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Abstract 

The primary structure of the Chlalb/c-binding protein from Mantoniella squamata is determined. This is the first 
report that protein sequencing reveals one modified amino acid resulting in a LHCP-specific TFA-cleavage site. The 
comparison of the sequence of Mantoniella with other Chla/b- and Chla/c-binding proteins shows that the modified 
amino acid is located in a region which is highly conserved in all these proteins. The alignment also reveals that the 
LHCP of Mantoniella is related to the Chla/b-binding proteins. Finally, possible Chl-binding regions are discussed. 

Abbreviations: a.m.u. - atomic mass unit; LHC - light-harvesting complex; LHC II - major LHC of Photosystem 
II; LHCP - light-harvesting chlorophyll-binding protein; LSIMS - liquid secondary ion mass spectrometry; TFA - 
trifluoroacetic acid 

Introduction 

The majority of the photosynthetic pigments in the 
thylakoid membrane of higher plants and algae are 
located in the light-harvesting complexes of the photo- 
systems (Thornber et al. 1990). It is generally accepted 
that the chromophores are non-covalently bound to the 
protein, but detailed knowledge about the pigment- 
protein-interaction is still lacking. Models based on 
sequence analysis and topological studies of the LHC 
II polypeptide of higher plants (Karlin-Neumann et 
al. 1985; Btirgi et al. 1987) have suggested the exis- 
tence of three transmembrane helices. These models 
are supported by the three-dimensional structure of the 
LHC II at 6/~ resolution (Ktihlbrandt and Wang 1991). 
According to Ktihlbrandt and Wang the chlorophylls 
are arranged in two levels near the upper and lower sur- 
faces of the membrane and orientated almost perpen- 
dicularly to the membrane plane. The kn:~wn residues 
for chlorophyll binding in bacterial complexes are his- 

tidine, glutamine and asparagine (Zuber 1985; Michel 
et al. 1986; Chitnis and Thornber 1988), but they do 
not occur in sufficient numbers in the transmembrane 
segments of the LHCP of higher plants. This might sug- 
gest that the chlorophylls are liganded by other amino 
acid residues as well or they are orientated by water 
molecules and hydrogen bonds (Ktihlbrandt and Wang 
1991). The carotenoids are also essential components 
of the LHC (Plumley and Schmidt 1987; Herrin et al. 
1992), but nothing is known about their interaction 
with the polypeptide. 

Unlike the LHC of higher plants, the LHC of algae 
exhibit a great variation in pigment composition and in 
the number of bound pigments 0Nilhelm 1990; Hiller 
et al. 1990). Comparative analyses of the primary 
structure of the LHCP with the associated pigments 
will reveal further insight into the pigment-protein- 
interaction. In this context the prasinophycean alga 
Mantoniella squamata is of special interest, because it 
is regarded as a primitive representative of the chloro- 
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phyta (Van den Hoek et al. 1988). Its isolated LHC 
(Wilhelm et al. 1986; Fawley et al. 1986) shows 
an unusual pigment composition, apart from Chl a 
and Chl b it additionally binds Chl c (Mg 2,4-divinyl 
pheoporphyrin a5 monomethyl ester) (Jeffrey 1989). 
The LHC further contains prasinoxanthin as its major 
carotenoid, which is also involved in energy transfer to 
Chl. Moreover, Mantoniella is able to change the pig- 
ment composition of the LHC in response to luminous 
intensity during growth (Wilhelm et al. 1990). Recent 
reconstitution experiments with the LHC have pro- 
vided evidence for a rather high flexibility of pigment 
recognition and binding (Meyer and Wilhelm 1993). In 
that study it has been shown that the reconstituted LHC 
is able to assemble pigments which are not an integral 
part of the LHC in vivo. Furthermore, no immunolog- 
ical relationship can be detected between the LHC of 
Mantoniella and brown algae (Passaquet et al. 1991), 
green algae and higher plants, except for closely related 
prasinophycean algae (Fawley et al. 1986). 

Summing up, the LHC of Mantoniella squamata 
differs from known LHC in various aspects. Up to now 
research has focused more on the role of pigments than 
on the protein structure. It is the aim of this study to 
examine the polypeptide as a possible cause of those 
unusual features of the LHC. 

Materials and methods 

Mantoniella squamata (Strain no. LB 1965/5, Culture 
collection, Marine Lab., Plymouth, UK) was grown 
according to Wilhelm et al. (1986). The isolation and 
purification of the LHC was carried out as described 
by Herold et al. (1991). The pigments were removed 
by extraction with 80% (v/v) acetone at - 2 0  °C and 
the LHCP was collected by centrifugation at 4 °C. The 
cysteine residues of the LHCP were reduced by DTT 
and alkylated by iodoacetamide. 

The LHCP was digested with endoproteinase Lys- 
C (EC 3.4.21.50, Wako), endoproteinase GIu-C (EC 
3.4.21.19, Boehringer Mannheim) or trypsin (EC 
3.4.21.4, Sigma) in 0.1 M NH4HCO3, pH 8.1 for 6-20 
h at 20 °C or, for GIu-C, at 37 °C. The protein-enzyme 
ratio was 200:1 for Lys-C, 20:1 for GIu-C and 50:1- 
20:1 for trypsin. In addition, the LHCP was cleaved 
between Asp and Pro with 75% (v/v) formic acid at 
37 °C. A LHCP-specific cleavage occurred in anhy- 
drous TFA at 37 °C for 15 min. The cleavages were 
terminated by freezing and lyophilizing. 

Peptides were separated either by HPLC or by 
PAGE. The reverse-phase HPLC was performed on 
a Nucleosil Ca column (1000 A, 4.6 x 50 mm, 
Macherey-Nagel) using a gradient between water with 
0.1% TFA (solvent A) and acetonitrile with 0.1% 
TFA (solvent B). The gradient ran from 0% B to 
60% B within 60 min, reached 95% B after 72 min 
and returned to initial equilibration conditions after 
5 min. The flow rate was 0.5 cm3/min. The column 
effluent was monitored at 220 nm and 280 nm. The 
collected fractions were lyophilised. SDS-PAGE was 
performed either according to Laemmli (1970) with 
double-concentrated electrode buffer or using the sep- 
arating gel and the electrode buffer as described by 
Sch/igger and von Jagow (1987). Gels were run in the 
BioRad Minigel apparatus at room temperature. 

For amino acid analysis the samples were 
hydrolyzed in the vapors of 6 M HC1 at 110 °C for24 
h. The hydrolysates were analysed on a Biotronic LC 
3000 amino-acid analyser with post column ninhydrin 
reaction. 

The peptides separated by SDS-PAGE were trans- 
ferred to polyvinylidine fluoride membrane (Immo- 
bilon, Millipore) by electroblotting, stained with ami- 
do black, cut out and sequenced. Lyophilised peptides 
were transferred to the membrane in 25 mm 3 neat TFA. 
Sequence analysis was performed on a Knauer Protein 
Sequencer 810. The phenylthiohydantoin amino acids 
were identified according to Frank (1989). 

Mass spectra were accumulated using a triple 
quadrupole mass spectrometer (model 710, Finnigan- 
MAT, San Jose, CA, USA) equipped with either an 
electrospray ionisation source (Analytica of Branford, 
Branford, CO, USA) or a LSIMS probe. Spectra were 
accumulated in profile mode scanning from 400-2000 
a.m.u in 4 s. Collision-induced dissociation experi- 
ments were carried out scanning in centroid mode using 
a collision energy of 20 e V using 2.5 mTorr of Argon. 

Sequence alignments were performed using the 
sequence analysis software package (7.1) of the Genet- 
ic Computer Group (University of Wisconsin). 

Results 

Figure 1 shows the polypeptide pattern of the isolated 
and purified LHCP from MantonieUa squamata. Two 
polypeptides could be distinguished, one polypeptide 
with an apparent molecular weight of 23.5 kDa and a 
second one of 25 kDa. Even though the two polypep- 
tides had not been separated for the cleavage proce- 



Fig. 1. Polypeptide composition of the LHCP from Mantoniel- 
la squamata separated by Laemmli SDS-PAGE. The gel was sil- 
ver-stained using a modified procedure by Heukeshoven and Der- 
nick (1988). Lane 1, purified LHCP; lanes 2,3,4, isolated LHCP; 
lane 5, molecular mass markers. 
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Fig. 2. Amino acid sequence of LHCP from Mantoniella squa- 
mata obtained by a combination of Edman degradation and mass 
spectrometry. The fragments are named according to the cleavage 
method: Lys - endopeptidase Lys-C, Glu - endopeptidase Glu-C, 
Try - trypsin, TFA - TFA-cleavage, DPc - DP-cleavage, * - not 
detected. For mass spectra the mass of the (M+H) + ions of the 
peptides is given. 

dures no sequence heterogeneity could be detected. 
The reason for the divergent molecular weights of the 
polypeptides is still unknown. 

The amino acid sequence of the LHCP from Man- 
toniella squamata and the sequencing strategy is 
shown in Fig. 2. The LHCP consists of 200 amino 
acids and has a molecular weight of 21260 Da. The 
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N-terminal aspartic acid is acetylated, which was 
shown by collision-activated dissociation mass spec- 
tra of the Lysl-fragment (1-24) and of the Glul-peptide 
(1-5, Fig. 3A). The overlapping sequence between the 
Lysl- and the Lys2-fragment (25-72) was found in 
the peptide Glu2 (6-27). The order of Lys2 and Lys3 
was derived from an incomplete Lys-C digest, which 
produced the required Lys2+3-fragment (25-145). In 
order to examine the carboxy-terminal region of the 
LHCP the TFA-fragment (136-200) was sequenced 
which resulted in the detection of a DP-cleavage 
site. The DPc-fragment (184-200) was sequenced by 
Edman degradation and analyzed for its amino acid 
composition, which led to consistent results. 

Due to the acetylated N-terminus no sequence 
information was expected from the Edman degradation 
of the uncleaved LHCP, but surprisingly this resulted 
in a sequence starting with alanine (136). This indicat- 
ed that a cleavage must have happened during the first 
Edman cycle. Treatment of the LHCP with anhydrous 
TFA at 37 °C for 15 min also led to this specific TFA- 
break in the LHCP, which was confirmed by SDS- 
PAGE. When sequencing the Lys3-fragment (73-145) 
two amino acids were detected in each of the first 
cycles; one sequence could be assigned to the begin- 
ning of the TFA-peptide (136-145). The subdigestion 
of the Lys3-fragment (73-145) with trypsin gave three 
peptides, of which Tryl (130-145) was the one with 
the TFA-cleavage site. The sequence of the beginning 
of Tryl (130-135) could only be clearly determined 
for the first two amino acid residues, after that no fur- 
ther degraded amino acid residue was detectable, even 
though the second sequence (136-145) starting at the 
TFA-cleavage site was visible. 

In order to prove the existence of a single peptide, 
mass spectrometry was used (Fig. 3B and C). The mass 
spectra of the Tryl-fragment showed (M+H) + ion at 
m/z 1766.1. After TFA-treatment two smaller peptides 
were observed, the (M+H) + ions of which appeared at 
rn/z 1091.4 and m/z 675.5. The molecular weights of 
the TFA-products added up to exactly the molecular 
weight of the Tryl-fragment, which indicated that no 
water molecule was added as is the case in an usual 
cleavage of a peptide bond. The amino acid analysis of 
the Tryl-peptide (D/N 2.1; S 0.9; E/Q 3.2; G 2.2; A 1.2; 
L 2.8; F 1.0; K 1.0 and one unidentified peak) indicat- 
ed that two amino acid residues were missing and in 
addition, one peak appeared which might have come 
from an unknown residue. The collision-activated dis- 
sociation mass spectra recorded on the (M+H) + ions 
of Tryl-peptide (Fig. 3B) and of 675-peptide (Fig. 3C) 
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as well as of their methylated and acetylated deriva- 
tives (data not shown) provided the sequence FDXL- 
GLAESGDLEELK. The amino acid X has a residue 
weight of 129, which might be in accordance with glu- 
tamic acid, but there were some inconsistencies. First, 
the result of the Edman sequencing where no residues 
were detectable after FD (130, 131) which would be a 
very unusual behaviour for a glutamic acid residue at 
this position. Second, glutamic acid should be exclud- 
ed because the spectra of the methylated Tryl-peptide 
indicated only one carboxyl group which resulted from 
aspartic acid (131). Possibly, the amino acid X is the 
proline derivative 3,4-dihydroxyproline, which corre- 
sponds with the molecular weight and the fragmenta- 
tion im MS/MS spectra. 

D i s c u s s i o n  

Recently five lhc-genes of the LHCP of Mantoniel- 
la squamata were deposited in the EMBL data base 
(accession number: X69524, X69525, X73539 and 
X73540 from Rhiel and M6rschel (1993) and Z22782 
from Jiao and Fawley). Two genes, X73539 and 
X73540, are completely identical to the protein iso- 
lated from the photosynthetic apparatus of the alga. 
The other genes are also very similar, they contain 
between one and three amino acid exchanges. Accord- 
ing to the gene and protein sequences, the transit pep- 
tide is cleaved between alanine and aspartic acid and 
the N-terminal aspartic acid becomes acetylated. Up 
to now, only one N-terminal acetylation from a higher 
plant has been identified (Michel et al. 1991). Looking 
at the modified amino acid X, the two correspond- 
ing genes have proline at its position. These findings 
confirm the hypothesis that X is a posttranslationally 
modified proline, presumably 3,4-dihydroxyproline. 

The N-terminal region of the LHCP of Mantoniel- 
la squamata is definitely shorter than the N-terminus 
of other Chlb-binding proteins (Fig. 4). In higher 
plants and green algae the N-terminal segment of 
LHCP is necessary for grana formation (Mullet 1983). 
The reduced length of this part is in good agreement 
with the observation that in Mantoniella true partition 
regions do not occur (Kramer et al. 1988). 

The LHCP sequence of Mantoniella squamata is 
aligned with the deduced amino acid sequences of 
lhc genes of a higher plant (Cashmore i984), Chlb- 
containing algae (Imbault et al. 1988; Long et al. 1989; 
La Roche et al. 1990; Larouche et al. 1991) and Chla/c 
algae (Grossman et al. 1990; Hiller et al. 1993) in 
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Fig. 4. Sequence alignment between the LHCP of Mantoniel- 
la squamata (Ms) and Chla/b- and Chla/c-binding proteins. Ps - 
Pisum sativum (Cashrnore 1984), Cr - Chlamydomonas reinhardtii 
(Imbault et al, 1988), Cm - Chlamydomonas moewusii (Larouche 
et al. 1991), Dt - Dunaliella tertiolecta (La Roche et al. 1990), 
Ds - Dunaliella salina (Long et al. 1989), Eg - Euglena gracilis 
(Muchhal and Schwartzbach 1992), Pt - Phaeodactylum tricornu- 
turn (Grossman et al. 1990), Ac - Amphidinium carterae (Hiller et al. 
1993). The helices are arranged according to Kiihlbrandt and Wang 
(1991) and Allen (1992). Lines mark amino acid identity with the 
MantonieUa sequence, colons indicate 4 or 5 identical amino acid in 
the Chlb-containing plants with Mantoniella LHCP. Dots represent 
gaps introduced into the sequences to maximize homology. 

Fig. 4. The comparision shows conserved segments 
in the transmembrane regions of the Chlb-containing 
plants, especially in the helices B and A. Identical 
amino acids are also found in the neighbouring regions 
of helix A. The shorter N-terminal region of the LHCP 
of Mantoniella exhibits sequence divergence. From 
this alignment it can be assumed that the LHCP of 
Mantoniella is arranged in a similar way as the LHCP 
of higher plant (Karlin-Neumann et al. 1985; Biirgi et 
al. 1987; Ktihlbrandt and Wang 1991), i.e. with three 
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hydrophobic domains, the N-terminal segment being 
on the stromal side and the C-terminus on the lumenal 
side of the thylakoid membrane. It has been shown 
for higher plants that three transmembrane regions 
are required for insertion into the thylakoid membrane 
(Auchineloss et al. 1992) and also for the formation of 
a stable pigment-protein complex (Paulsen and Hobe 
1992). This seems to apply to Mantoniella LHCP, too. 
Examing the sequences as a whole, a high degree of 
homology between pea, Chlorophyceae and Euglena 
(>70%) becomes clearly recognizable, while the num- 
ber of identical amino acids between the LHCP of 
Mantoniella and Chlb-binding proteins is significant 
smaller (30--35%). Nevertheless, it is obvious that the 
LHCP of Mantoniella belongs to the Chlb-binding pro- 
teins. 

The alignment of Chla/c sequences with Chlalb 
sequences is under debate. Green et al. (1992) com- 
pared the first transmembrane region to helix B of 
Chla/b-binding proteins while Grossman et al. (1990) 
aligned it to helix A. The helices B and A have corre- 
spondingly conserved residues, which can also be seen 
in Mantoniella, suggesting that these two membrane- 
spanning regions may be the result of an internal gene 
duplication (Green et al. 1991). Comparing the Chla/c 
algal sequences with Mantoniella according to Gross- 
man et al. (1990), identical amino acids in the helix A 
and in its preceding region became obvious, including 
the sequence motif FDPLG being conserved in most 
LHCPs analyzed so far (Green et al. 1992; Hiller et 
al. 1993). As this study wants to point out it is exactly 
this motif which contains the modified amino acid X in 
Mantoniella. Current analyses of the posttranslational- 
ly modified proline should lead to its clear identifica- 
tion. Further studies will concentrate on the question 
if this posttranslational modification may be involved 
in the flexibility of pigment recognition and pigment 
binding of the LHCP (Meyer and Wilhelm 1993). 

Looking at the presumed Chl-binding sites, two of 
the three histidines in Chlb-containing plants are con- 
served in Mantoniella, one in helix A (Grossman et 
al. 1990) and the second one in the C-terminal region 
(180). It is remarkable that no histidine, asparagine 
or glutamine can be found in helix C. Reconstitution 
experiments with mutant pea LHCP (Paulsen and Hobe 
1992; Cammarata and Schmidt 1992; Paulsen and 
Kuttkat 1993) have identified segments of the LHCP 
playing an important role in the formation of stable 
pigment-protein-complexes. It has been shown that 
these segments are a hydrophilic domain at the begin- 
ning of helix B and a hydrophilic domain between 

helix A and the C-terminus, which are also conserved 
regions in Mantoniella. 

The present results provide evidence that the LHCP 
of Mantoniella is phylogenetically related to Chlalb- 
binding proteins. The LHCP also possesses an unusual 
modified amino acid in a highly conserved sequence 
motif which is found in all Chl-binding proteins. 
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