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Abstract. A complete form of stress and electric displacement fields in the vicinity of the tip of an interfacial crack, 
between two dissimilar anisotropic piezoelectric media, is derived by using the complex function theory. New 
definitions of real-valued stress and electric displacement intensity factors for the interfacial crack are proposed. 
These definitions are extensions of those for cracks in homogeneous piezoelectric media. Closed form solutions 
of the stress and electric displacement intensity factors for a semi-infinite crack as well as for a finite crack at the 
interface between two dissimilar piezoelectric media are also obtained by using the mutual integral. 

1. Introduct ion 

Piezoelectric materials have found wide technological applications as transducers, sensors 
and actuators due to their inherent coupled electromechanical behavior. The strength of the 
piezoelectric materials is reduced by the presence of defects such as cracks. The subject 
of cracks in piezoelectric materials has thus received much attention, due to its potential 
application in various kinds of electromechanical problems. Several basic problems for cracks 
in homogeneous piezoelectric materials have been solved by Parton [1], Sosa and Pak [2], 
Pak [3, 4] and Sosa [5]. Recently, Suo et al. [6] examined the problem of an interfacial crack 
between dissimilar anisotropic piezoelectric media. They used the general representations for 
stress and electric displacement fields in anisotropic piezoelectricity, as derived by Barnett 
and Lothe [7], to formulate the interfacial crack problem in terms of four analytic potential 
functions. If a potential function of the form Z-1/2+i61) that generates the singular crack-tip 
fields is assumed as in Suo et al. [6], the traction and charge-free conditions on the surface 
of the crack lead to an eigenvalue problem associated with the eigenvalue ~5 and eigenvector 
v. The eigenvalue ~5 and the corresponding eigenvector v depend on the material constants. 
They [6] employed a coordinate system whose base vectors are the orthogonal eigenvectors 
for mathematical convenience, and found that the general interfacial crack-tip field consists 
of two pairs of singularities; r - 1 / 2 + i t  and /.-1/2-4-n at distance r from the crack tip in the 
eigenvector coordinate system, where s and ~; are real numbers depending on the material 
constants. They proposed definitions of one complex intensity factor and two real intensity 
factors that scale the oscillatory fields (~,-1/2±ie) and the non-oscillatory fields (r-1/2:t:~), 
respectively, based on the components of the traction vector in the eigenvector coordinate 
system. Therefore, it is necessary to solve the eigenvalue problem to determine the intensity 
factors. Furthermore, the definitions of intensity factors of stress and electric displacement 
for the interracial crack do not reduce to those of classical stress and electric displacement 
intensity factors, as the bimaterial continuum degenerates to be a homogeneous one. In order 
to overcome these difficulties, new definitions of real-valued stress and electric displacement 
intensity factors are proposed in this paper, based on components of the traction vector in a 
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material-independent global spatial coordinate system, such as the Cartesian coordinates. In 
defining the intensity factors, a matrix function that plays an important role in representing the 
coupling and oscillations in the crack-tip fields is introduced. The matrix function is shown 
to be related explicitly to only one of the generalized Dundurs bimaterial matrices, but not 
the eigenvectors. The intensity factors can be thus determined without solving the eigenvalue 
problem. The definitions of the intensity factors may be considered as an extension of the 
purely elastic version proposed by Wu [8] and Qu and Li [9]. 

Significant progress has been made in determining complete crack-tip fields for elasticity. 
Rice [10] has derived the complete form of the stress and displacement fields near the tip of an 
interfacial crack, between two dissimilar isotropic elastic media, based on analytic functions. 
The corresponding problem for anisotropic bimaterial has been recently solved by Beom and 
Atturi [11]. Subsequently the complete crack-tip eigen functions for the anisotropic elastic 
interfacial crack have been used as the Galerkin basis functions in special finite elements for 
numerical analysis of finite cracks in finite bodies by Chow et al. [12]. However, a complete 
form of stress and electric displacement fields in the vicinity of the tip of an interfacial crack, 
between two dissimilar anisotropic piezoelectric media, has not yet been derived, although a 
basic singular asymptotic crack-tip solution has been known [6]. The general form of the near 
tip fields for the interface crack, in the sense of a complete Williams expansion, is derived in 
this paper using the complex function theory. The near-tip fields are written in terms of two 
generalized Dundurs bimaterial matrices proposed in this paper. 

Conservation integrals such as J, L and M integrals [13, 14] are successfully used in 
analyzing elastic crack problems. Their path-independent property has been utilized to obtain 
elegant short-cut solutions for the energy release rates or stress intensity factors for some elastic 
crack problems [15, 16]. However, the approach of the conservation integrals mentioned above 
has a limitation, i.e. it can not determine the individual stress intensity factors for an interfacial 
crack which is inherently under mixed mode. The mutual integral M proposed by Chen and 
Shield [17] provides sufficient information for determining the individual stress intensity 
factors for the interfacial crack problem, if auxiliary solutions are properly introduced, and 
indeed this mutual integral has been employed to obtain the closed form of individual stress 
intensity factors for elastic crack problems [ 18, 19]. On the other hand, studies on conservation 
integrals for electroelastic materials have been performed by some researchers [3, 20-23] 
since the work by Cherepanov [24]. Especially, a conservation integral corresponding to the 
J integral in elasticity was derived for a piezoelectric medium by Pak [3]. 

It is the purpose of this study to investigate the problem of an interfacial crack between 
dissimilar anisotropic piezoelectric media under electromechanical crack-face loading, and 
that of an interfacial crack interacting with electromechanical singularities in the material. 
The problem is formulated using the complex representation derived by Barnett and Lothe 
[7]. In particular, the one-complex variable approach introduced by Suo [25] is employed 
in this paper, which simplifies many earlier works. The general form of the near tip fields 
for the interface crack between dissimilar anisotropic piezoelectric materials, in the sense 
of a complete Williams expansion, is derived here for the first time using an analysis based 
on analytic functions. The procedures following those of Rice [10] in solving the near-tip 
fields for the interfacial crack in dissimilar isotropic elastic media. New definitions of real- 
valued stress and electric displacement intensity factors are proposed. These definitions are 
extensions to those for cracks in homogeneous piezoelectric media. The stress and electric 
displacement intensity factors associated with the interfacial crack in dissimilar anisotropic 
piezoelectric media are also represented by the mutual integral. The mutual integral, which 
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has the conservation property, is applied to determine the stress and electric displacement 
intensity factors due to electromechanical crack-facing loading, and due to a body force and 
a dislocation, for a semi-infinite crack, as well as for a finite crack, at the interface between 
dissimilar anisotropic piezoelectric media. 

2. Formulation 

Consider a generalized two-dimensional deformation of an anisotropic piezoelectric solid in 
which the three components of displacement and the electric potential depend only on the 
in-plane coordinates, xl and x2. The constitutive equation for a linear piezoelectric material 
can be written in the following compact form [7] 

2 i j  = CiJMnVM,n, (2.1a) 

in which 

u,~, M =  1,2,3 
VM 

¢, M = 4 

crij J =  1,2,3 

Ei j  = Di, J = 4 

{ Cijm~, J,M = 1,2,3 

e~ij, J =  1 , 2 , 3 ; M  = 4 

~iJMn 
eimn, J = 4; M = 1,2, 3 

-7i~, J,M = 4 

(2.1b) 

where u~ is the displacement, ¢ is the electric potential, aij is the stress, Di is the electric 
displacement, cij,~ is the electric stiffness, enij  is the piezoelectric constant, 7i~ is the 
dielectric permittivity, and the subscript comma ( , )  denotes a partial derivative with respect 
to the Cartesian coordinates. In this paper, the repetition of an index in a term denotes a 
summation with respect to that index over its range 1 to 3 for a lowercase script and 1 to 4 for 
an uppercase script, unless indicated otherwise; and boldfaced symbols represent vectors or 
matrices. The displacements and the electric potential satisfy the equation of equilibrium for 
a homogeneous linear piezoelectric solid 

CijM~ vm,~i = 0. (2.2) 

A general solution for the displacement and the electric potential fields that satisfy (2.2), and 
the corresponding stress and electric displacement components, may be written in terms of 
four analytic functions as [7] 

vj = 2Re A J M  ZM , 
1 

(2.3a) 
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21J = - 2 R e  BjMPMftM(ZM) , 

1 

(2.3b) 

~2J = 2Re B j M f I M ( Z M )  . 
1 

(2.3c) 

Here Re denotes the real part, prime ( )  implies the derivative with respect to the associated 
arguments, and fM( ZM) are analytic in their arguments, ZM = Xl Jr- PMX2; and PM are four 
distinct complex numbers with positive imaginary parts, which can be solved as the roots of 
a eighth-order polynomial [7] 

IIQ + p(R + R T) -t- p2Tll = 0, (2.4) 

where I I I I denotes the determinant of a matrix, superscript T indicates the transpose of a 
matrix, and the three matrices Q, R and T are defined by QJM = ~,IJM1, R j M  : C l J M 2  and 
T J M  = C2JM2. When the eigenvalues PM degenerate, the solutions (2.3a)-(2.3c) need to be 
modified. 

We define two real matrices L and M, which will appear subsequently in this paper, as 

L = -[ Im(AB-1)]  -1, 

M = -[Re(AB-1)] ,  (2.5) 

where Im denotes the imaginary part. The matrix L is symmetric and the matrix M is anti- 
symmetric [6]. The matrices A and B as they appear in (2.3a)-(2.3c) are not unique, in the 
sense that any arbitrary constant can be multiplied to the eigenvectors (the column vectors of 
A and B); while the two real matrices L and M are unique (i.e, they are independent of the 
normalizing factors for A). Moreover, the two matrices L and M have smooth limits even if 
A and B become singular. If a final result involves only the matrices L and M, but not A or B, 
it is also valid for any degenerate cases. The real matrices L and M can be calculated directly 
from the elastic constants without solving the eigenvalue problem [7]. 

For simplicity, we will present our solutions through the vector function, f(z), defined as 

f(z) = ( f l (z)  f2(z) f3(z) fg(z)) r ,  (2.6) 

where the argument has the generic form z = X l + px2 (Im p > 0). This one-complex-variable 
approach has been originally introduced by Suo [25]. Once the solution of f(z) is obtained 
for a given boundary value problem, a replacement of Zl, zz, z3 or z4 should be made for each 
component function to calculate field quantities from (2.3a)-(2.3c). 

3. Near tip stress and electric displacement fields 

Consider a crack lying along the interface between two dissimilar, anisotropic, homogeneous 
linear piezoelectric materials with material 1 above and material 2 below as shown in Figure 1. 
The crack tip lies on the plane x2 = 0 at Xl = 0 and tractions and charge vanish on the crack 
surfaces. We seek the form of solution in some region [2(= f~(1) + f~(2)) surrounding the tip 
of a traction and charge-free interface crack. Continuity of tractions and charge across all the 
interface, both the bonded and cracked portions, in [2 requires that 
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Figure 1. Region near crack tip along piezoelectric bimaterial interface. 

B(t)f(1)(Xl) + B(1)f'(t)(xl) = B(Z)f(Z)(zl) + l~(2)f'(2)(zl), (3.1) 

where superscripts 1 and 2 in parentheses indicate that the quantities are for the materials 1 
and 2, respectively. Rearranging (3.1), we obtain 

B(1) f t (1 ) (Xl )  - B(2 ) f t (2 ) (Xl )  = B(2)I~(2)(Xl)  - ]~(1)~(1)(Xl). (3.2) 

The above equation holds along the entire z 1-axis in ~2. Moreover the functions on the left 
hand side are analytic in the upper region f~(1), whereas those at the right-hand side are analytic 
in the lower region f~(2). By the standard analytic continuation arguments, we see that 

B0)f(1)(z) - ]~(2)~(2)(z)  --  B ( 2 ) f ( 2 ) ( z )  - ]~(1)i¢(1)(z) = 2h(z), (3.3) 

where h(z) is analytic throughout f/, including points along all the interface. With the same 
arguments, the continuity of the displacement and electric potential across the bonded inter- 
face gives analytic continuation of different linear combinations of f (z )  and f(z) across the 
interface, such that 

A(1) f t (1 ) ( z )  - / ~ ( 2 ) ~ / ( 2 ) ( z )  ~- A(2 ) f t ( z ) ( z )  - A(1)~4(1)(z), (3.4) 

holds everywhere in f~ except on the crack line. The traction and charge-free condition on the 
surface of the crack leads to a homogeneous Hilbert problem 

B(1)lU0)+(Xl) + 1~(1)1¢(1)-(xl) = 0, Xl < 0. (3.5) 

We may express the function g(1)i"(t)(z) in terms of B(1)f(1)(z) and h(z) from (3.3) and (3.4) 

l~(1)f t (1)(z)  = (I + i / 3 ) - 1 ( I  -- i/3)B(1)f(1)(z) - 2(I + i/3)-1(I + ~)h(z), (3.6) 
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= (L (1) - L(2))(L 0) + L(2)) -1, 

= (L(1) -1 + L(2) - I ) - I (M (1) _ M(2)). 
(3.7) 

Two bimaterial matrices a and/3 defined by (3.7) are the generalized Dundurs parameters 
for an anisotropic piezoelectric bimaterial. These generalized Dundurs parameters are an 
extension to those for an anisotropic elastic bimaterial proposed by Beom and Atluri [11]. 
Substituting (3.6) into (3.5), it is found that 

B(1)f(1)+(Xl) + (I + i ~ ) - l ( I  - ifl)B(1)f(1)-(Xl) 
= 2(1 + i f l ) - l ( I  + o~)h(Xl)~ Xl < 0. 

(3.8) 

It can be shown that the general solution of (3.8) for f'(1)(z) is given by (see Appendix A for 
details) 

ft(1)(z) = 2 ~ v ~ B ( 1 ) - I ( I  q- ifl)Y(zi~,z~)g(z) + B(1)-I(I -I- a)h(z).  (3.9) 

Here 

e = 1_ tanh- 1 7] 
7F 

= ~ tan-leo, 

r /=  [{(1/4tr(fl2)) 2 -II/~11} 1 /2-  1/4tr(fl2)] 1/2, 

co = [{(1/4tr(/32)) 2 -  [I/311} 1/2 + 1/4tr(/32)] 1/2. 

(3.10) 

The matrix function Y(~, () can be written explicitly in terms of the real bimaterial matrix fl 
as 

1{ co2 
Y(~, ()_~- 2 g/2 q_ ~.g2 (~-~- ~-1) q- 

72 } 
T/2q_co2(~or-~ -1) I 

q-~ ~](T/2q_CO2)(~ -~-1)  ¢0(~2_{_CO2) (~ -~-1)  /~ 

-t 2 r/2 + c o 2 1  1 {_ ({  + ~-1)-I- (~ -}- ~-1)}/52 

1( , 1 } 2 ~(~2 + co2)(~- ~-1) + co(~2 +co2)(C- E -I) /~3, (3.11) 
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where { and ( are arbitrary functions of z. Y({, () given by (3.11) can be shown to have the 
following properties 

Y(1, 1) = I, (3.12a) 

Y(~I, (1)Y((2, (2) = Y((l(2, (1(2). (3.12b) 

Substitution of (3.9) into (3.6) yields 

g(z)=g(z), 

h(z) = - h ( z ) .  
(3.13) 

Using (3.3) and (3.9), we obtain for the other function ft(2)(Z) 

f(Z)(z) = 2 ~ v ~ B ( 2 ) - I ( I  - i/3)Y(zi~,z'~)g(z) + B(2)-1(I - o!)h(z). (3.]4) 

A Williams type expansion of the near-tip field is generated from (2.3a)-(2.3c), (3.9) and 
(3.14) by writing g(z) and h(z) in terms of local Taylor series expansions, as 

oo 

g(z) = ~ a~z ~, 
n----0 

oo 

h(z) = ~ ib~z ~, 
r~7-0 

(3.15) 

where an and bn are real vectors. Then a0 represents the strength of the crack tip singularity, 
t(IL which can be defined as an intensity factor of stress and electric displacement. Since f (z) and 

f 42)(z) are determined as above, the complete fields of the stress and the electric displacement 
in the vicinity of the crack tip are evaluated from (2.3a)-(2.3c), which results in 

[ }1 r~ ~) = -2Re  B(~)P (~) E ~(~)a~ + q~(~)b 7Z 

n----0 

[ }] T~ m) = 2Re B(m) ~ ~(m)a n + ~(~)bn , ( r a =  1, 2; no sum over ra), 
nT--0 

(3.16a) 
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where 

7-1 __-- (O"11 O"12 O'13 DI) T, 

T 2 : (O"21 (722 0"23 D2) T, 

P = diag(pl P2 P3 P4), 

4 v / ~  1] 2 --~ 0.) 2 

f iw2 112 + 

+{-¢(~)(~) + ¢(/~)(-i~)}3(~)z: 
(3.16b) 

k~(nra) = iz(rn) n u(rn) -1 { [ -  (-1)mo~), 

3(~) = B(~) -~ { I -  (-1)~i~}, 

¢(ra) (5) = Z (m)n-1/2+i5 + Z (m)n-1 /2- iS ,  

~ (m) (6 )  = z ( rn)n-1 /2+ i5 _ Z(ra)n-1 /2- i5  

Z('Jb = diag(zl "~)~ z~ m)~ z~'~) b z~m)b). 

The singular stress field along the bonded interface near the crack tip is given by 

1 
7-2(xl)- 2v%~v(xi<xDg(xl). (3.17) 

Thus, the vector of stress and electric displacement intensity factors which uniquely charac- 
terize the singular field can be defined by 

k = lim 2 x / ~ l Y ( X l  i~,xl~)7-(xl), (3.18) 
Xl-+0+ 

where k = (K 2/£1 K3 I£4) T. Since Y(Xl i~ , xi -~) and 7-(2Xl) are real, k is real. The intensity 
factor k may be considered as an extension of the elastic version proposed by Wu [8] and Qu 
and Li [9]. Although k defined in (3.18) does not have the proper dimension, it provides a 
unique characterization of the crack tip state. Stress and electric displacement intensity factors 
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with the same dimension of classical intensity factor, denoted by kz also can be defined based 
on the characteristic len~h l as suggested by Rice [10] for the isotropic elastic bimaterial 
case. kl is related to k by kl = Y(1 i~, U)k. It is noted that the intensity factor k given in (3.18) 
for the piezoelectric bimaterial recovers the classical intensity factor (IQI Kz [~III KIV) T 
as the bimaterial continuum degenerates to be a homogeneous one. This is in contrast to the 
stress and electric displacement intensity factor introduced by Suo et al. [6], which is based on 
components of the traction vector in a coordinate system whose base vectors are orthogonal 
eigenvectors. In terms of k, the analytic functions generating the singular part of the interface 
stress and electric displacement can be expressed as 

f(1)(z) = 2 1 2 v ~ B ( 1 ) - l ( I  q- i/3)Y(z is, z'~)k, 

fl(2)(Z ) = 2 ~v~-TB(2)-l(I  - ifl)y(z ie, z~)k. 

(3.19) 

4. C o n s e r v a t i o n  integra l  

The generalized J integral for a linear piezoelectric medium that is homogeneous in the xl 
direction is defined by [3, 24] 

J{v; r }  : j/F()/V?~I - tjvj,1)ds. (4.1) 

Here W is the electric enthalpy density, given by W = 1Eijvd, i, ni is the unit outward normal 
vector, td is the surface traction and the surface electric displacement, given by t j  = n i P ,  i j ,  

is a path connecting any two points on opposite sides of the crack surface and enclosing the 
crack tip and ds is an element of arc length along r as shown in Figure 1. It is well known 
that the generalized J integral is independent of any path F, and has the physical meaning of 
energy release rate due to crack extension. 

As noted in the previous section, the matrices A and B in (2.3a)-(2.3c) are not unique. 
Normalizing the eigenvectors (the column vectors of A and B) properly, it can be shown that 
[7] 

L = - 2 i B B  r ,  

S = i(2AB :r - I), 
(4.2) 

where A and B are the normalized matrices, and S = ML. For convenience, we use the 
normalized matrices A and B hereafter; f(z) is the normalized function associated with the 
normalized matrices A and B. Recently, Yeh et al. [26] obtained the complex form of the J 
integral for an anisotropic elastic solid. In a similar way, it can be shown that the generalized 
J integral given in (4.1) is written in the complex form, for an anisotropic piezoelectric solid, 
as 
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J{v ;Fo}  = Re {Hj(zj)}2dzj , 
o 

(4.3) 

where F0 is a closed contour. Since the complete general solutions for the near tip fields are 
determined as shown in the previous section, the relation between the generalized Y integral 
and the intensity factors can be derived through the complex formula of the generalized d 
integral. The generalized d integral in (4.3) is evaluated with near tip fields given by (3.19), 
resulting in 

J{v;r6)= ¼kTU-lk.  (4.4) 

Here U -1 = (L (1)-1 + L(2)-1)(I + f12), and I ~° is chosen to be a circle F8 with vanishingly 
small radius 8 as shown in Figure 1. Details required for the above derivations are presented 
in Appendix B. 

Consider two independent equilibrium states of a piezoelectrically deformed bimaterial 
body, with each displacement and electric potential being denoted by v and ~, respectively. 
The mutual integral for the two states, denoted by 34 {v, ~; r )  is defined by 

34{V,V;~} ---: /i. (~iJVJ, inl -- tJ'()J,l -- ~jVJ,1) dB. (4.5) 

As noted by Chen and Shield [17] for an elastic material, 34 {v, 5; F} can be written in terms 
of the d integral as 

34{v ,~ ;  I'} = J{v  + ~;I '}  - J { v ; P }  - J{~ ;F} .  (4.6) 

The 34 integral satisfies the same conservation law as that of the d integral. Thus we have 
the following conservation law 

34{v,~; I'0) = 0. (4.7) 

Here an area enclosed by r0 containing the interface bonded perfectly is assumed to be free 
from any singularities. This conservation law will be applied to the direct calculation of stress 
and electric displacement intensity factors without actually solving complicated boundary 
value problems, which will be shown later. Making use of the complex form of the J integral 
and the relation between J integral and Ad integral in (4.6), it can be shown that the complex 
form of the 34 integral is given by 

J = l  o 

(4.8) 
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x 1 
F ( ( (-= ( ' ' ' /  

~M_aterial 2 j /  

(a) Semi-iz)finite crack (b) Finite crack 

Figure 2. Auxiliary crack problems. 

where overscript tilde(-) represents the quantities associated with the equilibrium state 5. 
As suggested by Chen and Shield [17] (though they dealt with the crack in a homogeneous 

isotropic elastic medium), the mutual integral 34 as defined by (4.5) can be used to determine 
the individual stress and electric displacement intensity factors K1, K2, K3 and K4 for the 
equilibrium state u, if a solution for another equilibrium state 5, called the auxiliary solution, 
is known. 

First let us consider an auxiliary problem as shown in Figure 2(a). The crack lies along the 
negative zl axis and the positive Zl axis is the interface between the material 1 (occupying 
the upper half) and 2 (occupying the lower half). Each material is assumed to be anisotropic 
and piezoelectric. An admissible singular solution satisfying the boundary conditions on the 
bonded portion of the interface and on the cracked portion can be given from (3.19) by 

"~(1)(z ) = 2 ~ v ~ B 0 ) - I ( I  + ifl)Y(z i~, z'~)k, 

"~'(2)(z ) = 2 ~v~B(2)-~( I  - ifl)Y(zi~,z'~)k. 

(4.9) 

Here subscripts 1 and 2 indicate that the potentials are for the materials 1 and 2, respectively. 
We now choose four independent auxiliary solutions from the field given by (4.9) as follows 

= 

"ftJ(2) ( Z ) : 

2 ~V~--~B(1)-I(I + ifl)Y(z i~, z~)'g J, 

2 ~V~__~B(2)- 1(I - i/3)y(z i~, z~)'g J (J  = 1,2,3,4), 

(4.10) 

in which ~J(J = 1,2, 3, 4) is the base vector with the component e'~t = (~JM, where (~JM is 
the Kronecker delta. 
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Material 2 
L__ 2 

(a) (b) (c) 

Figure 3. Semi-infinite interracial crack with singularities and electromechanical crack facing loading. 

Next, consider another auxiliary problem as shown in Figure 2(b). The crack lies in the 
interval ( - a ,  a) on the xl axis. The auxiliary solutions for the finite crack are also chosen in 
a similar way so that (Appendix C) 

1 i ~ + a B ( 1 ) - I  "fa(1)(z)- 4V/-~--d - a  

(( x ( I +  i/3)Y 2 a ; +  2 ) ~  (2a z - a ~  
' \  TT-S/ 

(4.11) 

1 ~ z +  aB(2)_ 1 ~d(2)(z) -- 4 ~  -- a 

(( . × ( I - i / 3 ) Y  2 a ~ ; 2 )  * * , ( 2 a ; + 2 )  ~d, ( J = 1 , 2 , 3 , 4 ) .  

Now, we can introduce the conservation integrals 34{v,SJ;  £} and .M{v,~d; £} (d = 
1,2, 3, 4), where ~J and ~d are the displacements and the electric potential generated by the 
complex potentials given by (4.10) and (4.11), respectively. The A4 integral is evaluated with 
u desired to calculate stress and electric displacement intensity factors under various loading 
and with the auxiliary field, resulting in 

J~d {V, ~J; rE} -- 51Uj M-I kM, (4.12a) 

M{v,@Jrr}  = ~UjM]~M.1 -1 (J  = 1,2,3,4) (4.12b) 

The above equations can be rewritten for kM(M = 1,2, 3,4) as 

km = 2UMJY~I{v,vJ; Fr}, (4.13a) 

kM = 2UMJ.A/[{v, vd; F6}. (4.13b) 



(a) 

Intensity factors for interfacial cracks 175 

(b) (c) 
Figure 4. Finite interfacial crack with singularities and electromechanical crack facing loading. 

F~ 

(a) (b) 

Figure 5. Integration contours for the semi-infinite crack. 

It is obvious that the mutual integrals M in (4.13a) and (4.13b) provide sufficient information 
for determining the individual stress and electric displacement intensity factors KI, ]£2, t(3 
and K4. The 3A integral has the same path-independence as that of the J integral, therefore, 
(4.13a) and (4.13b) are valid for any path I? tracing from the lower crack face to the upper 
crack face. 

5. Interfacial crack 

Two crack configurations in an infinite medium as shown in Figures 5(a) and 6(a), which 
are of particular importance in the practical application, are considered. Electromechanical 
tractions are applied on the crack surfaces and electromechanical singularities are embedded 
in bimaterials. It will be shown that the stress and the electric displacement intensity fac- 
tors of each problem can be calculated directly by the application of the conservation laws 
M {v, ~a; r0} = 0 for the problem of Figure 3(a) and M {v, ~a; P0} = 0 for the problem of 
Figure 4(a) without actually solving the boundary value problem. 

Due to the linearity of the problem, it is sufficient to consider separately the problem 
under electromechanical tractions acting on the crack surfaces or a singularity. The complete 
solution of the problem can be obtained by superposition. 

5.1. SEMI-INFINITE CRACK 

Consider a semi-infinite crack at the interface between two dissimilar anisotropic piezoelec- 
tric media as shown in Figure 3(b). Electromechanical tractions t + (zl)  and t -  (z t ) are applied 
on the upper and lower surfaces of the crack, respectively. To determine the stress and the 
electric displacement intensity factors, the right hand sides of (4.13a) must be computed as 
seen earlier. We invoke the conservation law of M{v,~J; I~0} = 0 for the contour P0 con- 
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F~ 

(a) 

F~ e Fz ° F~ 

(6) 

Figure 6. Integration contours for the finite crack. 

sisting of F + + F [  + F~  - F~ as shown in Figure 5(a). Here F + and F~- are the paths on 
the surfaces of the crack and F~o is the circular path with an infinitely large radius. The line 
integral over 1"~ makes no contribution to .M{v,~J; F0} = 0. Thus the conservation law 
M{v,  ~J; r0} = 0 implies 

M{v,~J;F~) = M{v,~J;F + + F~-}. (5.1) 

The stress and electric intensity factor is evaluated by using (4.13a) and (5.1), which results 
in 

1 / :  dxl k -  v ~  ~ Y ( ~ ° i ~ ' ~ ° ~ ) ( I + i f l ) - l { ( I - a ) t + - ( I + a ) t - } x / Z - ~  (5.2) 

where ~0 = -Xl e~r. In deriving (5.2), (3.12b) and the relations 

ftM(ZM ) = AJM~2J + BJMVJ,1 ( n o  s u m  o v e r  M), (5.3) 

(I + i f l )V((~¢,~)  = ( I -  i f l )Y(~* ,~ ) ,  

UyT(zi~, z'~)U-1 = y(z - i* , z - ' ) ,  

(5.4) 

(5.5) 

have been used. It is noted that (5.2) is also valid for the isotropic bimaterial case, since the 
result involves only the matrices L and M, but not PM, A or B explicitly. For the special case 
in which t + = - t -  and ~ = ~ = 0, (5.2) reduces to 

~ / ~ / _ o  t + dxl 
k = ~ v /_Z 1 . (5.6) 
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Next, let us consider a semi-infinite crack with singularities, such as an electromechanical 
concentrated force and an electromechanical dislocation as shown in Figure 3(c). Electrome- 
chanical singularities q(= (ql q2 q3 q4) T) and b(=  (bl b2 b3 b4) T) are embedded in the elastic 
material 2 at the point z = z °. ql, q2 and q3 are the components of a line force and q4 is the line 
charge, bl, b2 and b3 are the components of a dislocation and b4 is the electric potential jump. 
A contour 1`0 consisting of 1`+ + F~- + F + + r -  + I'oo - Fz0 - 1'8 as shown in Figure 5(b) is 
chosen to compute the right hand sides of (4.13a). Here 1'+ and r -  are the interior paths, and 
rz0 is a vanishingly small path enclosing the point z = z °. The line integral over the parts 
F + + 1'- makes no contribution to 3,4 {v, ~J; F0}. Furthermore, there is no contribution from 
the infinitely large circle r ~ .  Thus the conservation law .M {% ~J; 1'0} = 0 implies 

M{v, J; rs} = Go}. (5.7) 

Potentials for the singularities near the point z = z ° can be written as [4, 7] 

- i  (B(2)Tb + A(2)Tq) + f*'(z), 
f ' ( z ) -  2~r(z-- z °) (5.8) 

where f*'(z) is analytic at z = z °. Making use of (4.8), (4.13a) and (5.8), it can be shown that 

1 kM = - Re  ~ I S ' S ) M N - r I N R D S R  t, D L S U L  q- (2) 
s = l  

(5.9) 

where H -1 = (I + ifl)U. It is noted that (5.9) is not valid for a degenerate case (repeated 
eigenvalues: for example, isotropic bimaterial case) since the equation involves Ps, A and B, 
explicitly. This is in contrast to the result (5.2). For the homogeneous anisotropic case, (5.9) 
becomes 

----~o~o BMS(BLsbL + ALSqL) , 
S----1 V Z ~  

(5.10) 

where Im denotes the imaginary part. The stress intensity factor for the case in which singu- 
o o 0) in larities are located on the interface can be obtained by taking the limit z ° --+ Xl(X 1 > 

(5.9) 

1 ~ " ' "  °-i* ° - ' ~ ' [ - 2 U b + ( I + f l 2 ) - l { f l ( I  a ) + ( I  a)S(1)T}q] (5.11) k - -  ~ l  I ( X l  ~ x 1 ) - - . 
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5.2. FINITE CRACK 

Consider a finite crack, in the interval ( - a ,  a), between dissimilar anisotropic media as shown 
in Figure 4(b). Tractions t+(xl )  and t - (x1)  are applied on the upper and lower surfaces of 
the crack, respectively. The solution procedure is similar to the case of the semi-infinite crack, 
which is briefly described as follows. We invoke the conservation law of M {v, ~J; F0} = 0 

for the contour I'0 consisting of F + + r [  + r + + r -  + F~ + P~o - r6 as shown in Figure 

6(a). Here 12~ is the vanishingly small circular path enclosing the point z = - a .  The line 
integral over the parts P+ + I ' -  makes no contribution to M { v , ~ J ;  I'0}. Furthermore, there 

is no contribution from the F~. Thus the conservation law 3//{v, 6J; I'0} = 0 implies 

M(v, q + + r : )  + M{.,vq (5.12) 

Evaluating the integrals M { v , ~ J ; F  + + Pc}  and M { v , ~ J ; r ~ } ,  it can be shown that 
(Appendix D) 

1 f_  * ~aa + X l d x l ,  k -  2v/-~-d a Y ( ~ ° i ~ ' ~ ° ~ ) ( I + i / 3 ) - l { ( I - a ) t + - ( I + a ) t - }  - X l  

where 

1 y((2a)_i~,(2a)_,~)( I + f12)_l{~(i_ c~) + ( I -  a)S(1)T}qo, 
2x/~-d 

(5.13) 

2a( - x l e i~ - a ) /_~ 
Co = ( _ x l e i ~ + a )  and q o =  ~ { t + ( x l ) + t - ( x l ) } d x l "  

It is noted that (5.13) is also valid for a degenerate case since the equation does not involve 
explicitly PM, A and B. 

Next, let us consider a finite crack with singularities such as a concentrated force and a 
dislocation as shown in Figure 4(c). Electromechanical singularities q and b are embedded in 
the elastic material 2 at the point z = z °. A contour I'0 consisting of r + + P~- + I "+ + r -  + 

+ ['c~ - rzo - P8 as shown in Figure 6(b) is chosen to compute the right hand sides of 
(4.13b). The line integral over the parts I '+ + F -  makes no contribution to .M{v, ~J; I?0}. 

N 

Furthermore, there is no contribution from r~. Thus the conservation law M {v, ~J; r0} = 0 
implies that: 

M{v, J; = rz0) + M{v, J; (5.14) 

Calculating the integrals M { v, ~a; rz0 } and 34 { v, ~J; r ~ }, it can be shown that k is obtained 
from (4.13b) and (5.14) as (Appendix E) 
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. . . .  0 - i s  0 - n  r~-I D(2)--lfD(2)t A(2)_ s ]  
XYt ( , S  , ¢S )MN I I N R ' S F  l I, DLsOL q- Ls~IL)J 

+ Y((2a)-is,(2a)-'~)MNUNLbL 

×Y( (2a) -ie, (2a)-~)MNUNR(L(1)-I s(1)T _ /3T L(1)-I)RLqL, (5.15) 

where ¢o = (2a(z o _ a)/(zO + a). (5.15) is not valid for a degenerate case as noted earlier. 
For the homogeneous anisotropic case, (5.15) reduces to 

/C M - -  

1 
+ ~ (LMLbL -- SLM qL). (5.16) 

~vTca, 

The stress intensity factor for the special case in which singularities are located on the interface 
can be obtained by taking the limit z ° -+ x°(Ix°[ > a) in (5.15) 

k _ 2x/~_dY((2a)-i%(2a)-~) I -  xO_a z - ~  ' Ix  ° + a  I J 

×[2Ub - ( I  + B2) -1 { /3 ( I -  a)  + ( I -  a)S(1)Z}q]. (5.17) 

6. Concluding remarks 

Complete stress and electric displacement fields near the tip of a crack between two dissimilar 
anisotropic piezoelectric media are obtained in terms of two bimaterial matrices, which may 
be considered as the generalized Dundurs parameters. New definitions of real-valued stress 
and electric displacement intensity factors are proposed. The intensity factors of stress and 
electric displacement for the interracial crack recover the classical stress and electric dis- 
placement intensity factors, as the bimaterial continuum degenerates to be a homogeneous 
one. Moreover, it is not necessary to solve the eigenvalue problem to determine the stress 
and electric displacement intensity factors since the intensity factors are related explicitly 
to the bimaterial matrix/3, but not the eigenvectors. Intensity factors of stress and electric 
displacement with the same dimension of the intensity factors for a crack in a homogeneous 
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piezoelectric material are also discussed. The stress and electric displacement intensity factors 
associated with an interfacial crack between two dissimilar anisotropic piezoelectric media 
are represented by the mutual integrals proposed in this paper. Closed form solutions of the 
stress and electric displacement intensity factors for a semi-infinite crack as well as for a finite 
crack at the interface between two dissimilar piezoelectric media are obtained by using the 
mutual integral. 

Appendix A. Derivation of (3.9) 

Introducing a new function vector ~(z)  defined by 

~)(z) = (I + i/3)-lB(1)tc(1)(z), (11) 

(3.8) is rewritten as 

( I +  i/3)¢+(Xl) -/- (I - i /3)¢-(Xl) = 2 ( I +  i/3)-1(I + c~)h(xl), - o o  < Xl < 0. (A2) 

A homogeneous solution X(Z) which satisfies the homogeneous Hilbert problem 

( I +  i/3)X+(Xl) + (I - i/3)X-(Xl ) = 0, - o o  < x 1 < 0, (13)  

can be found by considering functions of the form X(Z) = z-(1/2)+i6v, where v is a eigen- 
vector. Substitution of X(Z) = z-(1/2)+i6v into (A3) yields 

(/3 + iAI)v = 0, (14) 

where )` = tanh Ir6. Solving the eigenvalue problem (A4), we have the four eigenvalues, 
),1 = % ),2 = -7/, ),3 = -ia~ and )`4 = ia~, and the associated eigenvectors, Vl, v2, v3 and v4 
[6]. A general expression for the homogeneous solution may be written as 

X(z) 2 @ ~ z  VX(z i~, z~)V-lg(z) ,  (A5) 

where V = (Vl v2 V3 V4) and X(~, ~) = diag(~ ~-1 C C -1 ). Defining a matrix function Y(~, ~) 
as 

Y(~,  ¢) = VX(~,  ¢)V -1 . ( 16 )  

(A5) is rewritten as 

1 
X(z) - 2 2v/~-~Y(zi*, z~)g(z), (A7) 

Making use of the following relations 

9 v  = - i v A ,  

/34 jr_ (f]2 _ aj2)/32 _ ~2C721 = 0, (A8) 

A = ~]I1 + icvI2~ 
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where A = diag(A1 /~2 /~3 A4),I1 = diag(1-1 0 0) and I2 --- diag(0 0 - 1  1), it can be 
shown that the matrix function Y(~, if) defined in (A7) is expressed in terms of/3 as (3.11). A 
particular solution of (A2) is also given by 

~b(z) = (I + i f l ) - l ( I  + a)h(z) .  (A9) 

Thus the general solution of (A2) for ~b(z) is 

1 Y(z i~, z'~)g(z) + (I + i/3)-1(I + a)h(z).  (A10) 
~b(z) -  2 2v/~7 7 

Finally, we get (3.9) from (A1) and (A10). 

Appendix B. Derivation of (4.4) 

J{v; Fs} can be written as 

J{v; r6} = ~l){f(1)T(z)f(1)(z) -- ~(2)T(Z)~(2)(Z)} dz 

+21 fr(2){f(Z)r(z)f(Z)(z) _ f,0)r(z)f,(1)(z) } dz, (B1) 

where F6 consists of r~ 1) and F~ 2) which are the paths contained in the materials 1 and 2, 
respectively, Using (3.19) and (5.6) together with the relations 

y(zi~, z '~) = Y(~i~, ~'~), 
(B2) 

(I + i/3)T(L(1)-I + L(2)-I)(I d- i/3) = U -1, 

it can be shown that 

f/(1)T(z)fc(1)(Z ) -- ~(2)T(Z)i/(2)(Z ) -- _/ k T U - l k  
47rz 

(B3) 

From (B1) and (B3), (4.4) is obtained. 

Appendix C. Derivation of (4.11) 

The solution procedure is similar to the case of a semi-infinite crack presented in Appendix A, 
which is briefly described as follows. For a finite crack in interval ( - a ,  a), the Hilbert problem 
(A2) is replaced by 

(I + i / 3 ) ¢ + ( X l )  + (I  - i/3)•-(x1) = 2(I + i/3)-1(I + a )h(x l ) ,  - a  < x 1 < a. (C1) 

Considering functions of the form X(Z) -- {(z - a)/(z + a))-(i/2)+i6v, it can be shown that 
a general expression for the homogeneous solution may be written as 



182 H.G. Beom and S.N. Atluri 

A particular solution of (C1) is also by (A8). Thus the general solution of (C1) for ~b(z) is 

~ ( z ) - 4 ~  z - a  2 a ; + .  ' \  z + a ;  / g ( z ) + ( I + a ) h ( z ) .  (C3) 

Admissible auxiliary solutions can be chosen from (A1) and (C3) with g(z) = ~d and h(z) = 0 
as (4.11). 

Appendix D. Derivation of (5.13) 

The integral M { v ,  ~J; F + + P~-} corresponding to each auxiliary field ~d(J = 1,2, 3, 4) is 
evaluated by (4.5) with v J,1 corresponding to the potentials given by (4.11), which results in 

l f~ ( tT+L(1) - l - - t r -L(2) - l ) ( I+i /3 )  M { v , ~ J ; l  '+ + r ; }  - 2v/-~-- d _ 

(D1) 

~J~aaa dxl.  x y ( ~ ,  ~0 ) e + xl 
--X 1 

In obtaining (D1), (2.9) and (5.3) have been used. The potentials near infinity can be written 
as 

(1) 
(U2) 

f(2)(z) = I--~B(2)-IH-1BO)-TA(1)Tqc + O ( 1 )  

From (4.8), (4.11) and (D2), it carl be shown that 

M{v ,~d;  r ~ }  - - 1  aT(,q(1)l,(1)_ 1 _ L ( 1 ) _ l f l ) y ( ( 2 a ) i e ) . d j "  (D3) 
2 v / ~  ~- - 

Making use of (4.13b), (5.12), (D1) and (D3), we obtain (5.13). 

Appendix E. Derivation of (5.15) 

Potentials for the singularities near the point z = z ° can be written as (5.8) substituting (4.11) 
and (5.8) into (4.8), fl4{v, OJ; Fz0 } corresponding to each auxiliary field is easily evaluated 
by its residue, to yield 

M { v , ~ J ;  rz0) 

1 4 /Zs + avgzOie eO~s rr-1 ry-1 z:~(2)-l(z:~(2)~ A (2) ~ ,] 
- 2--~Rev T M  U-g-77_'v~s ,~s )KJVKN~*NR~°SR V*'LSoC + csqL)J • (El) 

V~S 



Intensity factors for  interfacial cracks 183 

The potentials near infinity can be written as 

ft(1)(Z) : { B 0 ) - ~ H - l b  + B(1)- IH-1B(2)-TA(2)Tq} + O 

f (2) (z )  = I-~-~fB(2)-IH-lb + B(2) - IH-!B(1) -TA(1)Tq}  + O ( I )  " , as  z - +  ~ .  

(E2) 

Making use of  (4.8), (4.11) and (E2), it can be shown that 

M {v, ga; } 2 v ~ a - b T Y ( ( 2 a )  i~, (2a)'~)~ J 

2V~_7~a qT(s (1)L (1)-1 - L(1 ) - l f l ) y ( (2a )  ie, (2a)'~)~ J. 

(E3) 

Since A//{ v,  ~J; rz0 } and ,b/{ v, OJ; Poo } are determined as above, k is obtained from (4.13b) 

and (5.14) as (5.15). 
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