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Abstract. In this paper we studied the quantitative assessment of the constraint effects at the crack-tip fields in 
an austenitic stainless steel (X6CrNilS11). The J - Q  annulus was verified in two-dimensional crack fields under 
both small-scale and general yielding conditions. Four different geometries with shallow through deep cracks 
were studied. It has been shown that the Q values versus the J-integral are strongly dependent on the stress-strain 
curve. J - T  gives an accurate description of the crack-tip state only at low load. In three-dimensional crack 
analysis, the stress fields tend towards the plane stress solution in both thick and thin specimens. The specimen 
thickness thus plays a key role in charaetedsation of the three-dimensional crack-tip fields. The second terms in 
the three-dimensional stress fields depend on distance to the tip and to the free edge-surface of the specimen. It 
has been shown that the stress triaxiality at the crack tip is essentially a linear function of Q. In the CT specimens 
examined, Q locally characterises the stress triaxiality at the three-dimensional crack-t'.'p front fields. 

I. Introduction 

The effect of  stress constraint at the crack tip has been extensively studied for several years and 
has become one of the keen topics in recent fracture mechanics research. Through extensive 
finite element calculations, Hancock and co-workers [1, 2] have shown that the loading in- 
plane biaxiality significantly affects the stress fields at the crack tip. Parks and Wang [3, 4] 
have discussed three-dimensional crack-tip fields in shallow-cracked panels and suggested 
that the J - T  description might be simply generalised to assess the constraint effects in the 
three-dimensional crack fields in the ductile fracture process. In this case, it is interesting to 
clarify what T in the general yielding case means and how it should be calculated [3, 4]. 

A different approach to quantify the hydrostatic stress state at the crack tip has been 
suggested by O 'Dowd and Shih [6, 7, 8]. They have examined the characteristics of the high 
and low stress triaxialities surrounding the finite strain zone and introduced the J -  Q annulus 
in the framework of the J2-deformation/flow theory of plasticity. In their studies the elementary 
plane strain solution based on the modified boundary layer formulation, [aij] SSV,T=0, was 
taken as the reference solution. The second term was obtained by subtracting the reference 
solution scaled by the applied J from the full-field solution, i.e. 

= r 0 + Qao&ij(r ,  0), (1) 

where J is Rice's J-integral [9] and a0 the yield stress. In the above equation the first term 
characterises the stress gradient, while the second one scaled by the factor Q determines the 
level of the stress curves in the far-fields. &ij is generally a function of both polar coordinates, 
r and 0, centred at the crack tip. Under the J2-deformation theory of plasticity with Ramberg- 
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Osgood model, O'Dowd and Shih [6, 7] have found the second term in (1) may be replaced 
by the Kronecker-delta, 

aij = ~ri5 J-7~o' 0 + Oao,Si5, (2) 

in the forward sector ([0[ < 7r/2), where the dimensionless parameter 

SSY,T=0 r 
Q = aoo - aoo at - 2, 0 = O, (3) 

ao J / a o  

defines a measure of the near-tip stress triaxiality, or crack-tip constraint, relative to a reference 
high triaxiality stress state. This point has been convincingly confirmed by the higher-order 
asymptotic solution with four- or even five-term expansions by Xia et al. [12]. 

In the present paper we discuss quantification of constraint effects in an austenitic steel 
(X6CrNi 1811). This is a very ductile material with high plastic capacity. Its J-integral value 
for crack initiation is about 400-500 N/mm at room temperature. In experiments performed 
at room temperature [13], it has been observed that the fracture processes are accompanied 
by a large amount of plastic deformation and obvious side-necking. This implies that the 
fracture occurs combined with strong out-of-plane constraint effects. To examine constraint 
effects in this strong ductile material, we have analysed crack-tip fields under both small- 
scale yielding and general yielding conditions. Four different geometries with varying crack 
lengths have been studied systematically. It has been shown that in general yielding cases, the 
Q values in the austenitic steel may be several times higher than those for the J2 Ramberg- 
Osgood model. The absolute Q values increase significantly with the plastic zone growth. 
Furthermore, we have discussed constraint effects in the three-dimensional crack-tip front 
fields containing significant plane stress components. It has been found that the hydrostatic 
stress at r / ( J / a o )  = 2 and 0 = 0 can generally be approximated by a linear function of Q 
in the specimens investigated. Thus, Q may locally characterise the stress triaxiality at the 
crack tip. 

2. Small-scale yielding results 

To study constraint effects under small-scale yielding conditions, a modified boundary layer 
formulation may provide detailed information about the crack-tip fields at different loading 
biaxialities. In the boundary layer formulation, the remote traction is given by the first two 
terms of the linear elastic solution of Williams [11], which reads 

K 0 
aij -- 2v~rfiJ( ) --b T~li~lj ,  (4) 

where K denotes the elastic stress intensity factor, f i j  is the non-dimensionalized angular 
function of the elastic stress fields. Using dimensional analysis one can easily show that the 
elastic-plastic crack tip stress fields must be of the form 

) aij = aoFij , O, r; material properties (5) 
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Fig. 1. Stress-strain curve used for finite element calculations. The solid curve denotes the engineering stress-strain 
relation, whereas the dash dot line represents the t rue  stress-strain curve. 

where Fij is a dimensionless tensor valued function and the stress amplitude factor is repre- 
sented by the J-integral. Under small-scale yielding conditions, the dimensionless functions 
depend only on the loading biaxiality (7- = T/go). 

In the present work the investigated material, the austenitic steel is strongly nonlinear and 
has very different plastic strain-hardening at different stress levels (Fig. 1). In the figure the 
solid curve represents the engineering stress-strain relation in double-logarithmic coordinates, 
whereas the dash dot line means the true stress-strain curve. Both curves have been measured 
experimentally. The nonlinear deformation begins at a stress tr0 = 100 N / m m  2 (e0 = ao/E = 
1 / 195) and develops with the strain increasing continuously. The 0.2 percent plastic strain is 
measured at a stress tr0.2 = 237 N / m m  2 and afterwards the plastic strain increases rapidly. 
At 3 percent plastic strain the strain-hardening grows significantly and the true stress-strain 
curve may be approximated by a potential function with an exponent n ---+ 2. The Young's 
modulus is 195000 MPa. 

The ABAQUS general-purpose finite element program [14] has been used for the com- 
putations. In all finite element calculations the J-integral has been calculated by the virtual 
crack extension method, which is implemented in ABAQUS. In finite deformation analysis 
the crack tip is assigned a finite root radius. In the two-parameter boundary layer analysis, the 
initial notch radius is assumed to be 10 -5 times the distance to the remote boundary at which 
the traction is applied. According to the results of McMeeking and Parks [15], once the crack 
tip has been blunted to about 3 times the initial notch root radius, the solutions are not affected 
by the initial root radius. The radial length of the smallest elements is about 10-6a, where a 
denotes the crack length which is represented by the remote radius R in the boundary layer 
formulation (Fig. 2(a)). The mesh in the radial direction is generated by exponential scaling. 
Because of symmetry we only have to model the upper plane. The finite element model is 
constructed using 8-nodal isoparametric elements with reduced 2 x 2 Gaussian integration. 
There are 24 elements within the angular region from 0 to 7r in the crack-tip region. 
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Fig. 2. Fracture specimen geometries: (a) modified boundary layer formulation (MBLF), (b) center-cracked panel 
(CCT), (c) double-edge cracked panel (DECP), (d) compact tension specimen (CT), (e) three-point bend bar 
(SENB). 

In the modified boundary layer formulation, the displacement field of Williams [11] has 
been applied at the remote circular boundary of distance R, as shown in Fig. 2(a). The load 
level is controlled by the mode I stress intensity factor K in (4). In analogy to analyses under 
the J2-deformation theory [6], the small-scale yielding stress distribution depends only on the 
value of the normalised transverse T-stress. Evaluation of the J-integral is not substantially 
affected by the applied T values when the crack fields are under monotonic loading conditions. 
The small-scale yielding conditions are enforced by not allowing the plastic zone r ,  to exceed 
0.1 R. The analysis of the boundary layer formulation with T-stress in the range - 1 < 7- < 1 
is considered. 

Figure 3 displays the radial distribution of the in-plane normal stresses obtained in the 
finite element computations along the radial lines 0 = 3.2 °. The stresses are taken from the 
Gaussian integration points near the ligament and the radial distance from the tip is calculated 
in the Lagrangian coordinates. The solid lines denote the reference solution with T = 0. Note 
that J /ao  is the relevant length scale on the order of CTOD. The stress and strain distributions 
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Fig. 3. Radial distributions of the in-plane stresses and the second terms under small-scale yielding conditions. 

with the same T-stress value collapse onto a single curve, independently of the applied K 
values, when the distance from the tip is normalised by J/ao. The stresses at the crack tip 
are affected by the transverse T-stress as observed in all other materials. Due to high strain 
hardening in the large strain region, the finite strain affected zone is significantly smaller than 
that in the Ramberg-Osgood materials [15, 16]. Peaks of the normal stresses are so high that 
they reach thirty times the yield stress, a0. 

The results from the austenitic steel (Fig. 4) show that the positive T-stress affects the 
triaxiality at the tip more significantly than that for the Ramberg--Osgood materials as reported 
by Shih and co-workers [6, 17, 18]. Figure 3(c,d) display the second term of the in-plane 
stresses in (1) which is essentially independent of the distance to the tip in the austenitic 
steel. Angular variations of the in-plane normal stresses as well as their second terms at 
r/(J/ao) = 2 are plotted in Fig. 4. It is shown that the second terms of the normal stresses 
are distributed in analogy to the results in [6]. 
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Fig. 4. Angular variations of the in-plane stresses and the second terms under small-scale yielding conditions. 

From the curves in Fig. 4, it is seen that the maximum Q values defined in (3) may reach 
+0.5 for 7- = 1 and - 1 . 0  for 7- = - 1  under small-scale yielding conditions. There is a 
one-to-one correlation between the Q value and the applied loading biaxiality T. Q can be 
approximated through 

Q = A r  + B7 -2 Jr C r  3, (6) 

where A, B and C have been listed in Table 1. The relation between T and Q under small-scale 
yielding conditions in the austenitic steel is shown in Fig. 5. The results of the Ramberg- 
Osgood materials with n = 3 and 10 in the figure are extracted from [17]. The figure reveals 
that Q locates between the two Ramberg-Osgood materials in the negative T region. For the 
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Fig. 5. Relationships between Q and T under small-scale yielding conditions. The results of the Ramberg-Osgood 
materials were reported in [6]. 

Table 1. The coefficients for theT-Q relation- 
ship (6) 

Aus~ni~ n = 3 n = 10 

al 0 . 7 3 7 4  0 . 6 4 3 8  0.7594 
a2 -0.1523 -0.1864 -0.5221 
a3 0.09212 -0.0448 0 

The results of the Ramberg-Osgood materials 
were reported in [17] 

positive T-stress, however, the Q value grows significantly, whereas in the Ramberg-Osgood 
materials the growth gradient of Q decreases continuously. 

3. Two-dimensional results under general yielding 

The stress triaxiality at the crack tip can be quantified by an elastic field parameter (e.g. K and 
T) only when the material nonlinearity in the crack-tip field can be correlated by the elastic 
solution. As soon as the material plasticity characterises the whole crack field, the stresses at the 
crack tip cannot directly be controlled by the T terms, whereas the Q factor is a direct measure 
of the stress difference at the tip. Wang [4] has shown in his finite element computations 
of the surface-cracked panels under J2 deformation theory that the tangential crack-tip front 
stress can be correlated by T indirectly. In [4] the reference stress fields are the boundary 
layer results with a suitable transverse T stress under plane strain conditions. Wang found that 
the three-dimensional crack-tip front fields could be approached by the plane strain boundary 
layer formulation. This T value should correlate the three-dimensional crack-tip fields under 
general yielding conditions according to his predictions. Whereas the Q evaluation requires 
detailed finite element calculations, the T-values could be simply determined from the applied 
stress intensity factor [20, 22] or the corresponding J-integral value, should the predictions 
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in [4] be generally valid for the fully plastic crack-tip fields. From this point of view, Parks 
[3] stated that J - T  appeared more convenient in quantifying the crack constraints than the 
J - Q  annulus. From the physical significance of Q, however, the J - T  correlation requires a 
one-to-one dependence between Q and T for both small-scale and general yielding. According 
to the calculations of Wang [4] the crack-tip front fields in the surface cracked panels could be 
normalised by the stresses of the boundary layer formulation, that is, the relation of (6) should 
be valid under general yielding conditions. From crack analysis of elasticity it is known that 
the T-stress is linearly proportional to the applied loads. This dependence can be expressed 
in the form 

T = tr°°E (geometry), (7) 

where E is a dimensionless geometric factor derived from elasticity theory and tr °° a rep- 
resentative load magnitude. Leevers and Radon [20] as well as Sham [22] have obtained T 
solutions for a number of cracked geometries. Substituting (7) into (6) follows 

Q = F (tr°°; E, material properties). (8) 
£ or0 

The dimensionless function F depends on the load magnitude, the elastic geometry factor 
and the material properties. Thus, Q based on the J - T  description could be evaluated as 
soon as the applied load magnitude is known. In this relationship, the Q values are only 
connected with the material plasticity through the boundary layer formulation. Equation (8) is 
a direct consequence of the J - T  characterisation. One may study the J - T  characterisation 
by examining the agreement or disagreement between the Q-values from the full-field finite 
element calculations and Qs from (8). 

Four of the conventional fracture test specimens examined in the present work are shown 
in Figs. (2b,2e). The tension specimens, the centre-cracked panel (CCT) in Fig. 2(b) as well as 
the double-edge cracked panel (DECP) in Fig. 2(c), are loaded under uniaxial tension; the bend 
specimens, the three-point bend bar (SENB) in Fig. 2(e) and the compact tension panel (CT) in 
Fig. 2(d), are loaded by concentrated forces. We have examined shallow- through deep-cracked 
geometries for all specimens with a /W = 0.1, 0.3, 0.5, 0.7 and 0.9, respectively. A crack 
is designated a shallow crack when the relevant dimension is the crack length (a/W <~ 0.5) 
and a deep crack when the relevant dimension is the uncracked ligament (a/W >1 0.5). All 
computations have been conducted under the infinitesimal deformation theory of incremental 
plasticity. The choice of material model will not affect our final predictions [5]. 

3.1. TENSION GEOMETRIES 

Figure 6 shows angular variations of the hydrostatic stress at different load levels in the 
centre-cracked panel under plane strain conditions. The ratios of the crack length (a/W) are 
0.1, 0.5 and 0.9, respectively. The fields are plotted at r/(J/eo) = 2. In the centre-cracked 
panel the hydrostatic stress at the crack tip shows considerable dependence on the applied 
J values. The angular variations are analogous in all applied load levels and for all crack 
lengths. With increasing load, the stress triaxiality in the whole crack-tip fields decreases 
uniformly. The hydrostatic stress near to the crack surfaces (0 = a') falls increasingly into the 
hydrostatic compression state in the centre-cracked specimens. Due to the low yield stress of 
the austenitic steel as well as its high plastic strain-hardening, the maximum decrement of the 
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triaxiality may reach a value several times tr0. These features have also been observed in the 
double-edge cracked panels. 

The dependence of Q on the extent of plastic yielding measured by J~ (ago) for the centre- 
cracked panels as well as the double-edge cracked panels a/W <~ 0.5 is plotted in Fig, 7. 
For a /W > 0.5 the corresponding plastic yielding is measured by J/(bao), as in [17]. Here 
b denotes the length of the uncracked ligament (b = W - a). Independently of crack length, 
all curves start at the small-scale yielding solutions and the constraints decrease with the 
applied loads. The constraints fall significantly when the plastic zone has grown through the 
uncracked ligament. Compared with the hydrostatic stress distributions in Fig. 6, Q gives a 
correct representation of the hydrostatic stress state at the crack tip. In CCT and DECP with 
a /W < 0.7, the Q curves are essentially independent of the crack length. They are, however, 
nonlinearly dependent on the applied loads. 

In the figures the symbols denote Q evaluated from T. The corresponding T values are 
based on the results of [20]. By introducing the stress biaxiality ratio B [20], the normalised 
transverse stress can be expressed by 
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center-cracked panels (CCT); (b) The double-edge cracked panels (DECP). 

B [ E J 
r =  go( 7_ . 2 ) , j o "  (9) 

For the center-cracked specimen Leevers and Radon [20] predicted that the stress biaxiality 
can be expressed as 

B = - ( 1  + 0 . 0 8 5 ~ ) .  (10) 

This result implies that the stress biaxiality ratio at the crack tip in elastic CCT specimens is 
hardly affected by the crack length. 7- is almost a single variable function of the load factor 
J/(ago) and so will be the corresponding Q's, which are calculated by making use of the 
boundary layer results under small-scale yielding conditions (6), as suggested by Wang [4]. 

This point is confirmed in Fig. 7(a) for a/W <~ 0.5, in which only the result with a/W = O. 1 
is plotted, since there is graphically no difference between it and the curve with a/W = 0.5. 
A significant difference is observed at curve a/W = 0.9, which shows Q as a function of 
J/bgo, instead of J/ago. This discrepancy is only caused through the variable transformation 
in the diagram (J/ago by d/bgo). 

Compared with the finite element calculations, the J - T  prediction gives much too small 
a stress triaxiality at the tip in deep cracked panels. The curves have the same trend, but full- 
field results vary considerably less than T predicts. The T prediction approaches the correct 
Q values only at low load levels. Deviation between the full fields and the T solution grows 
as loads increase. 

Due to high plastic hardening in the austenitic steel, the Q value grows rapidly after 
the plastic zone has spread out. This feature cannot be described by the J - T  description 
combined with the small-scale yielding solution. At the high load level, the T prediction 
deviates significantly due to restriction of the Q - T  relation (6). Variations of the stress 
triaxiality for different tension specimens and different load levels cannot be expressed by the 
small-scale yielding solutions. 
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3.2. BEND GEOMETRIES 

The bend specimens contain generally a higher stress triaxiality under fully plastic conditions• 
This difference from the tension specimens becomes significant even at very low load level. 
Figure 8 plots angular variations of the hydrostatic stress in three-point bend bars (SENB) 
with a / W  = 0.1, 0.5 and 0.9 under different load levels, respectively. The fields are plotted at 
r/(J/cro) = 2. Before the plastic zone spreads over the uncracked ligament, the hydrostatic 
stress in the bending bars is slightly affected by the applied loads. As soon as the loads reach 
the plastic load level, the hydrostatic stress drops from that of the small-scale yielding solution 
rapidly. In comparison with the tension specimens, the deviations of the stress triaxiality due 
to the different loads are restricted mainly in the forward sector (10[ < a-/2). The hydrostatic 
stress in the backward sector (101 > r / 2 )  is only slightly affected by the applied J values. 
This is a characteristic difference from the tension geometries. It implies that the hydrostatic 
stress in a fully plastic specimen is substantially affected by the load configuration and can 
only be characterised by an additional parameter ahead of the crack tip (0 = 0). The definition 
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of a characteristic parameter in finite geometry and where it is evaluated is not arbitrary. A 
parameter defined behind the crack tip (0 = 7 0 can not describe the stress variation at 0 = O. 
From this point of view, the definition of Q in (3) is more relevant to the fracture process than 
a parameter evaluated behind the tip. 

It is known that the crack-tip state in the bend bars is practically not affected by the 
applied load under small-scale yielding conditions. This feature can be clearly observed in 
development of the Q curves in Fig. 9, in which Q is plotted as a function of the load levels 
measured by J/(aao) for a/W <~ 0.5 or J/(bao) for a/W > 0.5. Whereas the Q values of 
the CT specimens up to J/(troa) or J/(trob) less than 0.012 almost exactly equal zero, the 
three-point bending bars show a slightly different stress triaxiality. Apart from the shallow 
cracked specimens, the bending geometries show weak dependence on the crack length at all 
load levels. In the shallow cracked CT specimens, Q development in the plastic load region 
appears to be strongly affected by the crack length. The two bend geometries show very 
different Q distributions with the applied loads. 

In both bend specimens the elastic stress biaxiality ratio, B, [20] is an increasing function 
of the crack length. In SENB specimens, B = 0.18 for a/W = 0.5 and -0.48 for a/W = 0.1 
(The latter value is extrapolated from the last four points of the results in [20]). The Q- 
curves predicted by T-J  are plotted through the symbols in Fig. 9(a), as suggested by Wang 
[20]. The T prediction shows good agreement when the crack-tip fields are characterised by 
the small-scale yielding. As the plastic zone spreads over the whole uncracked ligament, T 
predictes two different developments of Q values for different crack lengths, while the finite 
element calculations show homogeneous variations. Similar features can be observed in the 
CT specimens (Fig. 9(b)), in which only elasticity prediction with a/W = 0.5 is plotted. 
One may conclude that there is not a one-to-one correlation between Q and T in the general 
yielding cases. 
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3.3. DISCUSSION 

The numerical results above show that T gives a good estimate of the hydrostatic stress 
before the fully-plastic load level is reached. In the fully plastic state, T incorrectly predicts 
the triaxiality of the stress state ahead of the tip. The deviation from the full field results is 
proportional to the load amplitude. Q is not uniquely described by T under general yielding 
conditions, that is, the stress triaxiality at the crack tip is not correlated by the transverse 
T-stress. Similar observations have been reported in the Ramberg-Osgood materials [ 17]. In 
general yielding Q is increasingly affected by the geometry of the specimens and the load 
configuration, whereas T is essentially based on the linear elastic solution and/or the small- 
scale yielding observations, which exclude the local non-proportional plastic effects at the 
crack tip. 

For finite width crack geometries, the results obtained from the modified boundary layer 
formulation can only be used under small-scale yielding conditions. The J - Q  annulus rep- 
resents the variation of the crack-tip fields through the difference of the hoop stress ahead of 
the crack directly. With increasing applied J values, the crack-tip fields are affected by the 
finite specimen geometry. So (8) should be re-written in the form [17] 

Q= FFp ( - ~  ; geometry, materialproperties) (11) 

under fully plastic conditions. The dimensionless function FFp depends on the applied load 
J/croa, the specimen geometry and the material properties. Under plane strain conditions, Q 
generally represents the difference of the stress triaxiality at the crack tip. 

4. Effects of  three-dimensional fields on the J -  Q annulus 

Numerical studies in [6, 17, 18] as well as in the present work have shown that Q characterises 
the crack-tip fields under plane strain conditions. It is confirmed in these works that the stress 
fields containing four stress components can be controlled by two parameters, J and Q. 
Under plane strain conditions the out-of-plane stress component azz can be expressed through 
the two in-plane stresses. Additionally, the shear stress in the mode I fields is of secondary 
significance, so that there are practically only two independent stresses, crxz and ~ruy, to be 
characterised in the plane strain fracture process. It implies that the three-dimensional crack 
fields can be characterised by J - Q  accurately, only if the out-of-plane constraint effects may 
be represented by the in-plane parameter. A more detailed discussion about the constraint 
characterisation in three-dimensional crack-tip fields has been presented in [10] recently. 

In [17] the Q values are slightly dependent on the distance to the tip in a surface-cracked 
tensile panel. From the calculations of Wang [4, 21] in similar cracked geometries this 
prediction is obvious, since the crack tip front fields are dominated by the plane strain 
solution. In general three-dimensional cases, however, all normal stresses are independent of 
each other. The out-of-plane stress component along the crack-tip front is strongly affected 
by the load level as well as the specimen thickness. Especially in thin plates, the crack-tip 
front fields may approach the plane strain fields only when the applied loads are limited in a 
very low level [19, 21]. Generally speaking, the three-dimensional crack fields are gradually 
dominated by the components of the plane stress fields as the applied load increases. It is of 
interest to know how the crack tip constraints are affected by variations of the out-of-plane 
stress component, if the crack-tip front fields are not dominated by the plane strain solution. 
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Fig. 10. Angular variations of me second-term of the normal in-plane stresses at the middle plane (z = 0) as well 
as near to the free surface (z = t/2) of the thick compact tension specimen (CT25) at r/(J/~o) = 2. 

Numerical results of the two compact tension specimens (W = 50mm, a / W  = 0.5) of 
the austenitic steel are summarised in the present paper. The thicknesses of the specimens are 
5 mm and 25 ram, respectively, which correspond to 1/5 and 1 / 1 of the uncracked ligament. 
The finite element model of the assumed geometry is loaded symmetrically. Only a quarter 
of the specimen has to be discretised. Both specimens are modelled by an analogous finite 
element mesh consisting of 6700 linear 8-nodal isoparametric elements with about 24000 
degrees of freedom. Twelve fans of elements converge towards the crack tip. The finite 
element calculations have been performed under finite strain plasticity theory. The crack-tip 
blunting radius is assumed as 0.001 mrn. The radial dimension of the smallest elements at the 
crack tip is approximately 10 -5 ram. The discretization is sufficiently fine to permit adequate 
resolution of the stresses and strains within the crack-tip front fields (e.g. within ten crack-tip 
opening displacements). The three-dimensional J-integral values have been calculated using 
the virtual crack extension technique implemented in the general-purpose code ABAQUS 
[14]. Fifteen contours have been evaluated to obtain path-independence for the J-integral. 
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Nakamura and Parks [21] have shown that the crack-tip fields develop towards the plane 
stress fields as the plastic zone grows. Consequently, the difference between the full-stress 
fields and the reference solution (e.g. the plane strain small-scale yielding solution) depends 
significantly on the applied loads in the three-dimensional cracked geometry. Figure 10 plots 
distributions of the second terms defined in (1) with the polar angle in the thick specimen. In 
the figure the second terms of the in-plane stresses for the thick specimen are plotted at the 
middle plane (z = 0) as well as the free edge-surface (z = t / 2 ) ,  respectively. It is shown 
that the second-terms at the middle plane (Figs. 10(a,b)) are hardly affected by the applied 
J-integral even at high load level. The stress fields there are dominated by the plane strain 
solution, as shown in Fig. 9(b). From these observations, the J - Q  annulus discussed in the 
previous sections may be valid there. On the free edge-surface, however, the stress fields 
(Figs. 10(c,d)) contain substantial plane stress components. The tangential stress difference 
between the finite element results and the plane strain reference solution is almost a linear 
function of the polar angle (Fig. 10(c)). This represents in fact the difference between the 
plane strain and the plane stress field. The difference increases with the applied loads. In the 
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thin specimen, on the other hand, the stresses in the middle plane of the specimen can be 
described by the plane strain fields only if the applied loads are very low (Fig. ll(a)). The 
stress distributions in the whole specimen develop towards the plane stress fields quickly as 
the loads increase. The non-uniform distribution of the second terms in the three-dimensional 
crack fields can also be found in their radial variations (Fig. 12 for the thick specimen). Only 
at low load level are the radial distributions slightly dependent on the distance r. On the 
free edge-surface the second terms are a function of the distance and the loads. Recalling 
the difference between the plane strain and the plane stress solution, one may see that such 
distributions cannot be independent of the distance. 

The variation of the stress triaxiality in the CT specimens implies that the thin specimen 
contains significantly lower constraint than the thick specimen. This point can also be observed 
in the Q-variations in the thickness direction plotted in Figs. 13(a,b). The curves vary with 
the load levels. The Q values are evaluated according to (3). For the stress fields containing 
substantial plane strain components, the absolute values of Q should be small. The figures 
show that the plane strain fields shrink with increasing load. 
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The discussion above has shown that the three-dimensional crack tip fields generally have 
mixed plane strain and plane stress characteristics. Especially in the thin cracked panel, the 
fracture process is only characterised by the plane stress fields, as predicted in [21]. For 
this reason, it becomes interesting to know how the stress triaxiality at the crack tip can 
be characterised by the second parameter such as Q, which was introduced under pure plane 
strain conditions. Based on the discussions above, the characterisation of the hydrostatic stress 
should be a function of the specimen geometry as well as the material properties, that is 

crm = cr0f~(Q, geometry, material properties). (12) 

In this expression the stress triaxiality at r = 2Jfir o and 0 = 0 is explicitly independent 
of the applied loads. Equation (12) is plotted in Fig. 14(a) for the thick CT specimen and in 
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Fig. 14(b) for the thin one, respectively. It is interesting to observe that the stress triaxiality at 
the tip is essentially a linear function of Q. The Equation (12) can be re-written as 

am = blQ + bo, (13) 
t7 o 

where the factors b0 and b l  a r e  functions of the crack geometry and the material properties. 
Recalling the definition of the Q factor, one may see that b0 is the triaxiality of the plane 
strain reference solution. In the present definition (3), it is the small-scale yielding results with 
T = 0. Our numerical calculations have shown that bl depends slightly on the geometry of the 
specimens. For the thick and thin CT specimens investigated in the present work, bl equals 
0.945 and 0.988, respectively. For all conventional cracked geometries we have examined 
[19], bl is approximately equal to 1, i.e. [hi  - 11 ~< 0.1. It is therefore confirmed that the Q 
value represents the local difference of the stress triaxiality at r = 2J/ao and 0 = 0 in the 
three-dimensional crack fields. It gives a uniform relation between the stress triaxiality and 
Q. Equation (13) becomes trivial under plane strain small-scale yielding conditions. 

5. Concluding remarks 

In extensive numerical studies of Shih and co-workers [6, 7, 17, 18] the J - Q  annulus has 
been suggested for quantification of the crack-tip constraint effects. The many known results 
are restricted to the Ramberg-Osgood materials and to the crack-tip fields dominated by the 
plane strain solution. In the present work, we have presented detailed numerical results for 
a ductile engineering material. The three-dimensional crack tip fields containing substantial 
plane stress components under both small-scale and general yielding conditions have been 
investigated. 

Due to high strain-hardening in the austenitic steel, the stresses reach a very high level 
at the crack tip. The Q values vary with the negative transverse T-stress in analogy to the 
Ramberg-Osgood materials. The positive T stress, however, acts on the crack stress fields 
under small-scale yielding almost as strongly as the negative T. Significant increments of the 
Q values are further observed under the general yielding conditions. Due to the low yield 
stress and high ductility, the Q values may reach several times those for a Ramberg-Osgood 
material [6, 17]. The stress triaxiality at the tip is a function of both specimen geometry and 
the load configuration. For the tensile panels (CCT and DECP), the Q variations show similar 
features and the Q values are slightly affected by the crack length, except the deep-cracked 
specimens with a / W  > 0.7. The bending geometry shows a much higher constraint at the 
tip. A significant drop of the Q values can only be observed as J/(aoa) > 0.01, except the 
shallow-cracked specimens with a / W  < 0.3. It is important to point out that development of 
the fully plastic stress field is not uniform, so that a parameter evaluated behind the crack tip 
(0 = 70 may totally differ from that evaluated ahead of the tip (0 = 0). It has been confirmed 
that the J - Q  description is equivalent with J - T  only if the influences of the specimen 
geometry to the crack-tip stress distributions are negligible. In general yielding cases, T loses 
its connection to the crack-tip fields and the prediction from J - T  may significantly deviate 
from the full stress fields. 

In the three-dimensional crack tip front fields, we have shown that the crack-tip front 
fields generally contain substantial plane stress components, the second terms of the stresses 
vary significantly along the crack-tip front and with the distance from the crack tip. It seems 
difficult for one additional parameter to control the second-order stress fields under general 
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yielding conditions. Q represents only the stress state at the evaluation point. In conventional 
cracked geometries the stress triaxiality at r = 2J/ao and 0 = 0 can be approximated by 
a linear function of Q. In the cracked geometries investigated, Q is essentially equal to the 
difference of the local hydrostatic stress from the reference stress fields. 
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