-I:  C: M r'-I (3.3) 

the linear elastic stress-strain equation for damage material may then be written as 

(e__ ~we( O' JD) _ ( M T : C _ I : M ) :  o . = 6 _ 1 :  o., (3.4) 
ao 
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If the stress components are expressed as the vector shown in (2.5), the elastic matrix for 
isotropic material is 

-1 

1 [ C ] - I  = - ~  

- v  - v  0 0 0 
1 - v  0 0 0 

1 0 0 0 
2(1 + v) 0 0 

S 2(1 + v) 0 

2(1 + 

(3.5) 

Substituting (2.9) and (3.5) into (3.3), we obtain the effective elastic matrix for damaged 
material in the principal coordinate system as: 

1 [(]-1=~ 

1 - v  v 

(1 - D1) 2 
0 

(1 D1)(1 D2)  (1 -- D1) ( I  D3) 

1 --p 
0 

(1 D~) ~ (1- D2)(1 - D,) 
1 

0 
(1 - / ) , )2  

2(1 + ~) 
(1 - D~)(1 - D,) 

0 0 

0 0 

0 0 

0 0 

2(1 + v) 0 
(1 D,) 0 D 0 

2(1 + v) 

( 1 -  O l ) ( 1  - D2) 

(3.6) 

4. T r a n s f o r m a t i o n  o f  d a m a g e  t e n s o r  and d a m a g e  e f f e c t  t e n s o r  

The proposed damage effect tensor M(D) shown in (2.9) was, for the sake of illustration, 
expressed initially in the principal stress directions. In terms of a general coordinate system, the 
tensor may be derived using the law of coordinate transformation. 

Let the principal stress axes be xl, x2, x 3. In an arbitrary Cartensian rectangular coordinate 
system of x~, x~, x; ,  see Fig. 2, the usual convention of direction cosines between these two 
coordinate systems are adopted: 

X 1 X 2 X 3 

x~ l I m 1 n a 
x~ 12 m2 n2 
X~ l 3 m 3 n 3 

The stresses, damage variables and damage effect tensor may be expressed in terms of x; 
coordinates as 

aL, j = qisqjtost (4.1) 

D~,j = qisqj tDs,  (4.2) 

Mi'j~, = qisqjtqkuqto = Mst,,v (4.3) 
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~X3 

p  jj.×2 

Fig. 2. Cartesian coordinate system. 

where 

lz ml 

[~X;]  = i2 m2 

[q]=[qiJ]=[Oxj 13 m3 

since 

Dij = Di~ij ( n o  summation for-i) 

(4.2) becomes 

[ D[j] = [ Dll? + Dzrn~s + D3n~ 

n 1 

n 2 

n 3 

(4.4) 

DJll 2 + D2mlm 2 + D3nln 2 
DJ 2 + D2m 2 + D3 n2 

Dlltl 3 + D2mlm 3 + D3nln 3 ] 
Dll2l 3 + D2m2m 3 + D3n2n 3 ] " 

D112 q- D2 m2 + D3 n2 

(4.5) 

For isotropic damage, D 1 = D 2 = D 3 = D and noting that lil j + mirn j + nin j = 3ij, (4.5) reduces 
to 0] 

[Dig] = D 0 = [Dij]. (4.6) 
0 D 

It may be of interest to note that the damage tensor of (4.6) for isotropic damage contains an 
identical independent component in any reference system and that only a scalar D is needed to 
represent the damage state. 

The 4th order damage effect tensor [d(D) expressed in the principal coordinate system has 
been proposed and shown in (2.9) with a 6 × 6 matrix. In order to prove that the damage effect 
tensor is also applicable to any arbitrary coordinate system, the effective stress tensor may be 
written in the vector form similar to (2.5) so that the transformation law of (4.1) may be 
expressed as 

(~7'} = [QI{S}  = [Q]([MI(o) )  = ([QI[MI[Q]-I ) (o  ' } = [ M ' ] { o ' )  (4.7) 

where 

[ M ' ]  is defined as [QI[MI[Q]--1 
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or 

l}l} " i2 j n i22nj 2m,nimjnj __2nilinjl j 2l, miljm j 
M'5=-W-7+~+--WT-3+ W23 + W3, + W~2 for/, j = 1 , 2 , 3  

2 2 2 2 2 2 )2 (g/316_,nt - 13n6_i)2 21316-, 2m3m6-, 2n3n6 i (m3n5 , + n3m6-i 
Mi:-.~ ~ q- W2 + ~ Jr" W23 -~ W31 

(13m6_ i q- m316_i) 2 
+ for i = 4, 5 w~= 

2/2/2 2m~m 2 2n2n~ (mln 2 + nlm2) 2 (//112 q- l l / / 2 )  2 (lira2 q- m l / 2 )  2 

M66- ~-1 + ~ + ~ + W23 + W31 + I4/12 

2 2 1316-il} m3m6-imj  r/3r/6-//'/j mjrtj(m3rl6 i q- n3m6 ,) 
M.' .-  + + + 

's W1 I472 I473 l/V23 

nj l j ( ,316_ i q- 13/'/6_,) ljmj(13m6-i q- m316_i) + + 
W31 W12 

for i=4 ,  5; j = l ,  2, 3 

21112l ~ 2mlm2 m2 2nan2n } (rn=n 3 + m3n2)(rnln 3 + m3nl) 
M5t4= W1 -~ ~/V2 '~ ~ q W23 

(/'/213 q- 12/73)(//3l I q- I37/1) (12m3 + m213)(13m I + m31,) + + 
1/V31 W12 

2 2 1112l} mlm2mj nln2nj mjnj(mln2 + m2nl) M ' = - - +  + - -  + 
6j Wl W2 W3 W2 3 

v g j -  

l'ljlj(?lll 2 -{- l l . 2 )  l jmj( l lm2 + m112) 
+ + for j =  1, 2, 3 

W31 W12 

211121316-j 2mlm2m3m6_j 2nln2n3n6_j (m3n6_j + n3m6_j)(mln 2 + nlm2) + + + 
Wl w~ 

(n316_ j -~ 131"16_j)(171l 2 ..-}- n211) + + 
W~l 

for i = 4 ,  5, 6, j = 1 , 2 , 3  

f o r i = 5 , 6 ,  j = 4 , 5  

Mj~ = 2M,5 

M/. ,= M, 5 

and 

w, w=3 

(13m6_ j + m,16_j)( llm2 + m112) 

w12 
for j --= 4, 5 

W I - I - D 1 ;  W 2 = 1 - D 2 ;  W 3 = l - D 3 ;  W 2 s = ¢ ( 1 - D z ) ( 1 - D 3 ) ;  

14/31 = ¢(1 - D3)(1 - D 1 )  ; W12 = ¢(1 - D1)(1 - D 2 ) .  (4.8) 

It can be readily verified from the above that the matrix representation [M] of the symmetric 
4th order tensor is not symmetric in any reference system except the principal one. For the 
isotropic case D 1 = D 2 = D 3 = D, 

1 
M/J - 1 - z~ au = Mu 

1 
which again, reduces to a scalar ~ and is compatible with the isotropic theory. 
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5. Example  cases  

In order to iliustrate the application of the concepts of damage mechanics that have been 
developed in the preceding sections and the damage variables that may be evaluated, the 
damage analyses for uniaxial tension and pure torsion are performed. 

5.1. Uniaxial tension 

An important ingredient in the derivation of damage tensor equations is that they should be 
readily reduced to material parameters measurable from uniaxial test. For instance, by 
substituting (3.6) into (3.4), the constitutive equations under tension are 

O1 __ O1 e__ 
£1 

E(1 - D1) 2 E 

PO1 P12 

e~ = E(1 -- D1)(1 -- D2) = -- 7 °i 

PO1 P13 

e~ = - E(1 - Di)(1 - D3) = - - -E  - 0 1  

(5.1) 

I I 3 . 175  

- -7  

R2 J _ T 
60 

70 200 

-'-2 

EACH LINE 

DIVISION = l m m  

Fig. 3. Tensi le  spec imen  used  fo r  d a m a g e  m e a s u r e m e n t .  
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where 
= E ( a  - D 1 )  2 

~12 = v(] - D 1 ) / ( ]  - / ) 2 )  (5 .2 )  
% = ~ ( 1  - D , ) / ( i  - D 3 )  

are the effective Young ' s  modulus  and Poisson's  ratios. Accordingly,  the damage  variables D1, 
02 and D 3 m a y  be  evaluated as 

D 1 = 1 -  ; D 2 = 1 - = -  
l~12 

D 3 = 1 - =~-P (1 - D1). (5.3) 
P13 

0.4C 

0 
~_ 0.32 

n- 

o9 

o Z 0.2l, 
U3 
U') 
5 
t3.. 

~0.16 
I.-- 

LIJ 
Ii 
LL 
t.u 0.08 

x x 

x × 

I I I I I 
5.67 11.33 17.00 22.67 2833 

S T R A I N  E j °/o 

Fig. 5. Effective Poisson's ratio versus strain. 
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A series of tests was performed to measure the above damage variables /~, ~ and D. The 
measurements were obtained from tensile specimens of aluminium alloy 2024-T3 whose 
dimensions are shown in Fig. 3. The measured values o f / ~  and ~ are depicted in Figs. 4 and 5 
respectively, revealing, as expected, gradual material degradation with the increase of strain. 
The damage variables D 1 and D 2 are evaluated using (5.3) based on the measured values o f / ~  
and ~ and described respectively in Figs. 6 and 7. The graphs confirm the presence of 
anisotropic damage which becomes increasingly pronounced at the higher strains and stresses 
from an initially isotropic material prior to the load application. The D3-value should on the 
other hand be identical to D 2 for the isotropic material under uniaxial tension. The degree of 
material damage in D 1 and D 2 are depicted in Fig. 8 revealing, as expected, that the damage is 
marked along the loading direction. 

,_MK 

Fig. 9. Pure torsion. 

"[ / X 2  

X I' 
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5.2. Pure torsion 

For a shaft under pure torsion with the maximum shear stress % Fig. 9, the principal stresses 
are 01 = - 0 2 = ~-. For the plane stress problem, only 3 × 3 matrix representations of C and I~1 
are needed. In the principal coordinate system of xa, x 2, Fig. 9, the constitutive equation is 

] - v  
0 

(1 - D 1 )  2 (1 - D 1 ) ( 1  - D 2 )  r 

- v  1 

(1 - D1)(1 - 02) (1 - D2) 2 0 --r (5.4) 

2(1 + u) 
o 0 0 (1 - D1)(1 - D2) 

1 ] (5.5) 
(1 - D 2 )  2 ] 

- - + v  

1, 

from which we have 

e ~" 1 
C 1 + c ~ =  2 ( l - D 1 )  2 

1 - D 2 

~f 1 - D  2 1 - D  1 

1 - D 2 1 - D 1  l + ~ v  

1 

e 
- -E  2 

If we define 
1 

X =  
(1 - D e )  2 (1 - D : )  2 

l - D :  y -  _ _  
1 - D 1 

Eqns. (5.5) and (5.6) become 

x =  
T 

Y= v l + e ~ ] +  p2 l + q  _ 4 " 1  • 

Then, solving (5.7) and (5.8) gives 

( Y2-1-~ i r _  ( l + v Y )  
D 2 = 1 -  - 1 - Ee-----~2 

l I y 2 - 1 ~  1 / "r " I v  -L~2  D , = I -  - 1 - -~, ,  -----g~_e [ + v Y ) .  

The effective Young's moduli and Poisson's ratios are thus deduced as 

1 _T (1 + vY) 2 I = E ( 1 - D ~ )  2= y2 -e~ 

]E2= E ( 1 -  Dz)2= ~ ( 1 7 1 -  vY )  

1 - D 1 
v12 = p 1 - D----"~2 - v~ Y 

1 - D 2 
~21= V 1 _  D-- 1 - vY" 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5 .lO) 

(5.11) 

(5.12) 
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Since 

1 
l I = - r n  1 = 12 = m 2 = ~ - ,  

(4.8) is expressed in the x{, x~ system as 

1 1 + _ _  

~/1- 01 

1 1 1 } 2 

[ M  i,] '  = a ~ 1 -  D 1 1 - ~  2- / 

( 1  1 )  
1 - D 1 1 - D 2 

l 3 = m 3 = n 1 = / 7  2 = 0 ,  and I'/3 = 1 

( )2( 1: 1 1 1 1 

(1  - D I  - D2 ( )2( 
1 +  1 2 1 
~/1 - D1 ~ 1 - D a  

(1 1) 
I _ D 1  1 - D 2  2 I _ D 1  

and the effective shear modulus G is evaluated as 

1) 
1 - -D  2 

( 5 . 1 3 )  

o r  

1 - 1 1  1 
v 

= C j 3 1  = c i j l M i 3 M j 3  = E [ (1 - D 1 )  2 
1 2v + + 

(1 - D2) 2 (1 - D1)(1 - D2) 

/ C  
~ = 1  - E / [  1_ + 1 + 

C3~31 / [  (1 - Da) 2 (1 - -  0 2 )  2 

2v 

(1 - D a )  (1 - D 2 )  

. . . .  + (5.14) 
= 2(1 + v)G (1 - Di)  2 (1 - D2) 2 (1 - D , ) ( 1 -  D2) " 

Finally the shearing constitutive equation including anisotropic material damage is expressed as 

1 
r = ( 5 . 1 5 )  

G 

It can be observed from the above analysis that the parameters of X and Y shown in (5.9) and 
(5.10) respectively may be readily evaluated from the measurement of strains, material 
constants and applied torque. These parameters enable the determination of the damage 
variables of D1, D 2, E,, E2, v12 and 521. The constitutive equation of (5.15) may then be solved 
after the evaluation of Q of (5.14) based on the computed damage variables. 

6. Conclusions  

In the development of a general theory of continuum damage mechanics, it is necessary to 
include the effect of material anisotropic damage at the possible site of fracture. Constitutive 
equations have been derived to take into account the effect of the anisotropic damage. This is 
achieved by developing a modified damage effect tensor associated with the effective stress 
equations which can now be used for general practical engineering application for failure 
analysis. A necessary condition to verify the validity of the proposed tensor is satisfied when 
reduction of the tensor to a scalar for isotropic damage is shown to be possible not only in the 
principal stress directions but also in any arbitrary coordinate system. The effective stress 
equations have also been presented in such a way that they can be readily incorporated into the 
finite element analysis. 
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Two example cases, namely uniaxial tension and pure torsion, have been chosen to illustrate 
the application of the proposed damage effect tensor. Damage variables have been measured 
from tensile specimens and confirmed the presence of anisotropic damage from initially 
isotropic material of aluminium 2024-T3. The anisotropic damage is shown to be pronounced 
at higher values of stress and strain. 
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R6sum6 

On pr~sente un d6veloppement d'une th6orie sur l'endommagement 61astique anisotrope en d6duisant un tenseur 
modifi6 d6crivant l'effet de l'endommagement pour un syst+me d'6quations de contraintes effectives susceptible 
d'inclure l'effet d'un endommagement darts un mat6riau anisotrope. Le tenseur modifi~ supprime la restriction de la 
connaissance a priori des directions des contraintes principales impos6es par un tenseur d'effet d'endommagement 
d6velopp6 pr6c~demment; il peut ~ present entrer darts les applications pratiques en construction de l'analyse des 
ruptures. 

On montre qu'il est possible de r6duire le tenseur propos6 ~ une valeur scalaire dans le cas d'un dommage isotrope, 
d6s lors qu'il est exprim6 non seulement suivant les directions principales, mais dans un systbme de coordonn6es 
arbitraires, ce qui est une condition n6cessaire pour en v6rifier la validit& 

On choisit une traction multiaxiale et une torsion pure pour illustrer l'application de la th6orie ainsi que des 
variables d'endommagement associ~es, susceptibles d'etre d6termin~es exp~rimentalement ~t l'aide d'~prouvettes de 
laboratoire. 

Les variables d'endommagement mesur6es confirment la presence d'un dommage anisotrope dans le cas d'une 
~prouvette d'un mat6riau initialement isotrope; son amplitude est plus prononc6e ~t des contraintes ou des d~forma- 
tions plus importantes. 


