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The Green's functions discussed below play an important role in solid 
mechanics. For example, the formulation of the curved crack problem and the 
boundary integral equation depends on these functions. Using the three-dimen- 
sional Green's functions for bimaterials and performing integration along one 
axis, the two-dimensional Green's functions (TDGFs) are obtainable [ 1]. In this 
note, an alternative method for deriving the TDGFs is suggested. The suggested 
approach and obtained results are compact in form and easy to understand. 

It is well known that in the complex variable function method the stresses (o 
., ~ ,  ~ ) ,  the resultant force functions (X,Y), and the displacements (u,v) can be 
desbribed by two complex potentials ~(z) and V(z) [2] 

cx + ~, = 4Re~'(z ) 

% - a x + ity~ = 2[z~"(z) + Xlt'(z)] 

f = - r + / x  = ¢(z ) + + V(z  ) 

2G(u +iv) = ~:t~(z ) -  z-~-~- V(z ) 

where G is the shear modulus of elasticity, 1(= 3-4v for the plane strain problem, 
and v is Poisson's ratio. 

Suppose the singular point z=t is located in the upper half-plane (Fig. 1), and 
the upper (lower) half-plane possesses the elastic constants G~, v,, ~:,=3-4v~ (G z, v 
2, ~ = 3-4v2), respectively. The complex potentials ~,(z) and ~t~(z) are defined in 
the upper half-plane S ÷, and they may be expressed in the form 

= ¢ , , ( z )  + ¢,o(z)  

(i) 

(2) 

(3) 

W,(z) = + W,c(z) (4) 

where $,p(Z) and ~,p(z) represent the singular part of $1(z) and V1(z). We express 
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these two functions by 

¢lp(Z) = a o Log(z - t) + 
re an 
Z - -  

. = ' ( z - t ) "  

re b. 
I l l l p ( z )  = b o Log(z - t) + Y. - -  

.=, (z - t)" 

Note that these two functions can be defined on the whole plane except for the 
point z=t. In addition, the complex potentials ¢2(z) and ~2(z) are defined in the 
lower half-plane S- in Fig. 1. 

The continuation of the displacements and the tractions along the real axis 
leads to 

(¢,(x) + x ~ - ~  +-v,(~)  + = (¢2(x) + x g ; ~  +-w,(x)) 

(5) 

G2(K ,$, (x) - x ¢ - ' ~  --tl.t~~~) + = G, (~,¢2(x) - x ~  - ~2(x))  
(6) 

The solution of (6) has been obtained and can be expressed as follows [3] 

r,,,,~z)l ,-r~,,<+,,-r~,,<_ .r~<,,< ,j-z~i?,,~) 1 
Lv#)J = Lv,,,(z)J L,,,,,,~)J %v,,,<z)J + v , , , ' , , ,<  

[ ,~(z)] .i%,(z)l .rz<,(z)- 
w(z)j="[v,,(z)J+~t_zv',m)_ 

where the matrices have the following expressions 

'=[~ 1, 'l=[°o ~], ,_[~,, _o], ,~:[o Oo] 

(7) 

(8) 

,,=[~o+O ~:i~ o 1 ~], _o °ol (9) 

and 

( ~ -  
K1G2-~2G1 G2-G1 

G2+~2G 1 , ~-G~+K1G 2 
(io) 
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The matrices 11, 12 and 13 represent the reflection ones, and the matrices Jl and J2 
represent the transmismon ones. 

For  reference several particularly important cases for the singular source are 
written below: 

(a) If  a concentrated dislocation with intensity D = D 1 + iD 2 is applied at the 
point z=t (Fig. 2(a)), we have [4] 

t~lp(z ) = D Log(z - t), Vlp = ~- Log(z - t) - D 
g - - t  

RII 

(11) 

(b) If a concentrated force with intensity F + iFy is applied at the point z=t 
(Fig. 2(b)), we have [5] 

t~lp(z ) = P Log(z - t), Vlp(z) = -KhP Log(z - t) - P  
z - t  

where 
Fx + iFy 

P = P1 + iP2 - 
2re(1 + ~h) 

(c) If  a double force F is applied at the points z=t and z=t+dx (Fig. 2(c)), 
after letting L i m ( - F  dx/(2rc(l+~:l)) = N 1, it follows 

1 1 
¢lP(z) = -N1 z - t , Vlp(z) = (~:1 - 1)N1 z - t - N l - - ( z  - t) 2 

(d) If a double force F v is applied at the points z=t and z=t+dx (Fig. 2(d)), 
after letting Lim(-Fydx/(2rc(l+~))= N 2, it follows 

1 1 
t~ lP(Z)=-iN2z- t '  VlP(Z)=-i(Kl + l)N2---'z-t tN2(z- t )2  

(e) If  a double force F is applied at the points z=t and z=t+idy (Fig. 2(e)), 
after letting Lim(-Fydy/(2r~(1 +r~)) = N3, we find 

1 1 
t~'P(z)=N3z - t  ' V'P(z) = (~q - 1)N3 z - t +N3--(z - t) 2 

(f) If  a double force F is applied at the point z=t and z=t+idy (Fig. 2(f)), 
after letting Lim(-F dy/(2rc(l+r~)) = N,, we find 

(12) 

(13) 

(14) 

(15) 

(16) 
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1 1 
~lP(Z) : -iN4z -'t  ~tlP(z) : i(~1 + 1)N4z - t  tN4(z-t)2" 

(g)Letting N, = N5/(2~ ~- 1)) in (14) and N3=NJ(2(~: 1)) in (16) and using the 
principle of superposition (Fig. 2(g)), we have 

1 
¢lp(Z) = 0, ~¢lp(z)=Nsz_ t 

(17) 

(18) 

Physically, this case corresponds a center of dilation place at the point z=t. 

(h) Letting N 2 = -NJ(2(~q+l)) in (15) and N,=N,/(2(~:I+I)) in (17) and using 
the principle of superposition (Fig. 2(h)), we have 

1 
~lp(Z) = 0, V,p(z) = iN 6 -  

z - - t  

(19) 

Physically, this case corresponds a moment applied at the point z=t. 

Clearly, it is possible to find other particular kinds of singular solution in the 
form of (5), for example, for the case of a doublet of dislocation. However, it is 
not easy to find a physical explanation for any single term in (5), for example, the 
pairs ~p(z)=0 and W~(z)=bs(z-t)-< 
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Figure i. A singular point z=t placed in the upper half-plane of the 
bimaterials. 
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Figure 2. Pictorial representation of singular source at the point z=t, 
(a) dislocation, (b) concentrated force, (c) double force in 
x-direction, (d) double force with moment, (e) double force 
in y-direction, (f) double force with moment, (g) dilation, 
(h) concentrated moment. 
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