Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems

B. Markert

Systems Research Group, University of Osnabrück, POB 4469, 4500 Osnabrück, Germany

Accepted 25.6.1992

Keywords: Element Concentration Cadasters, IUBS project, Multielement analysis, Element toxicity, Occurrence, Essentiality, Accumulation, Consumption

Abstract

After acceptance of the 'Element Concentration Cadasters in Ecosystems' (ECCE) programme as an international project sponsored by the International Union of Biological Sciences (IUBS) at the 24th General Assembly of IUBS in Amsterdam in Sept 1991, the present status of 'Biological Trace Element Research' (BTER) is presented here from the biological point of view. Especially information on occurrence, essentially, toxicity and uptake form of all 88 naturally occurring chemical elements is presented. In addition an estimated annual production of each element in the year 2000 and examples of their technical application is given. A scientific proposal for further research work on a local, regional and global scale has been discussed.

The earth's crust may be regarded as a natural reservoir for all the chemical elements of the biosphere. More than 99% of the total mass of the earth's crust is formed from only 8 of the 88 naturally occurring elements. It consists of 46.4% oxygen, 28.15% silicon, 8.23% aluminium, 5.63% iron, 4.15% calcium, 2.36% sodium, 2.33% magnesium and 2.09% potassium (Bowen 1979; Fiedler & Rösler 1988; Kovalskij 1977). Oxygen is the only non-metal among the 8 most frequent elements in the earth's crust. The remaining 80 elements of the periodic table represent less than 1% of the composition.

The major fraction of the fresh weight of living plant organs, i.e. those displaying an active metabolism, consists on average of 85-90% water. The dry substance of the plant body is mainly

composed of the following elements: carbon (44.5%), oxygen (42.5%), hydrogen (6.5%), nitrogen (2.5%), phosphorus (0.2%), sulphur (0.3%) and the alkali and alkaline-earth metals potassium (1.9%), calcium (1.0%) and magnesium (0.2%) (Bazilevich & Rodin 1966; Clüsener Godt 1990; Duvigneaud & Denaeyer de Smet 1968a and b, 1973; Fortescue 1980; Heinrichs & Mayer 1980; Newbould 1967; Rodin & Bazilevich 1967). In contrast to the earth's crust, the main mass of organic life is therefore predominantly formed of non-metals (Fig. 1). On the basis of their increased occurrence in the plant vegetation body the nine elements mentioned above are also termed macroelements. In addition, there are also so-called microelements occurring in the plant organism in lower concentrations and vital for most

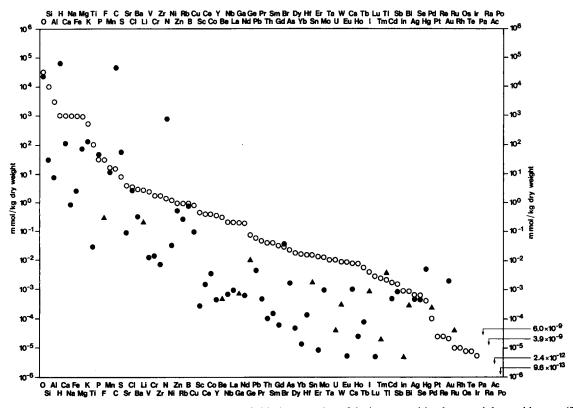


Fig. 1. Concentration of 82 naturally occurring elements (with the exception of the inert gases) in plants and the earth's crust (from Markert 1991b). The elements are plotted according to decreasing occurrence in the earth's crust. $\textcircled{\}$: concentration in the earth's crust (from Bowen 1979); \bigcirc : concentration in plants after Markert 1986; \blacktriangle : concentration in plant material after Bowen 1979.

plants. These elements are chlorine (2000 mg/kg dry substance), silicon (1000 mg/kg), manganese (200 mg/kg), sodium (150 mg/kg), iron (150 mg/kg), zinc (50 mg/kg), boron (40 mg/kg), copper (10 mg/kg), chromium (1.5 mg/kg), molybdenum (0.5 mg/kg) and cobalt (0.2 mg/kg).

Both macro- and also microelements are plant nutrients vital for the growth and normal development of the plant and their function cannot be replaced by any other element. They are thus essential (Fig. 2). Macro- and microelements are therefore also known as macro- and micronutrients. However, it does not always seem appropriate to divide the periodic system into essential and non-essential elements since there are numerous exceptions within the plant kingdom, which are particularly striking in a comparison of higher and lower plants. In some bacteria and fungi, for example, calcium, boron and chlorine, or in higher plants sodium and silicon are not regarded as essential (Marschner 1983).

Apart from the macro- and micronutrients discussed above, a number of further chemical elements also occur in plants (Adriano 1986; Bodeck et al. 1988; Hamilton 1979 and 1980; Caroli et al. 1990). Fig. 3 shows those elements which were quantitatively detected in a time-consuming analytical cycle (Markert 1986). In this Figure it is conspicuous that the elements lanthanum, cerium, barium, bromine and many others occur in mass concentrations similar to the micronutrients discussed above. The increased utilization of instrumental multielement techniques for biological investigations will probably ensure that the essential character of further elements will be recognized in future (Ernst 1990; Golley 1978; Likens 1977; Roth-Holzapfel 1990; Sansoni 1985; Vanoeteren et al. 1986; Markert & Thornton 1990; Markert

																	<u> </u>
H	ł																He
^{Li} ?	Be											B	С	Ν	0	F //	Ne
Na	Mg											AI	Si	Ρ	Ş	CI	Ar
К	Ca	Sc	Ti	V //	Cr	Mn	Fe	Co	Ni//	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc*	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	l	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po*	At*	Rn*
Fr*	Ra*	Ac*															
										•			•	•			•,
				Ce	Pr	Nd	Pm*	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Tm	Yb	Lu
				Th*	Pa*	U*	Np*	Pu*	Am*	Cm•	Bk*	Cf•	Es*	Fm*	Md•	No*	Lr*
	: esse	ential f	or pla	nts an	d ani	mais		-	?	: esse	entialit	y will	be di	scuss	ed		,
C	: esse	ential f	or pla	nts on	ly											ined in compa	
	: ess	ential f	or ani	mals c	only				•	: all n	uclide	s of t	his el	ement	are r	adioac	tive

Fig. 2. The periodic system of elements with data on essential and quantitatively detected elements (from Markert 1991b).

& Zhang de Li 1991; Markert 1992a). The elements fluorine, iodine, nickel, selenium, tin and vanadium are already regarded as essential for animal organisms. Further elements are under discussion including some which until recently were only considered from a toxicological point of view (e.g. cadmium and lead). There are currently indications that in a correspondingly low concentration these elements exercise metabolic functions in living organisms (Anke 1989a and b: Brätter & Schramel 1988; Hemphill, 1967–1989). In general it may be assumed, as already postulated by Horovitz in 1988 due to the ubiquity of all chemical elements, that all elements also have a physiological significance and that a separation into essential and non-essential elements does not exist in nature. The fact that elements to which little attention has been paid as yet are in fact essential can only be determined by correspondingly extensive efforts in further analytical chemical multielement investigations where an integrated approach is an absolute necessity taking into consideration all chemical elements.

In the same way as the division into essential and non-essential elements, the classical division into micro- and macroelements discussed above, which solely refers to the physical mass of an element within the organism, has received essential modifications in modern plant, animal and human physiology. The list of macroelements has had to be extended for certain groups of organisms. Thus for example, the element silicon is regarded as a macroelement for Sphenopsida and diatoms. Furthermore, due to specific site conditions, element- or organism-specific accumulation processes frequently occur: sodium, bromine and chlorine are accumulated by many halophytes (Markert & Jayasekera 1987); copper, nickel, zinc, lead, cadmium and other heavy metals are taken up by metallophytes to an increased extent

ECC of	<i>Vaccini</i> (red wh		s- <i>idaea</i> (i rry)	leaves)				nabrüci hmer	k			7° 50' 52° 20' NN	8,8°C 771 mm	rainy
17.6.1983	on Pods	ol				····				·	AAS AES MAS NAA	-ICP	D: 48h/105° C W: - H: agate/10 min	De: conc. HNO₃ 3h, 170° C 2-4 Torr
10 [×] mg/kg	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6 detection limit	not determined
			Eŭ	Lu Er Yb Au <u>Ho</u> Dy	God Fosc Hg Hf Sm Th Y Signal Ag Cod No Pr No Signal Pr No Signal	As La Ce Zr Cs V Pb Cr	F Br 2010 Sr	B R B B B B B				00	BI < 0.1 Ga < 0.02 Ge < 1 Sn < 0.2 Tm < 0.1 U < 0.073 W < 0.057	Ac, Ar, At, Be, E , Fr, He, I , In, Ir, Kr, LI, Ne, Os, Pa, Pd, Pm, Po, Pt, Ra, Re, Rh, Rn, Ru, Ta, Tc, Te, Ti, Xe

Fig. 3. Element concentration cadaster for Vaccinium vitis-idaea (red whortleberry, leaves); —: middle of the concentration class; D: drying conditions; W: washing conditions; H: homogenization conditions; De: ashing or decomposition conditions; \bigcirc : only essential for plants; \Box : essential for plants; \Box : essential for plants; \Box : only essential for animals (modified after Lieth & Markert 1990).

(Ernst 1974; Ernst & Joosse Van Damme 1983). The essentiality, occurrence, toxicity and uptake form of individual elements in the environment is given in Appendix 1. The estimated annual production of single elements for the year 2000 and examples of their technical application is given in Appendix 2. A rough estimation of the total element content in the world plant biomass is given in Table 1.

Admittedly, an accumulation is not to be equated with an increased physiological benefit from the element for the organism, indeed this probably often purely represents an adaptation to the respective site (Kovacs 1982; Kovacs *et al.* 1990; Kinzl 1982; Markert & Weckert 1989; Markert & Klausmeyer 1990; Wiersma *et al.* 1987; Mengel 1984; Markert 1988). Nevertheless, the above examples help to show difficulties involved in a systematic classification of chemical elements on the basis of their physical mass. It may frequently be observed that a macro- and a micronutrient behave physiologically in a much more similar manner than two micro- or macronutrients (Mengel 1984). Since the significance of an element for the plant does not depend on its volume fraction in the plant substance, a systematic division according to physiological and biochemical aspects, as attempted in Table 2 on the basis of Sansoni and Iyengar (1978), seems more meaningful. The elements described as structural elements are those involved in the constitution of functional molecular units of the cell metabolism (proteins, lipids, carbohydrates, nucleic acids) or display a direct supporting or strengthening character (calcium, silicon). Nitrogen and sulphur are biochemically integrated into the carbon chain, i.e. stably bound to the organic substance after reduction of their generally high oxidation stage (nitrate or sulphate). In contrast, phosphorus, boron and silicon are present in their highest oxidation stage and are not reduced, but rather tend towards ester formation with OH groups of the most varied molecules, particularly the sugars (Mengel 1984). On the other hand, the so-called

Ac	?	Hf	9,2 $\times 10^4$	Rb	9,2 $\times 10^7$
Ag	$3,682 \times 10^5$	Hg	$1,841 \times 10^5$	Re	. ?
Al	$1,47 \times 10^{8}$	Ho	$1,472 \times 10^{4}$	Rh	$1,84 \times 10^{1}$
As	$1,841 \times 10^5$	I	5,523 $\times 10^{6}$	Ru	$1,84 \times 10^{1}$
Au	$1,841 \times 10^3$	In	$1,841 \times 10^3$	S	$5,523 \times 10^{10}$
В	$7,3640 \times 10^{7}$	Ir	$1,841 \times 10^2$	Sb	$1,841 \times 10^{5}$
Ba	$7,3640 \times 10^{7}$	K	$3,497 \times 10^{10}$	Sc	$3,682 \times 10^{4}$
Be	$1,841 \times 10^{3}$	La	$3,682 \times 10^5$	Se	$3,682 \times 10^{4}$
Bi	$1,841 \times 10^{4}$	Li	$3,682 \times 10^5$	Si	$1,841 \times 10^{9}$
Br	$7,364 \times 10^{6}$	Lu	$5,523 \times 10^3$	Sm	$7,364 \times 10^{4}$
С	$8,19 \times 10^{11}$	Mg	$3,682 \times 10^5$	Sn	$3,682 \times 10^{5}$
Ca	$1,841 \times 10^{10}$	Mn	$3,682 \times 10^8$	Sr	$9,2 \times 10^7$
Cd	$9,2 \times 10^4$	Мо	9,2 $\times 10^5$	Та	$1,841 \times 10^{3}$
Ce	9,2 $\times 10^5$	Ν	$4,602 \times 10^{10}$	Tb	$1,472 \times 10^{4}$
Cl	$3,682 \times 10^9$	Na	$2,76 \times 10^8$	Te	9,2 $\times 10^4$
Co	$3,682 \times 10^5$	Nb	9,2 $\times 10^4$	Th	9,2 $\times 10^3$
Cr	$2,7615 \times 10^{6}$	Nd	$3,682 \times 10^5$	Tl	9,2 $\times 10^4$
Cs	$3,682 \times 10^5$	Ni	$2,76 \times 10^{6}$	Ti	9,2 $\times 10^{6}$
Cu	$1,841 \times 10^{7}$	0	$7,824 \times 10^{11}$	Tm	$7,364 \times 10^{3}$
Dy	$5,523 \times 10^4$	Os	$2,7615 \times 10^{1}$	U	$1,841 \times 10^{4}$
Er	$3,682 \times 10^4$	Р	$3,682 \times 10^{10}$	v	$9,2 \times 10^3$
Eu	$1,472 \times 10^4$	Ра	?	W	$3,682 \times 10^{5}$
F	$3,682 \times 10^{6}$	Pb	$1,841 \times 10^{6}$	Y	$3,682 \times 10^{5}$
Fe	$2,76 \times 10^{8}$	Pd	$1,841 \times 10^2$	Yb	$3,682 \times 10^{4}$
Ga	$1,841 \times 10^5$	Ро	?	Zn	$9,2 \times 10^7$
Gd	$7,364 \times 10^4$	Pr	9,2 $\times 10^4$	Zr	$1,841 \times 10^{5}$
Ge	$1,841 \times 10^4$	Pt	$9,2 \times 10^{1}$,
Н	$1,196 \times 10^{11}$	Ra	?		

Table 1. Estimation of the total element content in the world plant biomass in t.

electrolytic elements are required for the construction of specific physiological potentials and are important for maintaining defined osmolytic conditions in the cell metabolism. The element calcium may thus appear simultaneously as a structural element and an electrolytic element. A number of chemical elements, above all metallic ions, exercise a catalytic function in the cell metabolism as a metal complex compound (Irgolic & Martell 1985). These elements are termed enzymatic elements in Table 2. The physiology of these elements in the metabolism is described in detail in textbooks on plant, animal and human biology.

The relationship between the nutrient supply in the substrate (soil, nutrient solution, atmosphere) and activity of the plant is in a wide range not linear but rather describes an optimum curve which may display either a symmetric (Fig. 4a, c, d) or asymmetric course (Fig. 4b, e), close

(Fig. 4b, d, e) or wide (Fig. 4a, c) tolerance limits. The curve of this type of dose-effect relation depends on the plant species in question, the element species and the respective site conditions. In general, the activity is equal to zero if an essential nutrient element is completely lacking; the organism is not viable. Whether individual elements are essential for photoautotrophic plants has generally been determined to date by cultivation on defined composition media as nutrient solutions (Baumeister & Ernst 1978; Brümmer 1986; Epstein 1972; Fränzle 1990). In recent years it has become apparent that it is difficult to determine experimentally in the trace range, and quite particularly in the ultratrace range, whether an element actually has no influence on the growth of a plant organism since very often even minute quantities of the element are sufficient to prevent deficiency symptoms in the organism (Kiem & Feinendegen 1985; Iyengar et al. 1988; Mertz

T I I A	D	^	. 1	1 1 1	1 /	1.		1 1 1 1 1
Table /	Division	nt	the	chemical	elements	according	to.	physiological aspects.
1400 2.	DIVISION	01		ununun	oronnentes	according		physiological aspects.

Structural elements:	C, H, O, N, P, S, Si, Ca	
Electrolytic elements:	K, Na, Ca, Cl, Mg	
Enzymatic elements:	V*, Cr, Mo, Mn, Fe, Co, I	Ni*, Cu, Zn, B**, Sn*, Se*, F*, I*, Mg
Up to now without biologi	cal function:	
1 st main group: Li, Rb, Cs 3 rd main group: Al, Ga, In 5 th main group: As, Sb, Bi 7 th main group: Br, (At) 8 th main group: He, Ne, A	, TI	2 nd main group: Be, Sr, Ba, Ra 4 th main group: Ge, Pb 6 th main group: Te, Po
1 st subgroup: Sc, Y 3 rd subgroup: Tb, Ta 5 th subgroup: (Tc), Re 7 th subgroup: Rh, Ir 9 th subgroup: aG, Au		2 nd subgroup: Ti, Zr, Hf 4 th subgroup: W 6 th subgroup: Ru, Os 8 th subgroup: Pd, Pt 10 th subgroup: Cd, Hg

Lanthanides: La, Ce, Pr, Nd, (Pm), Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.

Actinides: Ac, Th, Pa, U, (Np), (Pu), (Am), (Cm), (Bk), (Cf), (Es), (Fm), (Md), (No), (Lr).

(): Elements not naturally occurring based on Sansoni and Iyengar (1978).

*: Essential significance only determined for animal organisms as yet.

**: Essential significance only determined for plant organisms as yet.

1981 and 1986–1987). Sufficient quantities may be present as impurities in the nutrient substrate, in the external air or the container material, frequently in such slight quantities that the elements are difficult to determine by analytical methods.

To this end, experimental plants are kept in an environment intended to largely prevent a contamination by trace elements. Insulators made of various plastics are used today because they do not release the trace elements contained in them as readily as glass or metals for example (Loeffler et al. 1979). The trace elements contained in the atmospheric dust are removed by powerful air filters. The plants receive nutrition consisting of chemically pure amino acids (instead of proteins which often contain microelements in a stable bond) and other substances; the trace element regarded as essential is not included. If this element is vital then observable or measurable metabolic disturbances occur which can usually be eliminated by supplying normal food. In the same way as the contamination difficulties arising during work in the ultratrace range at every analytical chemical laboratory, it cannot be ruled out in these experiments that the lack of any physiological metabolic disturbance only simulates 'nonessentiality' because the element in question is already present in sufficient concentrations in the form of impurities in the substrate or laboratory air.

Insufficient supply of an element from the nutrient medium frequently leads to the appearance of deficiency symptoms. These symptoms can be prevented by adding a slight (Fig. 4a, b) or larger (Fig. 4c, d, e) quantity of nutrient substance. The activity of the organism reaches its maximum with an adequate nutrient supply. An increased nutrient supply does not lead to an increase in activity at first. This remains constant over a wide (Fig. 4a) or narrow (Fig. 4b, c, d, e) range of substrate concentration (nutrient saturation). A further substrate supply first leads to toxicity symp-

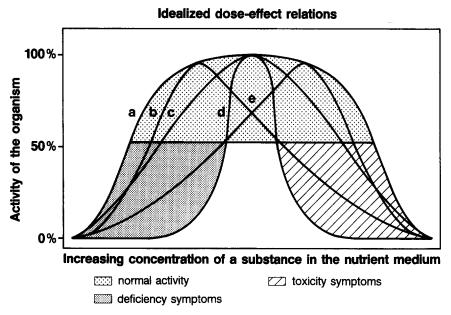


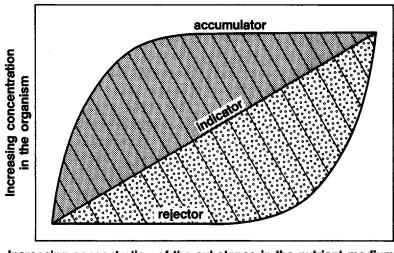
Fig. 4. Idealized dose-effect relations between substrate concentration and activity of the organism (from Markert 1992a).

toms and finally to the organism's death. In this case the statement formulated by Paracelsus nearly 500 years ago remains true of all chemical substances whether toxic, essential or indifferent:

'Is there anything that isn't poisonous? Everything is poisonous – only the dose determines whether something is poisonous or not.'

The unambiguous description of the effect of a certain element is frequently made more difficult by the presence of other substances frequently with a similar ionic radius and the same charge since it is not usually the concentration of one individual element or individual element species which is responsible for the healthy growth and normal development of an organism but rather a balanced ratio between the individual elements or element species. Interelemental interactions in the sense of competitive inhibition or promotion may be of decisive influence for the physiology of individual organisms.

Quantitatively, the ingestion is adequately described by the intensity and extent of uptake up to a certain point in time. With a defined nutrient, the uptake by the plant depends on the reserves of the nutrient in the uptake medium and its availability (Iserman 1979). As a rule, the plant does not have a positive influence on the reserves, but rather on the material and spatial availability of the nutrients. Thus, for example, the nutrient availability may be altered from the material aspect by influencing the pH value of the soil solution (excretion of H_3O^+ or HCO_3^- ions through the root), by releasing chelating organic acids from the root or else assisted by microorganisms (mycorrhiza) as well as by an influence on the redox potential in the soil by H_3O^+ and O_2 deposition at the root surface (Iserman 1979). The most readily available elements are present in the form of ions or a soluble organic complex in the soil solution. The elements with the poorest availability are stably bound to the soil structure, e.g. in the form of minor constituents in the crystal structure of primary minerals. The most important source between these extremes is small particles with a large surface loaded with metals, e.g. clay, sludge and organic material. Altogether, this may be termed the 'exchange complex' (Berrow & Burridge 1984). Ions may be exchanged for each other at the surfaces, for example calcium for magnesium, potassium or hydrogen.


The intensity and extent of the uptake therefore influence the actual content of an element in the

plant organism. Three uptake types may be roughly differentiated as a function of the plant species under consideration, the element species and the specific site conditions (Fig. 5). In the ideal case, there is a direct proportionality between the nutrient supply and uptake by the plant organism. In this case, the specific element content of the plant reflects the concentration relations in the nutrient substrate. The chemical plant composition thus has an indicative character. This relationship, which has been observed for a number of plants and various elements both experimentally and also in the field, is being increasingly applied in practice, e.g. in ore prospecting or the use of (usually lower) plants for environmental monitoring (biomonitoring). Due to unfavourable site conditions, many plants have developed the property of accumulating high concentrations of individual elements, frequently irrespective of whether these elements have a physiological benefit or not. These plants are termed accumulators. Thus for example, some Ericaceae are distinguished by a high element content of manganese, irrespective of the content in the soil, and birch by a high zinc content. This accumulative behaviour, which is not site-conditioned but may possibly be due to genetically predetermined causes, enables chemical fingerprinting to be carried out with the

most varied plant species. In future this may lead to a chemical characterization and thus to a systemization of individual plant species which on a phytosociological level may provide information about evolutionary processes. Less frequently than element accumulation, but nevertheless already determined for numerous plant species, rejection may occur, i.e. a reduced uptake of individual elements. The reduction in the concentration of an element in the organism may result from a complete or partial exclusion. According to Ernst and Joosse Van Damme (1983), bacteria, algae and higher plants have heavy-metalresistant populations which are capable of considerably reducing the uptake of heavy metals by excreting mucilaginous substances or by altering the cell walls.

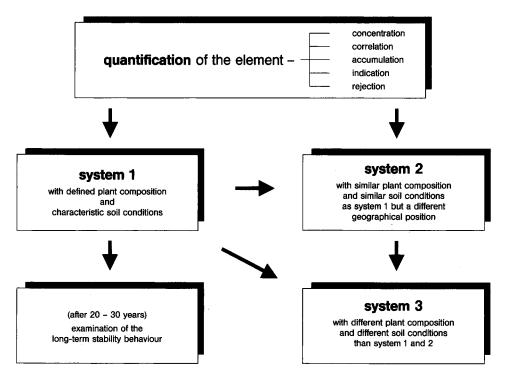
The above discussion reveals the difficulties and also the enormous possibilities associated with increased multielement research, particularly with environmental specimens.

In an ecosystem the paths and persistence of the elements may be specifically influenced by organismic activities, e.g. by a selective element uptake and concentration. Elements occurring together may therefore influence their transport or accumulation within the organism positively and/or negatively (Adriano 1986; Kabata-Pen-

Increasing concentration of the substance in the nutrient medium

Fig. 5. Different uptake behaviour of living organisms with respect to substrate concentration (from Markert 1991c).

dias & Pendias 1984; Marschner 1983 and 1986; Lieth *et al.* 1989). Antagonistic element behaviour might be explained by competition for the same bonding location in the organism.


Many plants are in a position to take up large quantities of certain elements from the environment. It has thus been possible to demonstrate that birch trees accumulate zinc. Ericaceae manganese and individual species of moss specific heavy metals. At the same time, the need is covered for other trace elements for the growth of these plants. It is possible that the metabolic significance of several elements has not yet been recognized so that the division frequently encountered in the literature into essential and nonessential elements requires continuous revision (Horovitz 1988; Markert 1991a and b). Biological trace element research is thus a dynamic process and a number of new insights are to be expected in future (Freedman 1989; Irgolic & Martell 1985; Iyengar 1988 and 1989; Markert 1992c; McKenzie & Smythe 1988; Nriagu & Pacyna 1988; Schramel & Li-Qiang Xu 1991; Tölg 1989; Zeisler et al. 1988).

It may be assumed that interrelations between organismic activity and flow rates, as well as flow patterns of the elements, arise from the various components and compartments of an ecosystem which can only be correctly interpreted with analytical coverage of, if possible, all elements (Jayasekera 1987; Lieth & Markert 1985; Markert & Wtorowa 1992). Undoubtedly, the nature and extent of this reciprocal influence is for most elements and ecosystems dependent on abiotic factors such as weather factors. Consequently the flow rates and flow patterns vary as a function of these factors. This must always be remembered when interpreting ecochemical data. The results are only characteristic of the factor constellation prevailing during sample collection (Lieth & Markert 1988a and b, 1990; Markert 1992c). The preliminary history of the sample material should also be included in a description of the factor constellation (Markert & Wtorowa 1992).

Depending on the components of an ecosystem to be investigated, how often sampling took place and the possibility of making comparisons with other ecosystems of the same type, the following interpretation possibilities arise for the data material (Markert & Wtorowa 1992 and Table 3).

- a. If the components and compartments studied in the system are immediately consecutive stages of the material flow then statements can be made on the basis of a multielement analysis concerning
 - the concentrations in which individual elements occur,
 - whether and to what extent individual elements occur in a correlated manner in the samples studied above,
 - whether the samples studied display an accumulative, indicative or rejective behaviour for certain elements.
- b. If a multielement analysis is carried out for a certain factor constellation with several ecosystems of the same type (similar soil conditions and plant composition) subjected to a different input of elements then a comparison of the data will provide initial insights into how differently comparable ecosystems may react to various material inputs. Not only simple changes in concentration ratios have to be considered here but also changes in the accumulative behaviour of individual plant species, shifts in element correlations etc.. Traditionally particular interest is attached to a consideration of those elements whose ecotoxicological significance is known.
- c. The results of multielement analyses for a factor constellation recognized as typical of an ecosystem are able, if compared with systems displaying different plant composition and soil conditions, to form a reliable basis (possibly together with other data) for a consideration and causal analysis. This provides indications of
 - whether, to what extent and under what conditions the element correlations in the individual matrices change,
 - whether, to what extent and under what conditions changes in accumulative behaviour are to be directly attributed to different soil conditions or plant-specific element patterns,

Table 3. Comparable aspects of instrumental multielement analysis in ecosystems. Comparability of single system data will be reached by harmonine the sampling procedure, sample preparation, instrumental measurements as well as data evaluation (Markert 1992a and Markert & Wtorowa 1992).

- the factor constellations under which and to what extent concentration changes may be observed.
- d. If the results of multielement analyses are compared over a lengthy period of time for similar ecosystems only differing with respect to the material input into that system then conclusions about the stability behaviour of the system may possibly result from the aspect of the material flow (see e.g. the Environmental Specimen Banking Project described in Bundesministerium für Forschung und Technologie 1988 and Stoeppler *et al.* 1982).

The experimental plan sketched above and reproduced in Table 3 shows that ecosystem multielement analyses should not be equated with the simple measurement of element concentrations. The validity or interpretability of concentration data within a series of measurements should always be regarded in view of the question in hand and the special parameter constellation. From the biological point of view attention was focused on the concepts of concentration, correlation, accumulation, rejection and indication of individual elements or groups of elements, and from the analytical aspect specific problems concerning appropriate sampling, sample preparation and the detection sensitivity of individual instrumental methods. The goals of the studies described here may be formulated as follows (Markert & Wtorowa 1992):

- a: Biological goals
 - compilation of a so-called element concentration cadaster for the main plant species of a forest ecosystem in the sense of 'fingerprinting' (concentration aspect),
 - creation of a data base for a natural ecosystem and establishing 'natural' basic concentrations preferably for elements rarely studied to date (concentration aspect),
 - discovery of interelement relations and other regularities in the plant organism (correlation aspect),

- determination of the selection sensitivity of various plant species for individual elements or groups of elements from the periodic system and discovery of any possible accumulator properties (accumulation or rejection aspect),
- application of plant systems for long-term pollutant monitoring in ecosystems (indication aspect).
- b. Analytical goals
 - improvement of representative sampling

and development of a sampling programme for plant specimens,

- optimization of sample preparation techniques (in particular washing, homogenization, drying, decomposition and ashing),
- application and comparison of various multielement procedures for the chemical characterization of plant samples with respect to reproducibility, accuracy and concentration dependence of the analytical data.
- speciation analysis

Appendix 1

Essentiality, occurrence, toxicity and uptake form of individual naturally occurring elements in the environment. The uptake of many metals in the form of chelate complexes was not taken into consideration. The data were taken from different textbooks: Anke 1989a and b; Bowen 1979; Kabata Pendias & Pendias 1984; Markert 1986 and 1992a; Merian 1991; Streit 1991

Legend:

- Bac: essentiality for bacteria
- Alg.: essentiality for algae
- Fun.: essentiality for fungi
- HPI: essentiality for higher plants
- An: essentiality for animals
- +: essential
- -: as yet no essential significance
- +/-: essentiality only demonstrated for certain species
- ?: essentiality under discussion, if? refers to essentiality

- S: average contents in soils (in mg/kg DW)
- P: average contents in plants (in mg/kg DW)
- R: average content in the reference plant (in mg/kg DW, after Markert, 1992c)
- Pl: average toxicity concentration for plants
- M: average toxicity concentration for man
- Rat: average toxicity concentration for rats
- I: lethal dose
- d: daily intake
- F: examples of the element function
- A: accumulator organisms
- De: deficiency symptoms in case of insufficient supply of the element
- Sp: special features of the element
- ?: no information available, if? does not refer to topic essentiality

	Essent	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Ac	Bac	Alg	Fun	Hpl	An	S: ?	Toxic	
	-	-	-		_	P : ?		
						R : ?		
	A: 15-	-1000 Bg/l	kg in plant	s grown o	n thorium	-rich soils (Bowen, 19	79)	
Ag	A: 15- Bac	-1000 Bg/l Alg	kg in plant Fun	s grown o HPl	n thorium	s: 0.02-0.09	79) Toxic	Ag ⁺
Ag								Ag ⁺ AgCl ₂ ⁻

A: Lycoperdales, Eriogonum ovalifolium

Sp: Used medically as an antibacterial ointment for burns (especially for Pseudomonas acraginosa) and in dental fillings. Interaction with Cu and Se in the metabolism

Appendix 1. Continued.

	Essent	iality					irrence kg DW)	Toxicity	Uptake in the form of
Al	Bac	Alg -	Fun -	HPI -	An -	S: P: R:	71000 90-530 80	Toxic* Pl: 0.1–30 mg/l	$Al^{3 +} Al(OH)_{4}^{-} Al(OH)_{3}$
	F: Ess Sp: *A	entiality d	iscussed fo	or ferns, p or plants a	ossibly ac nd fish. P	tivation ossibly a		ogenases and dehydroge or in novel forest damag	
As	Bac	Alg –	Fun -	HPI –	An* ?	S: P: R:	0.1–20 0.01–1.5 0.1	Toxic** Pl: 0.02–7.5 mg/l M: 5–50 mg/d	HAsO ₄ ^{2 –} H ₂ AsO ₄ [–]
	De: *A death i	As deficient	al for red a acy causes d generation acreases fr	a reduction for goat	s.			on in vertebrates. As de	eficiency leads to cardi
Au	Bac –	Alg –	Fun –	HPI -	An -	S: P: R:	0.001-0.002 0.01-0.04 0.001	Slightly toxic*	Au(OH) ₃ AuCl ₂ -
			tona grand istered in		ompounds	as a m	edicinal treatmen	t for arthritis. *Au(III)	is more toxic than Au
3	Bac ?	Alg +	Fun -	HP1 +	An -	S: P: R:	5-80 30-75 40	Pl: 1-5 mg/l M: 4g/d	B(OH) ₃ B(OH) ₄ -
	F: B is in flave De: D fructifie	s of signifi onoid and eficiency cation dist	nucleic ac symptoms turbances)	cell divisio id synthes are know	is, partici n worldw	pation ir ride (dis	n cell wall constr turbance in grow	cometabolism and suga uction, stimulates N-fix wth, restricted root brain gers for groundwater ar	ation by bacteria. nching, phloem necros
Ba	Bac –	Alg –	Fun -	HP1 -	An –	S: P: R:	500 10–100 40	Rel. Harmless Pl: 500 mg/l M: 200 mg/T	Ba ²⁺
			excelsa, pla			curvise	tus and Rhizosol	e,	
Be	Bac -	Alg –	Fun -	HP1 -	An -	S: P: R:	0.1-5 0.001-0.4 0.001	Toxic* Pl: 0.5 mg/l	BeOH +
			yrtillus and stals and B					The carcinogenicity of E	se has been demonstrat
	•	eral anima	al species						

Appendix 1. Continued.

	Essenti	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Br	Bac –	Alg + / -	Fun –	HP 1 -	An ?	S: 1–10 M:15 R: 4	P: 15-600 mg/l M: 3g/d	Br ⁻ BrO ⁻ HBrO
	F: Ess Sp: Sc	entiality fo	or mamma	ls under d	liscussion		lluscs (Aplysia and Muricid for preservation purposes	
2	Bac +	Alg +	Fun +	HPl +	An +	S: variable* P: 45% R: 44.5%	Many toxic compounds in the form of CO ₂ **	CO ₂ HCO ₃ ⁻
	Sp: *V		le, depend	ling on so	il type an	pounds (sugar, fats, p		house effect, the average
Ca	Bac +	Alg +	Fun –	HPl +	An +	S: 0.1-1.2% P: 1% R: 1%	Hardly toxic	Ca ²⁺ CaOH ⁺
	F: Str chemic	al functior	nstituent o	of cell wall	s, constitu	uent of bone, physiolo	gical regulation function, e	
Cd	Bac -	Alg -	Fun -	HPI -	An ?	S: 0.01-3 P: 0.03-0.5 R: 0.05	Toxic** Pl: 0.29 mg/l M: 3-330 mg/d	Cd ²⁺ CdOH ⁺
	Sp: *C Cd/kg water f mation	feed. The from a silv	lry feed wi goats with er mine us taneous fr	th 15 g Co a low Cd sed to irrig actures in	l/kg and r diet had ate rice p man. Rele	ssp. ats fed on a low Cd di difficulty in conceiving addies led to increase	et grew more slowly than c g. **Itai-Itai disease (Japan d Cd content in the rice an al plants, towns, refuse inc): the Cd content of riv d thus to skeleton defo
Ce	Bac –	Alg –	Fun –	HPI -	An -	S: 50 P: 0.25-0.55 R: 0.5	Slightly toxic	Ce ³⁺ CeOH ²⁺
		rya spec. ee under L	a					
21	Bac + / -	Alg +	Fun -	HPl +	An +	S: 100* P: 0.2-2% R: 0.2%	Rel. untox**	Cl-
	aceae F: Osi De: W Sp: *V highly	molytic fur /ilting and /ery high c toxic. Apa	nction, enz root thick concentrat art from th	zyme activ cening ions in ari ie natural	ation d and sem emission	keniaceae, Plumbagin niarid soils. **Cl ₂ and potential from the oce	aceae, mangroves such as d a large number of organo an, its use in deicing salt fr rial for the production of	ochlorine compounds a or roads can be regarde

substance in bleaches. It is also used for the stabilization and purification of water

Appendix 1. Continued.

	Essenti	ality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Co	Bac + / -	Alg + / -	Fun –	HP!* ?	An +	S: 1-40 P: 0.02-0.5 R: 0.2	Weakly toxic Pl: 0.1-3 mg/l M: 500 mg/d, l	Co ²⁺ CoCO ₃
	F: Par De: An Sp: Wi system	t of vitami naemia, vit hether Co	n B_{12} , entransition and B_{12} is essentiation in the bacterian bact	zymatic deficiency Il for highe ria living i	, disturba r plants r		nthesis heless it is undoubtedly ne eguminosae. The addition	
Cr	F: Insu De: Di Sp: *C	alin intensi abetes, ind r(VI) is al	fication, g creased se bout 1000		erance fui re toxic t	han Cr(III) (basically	Toxic* Pl: 1 mg Cr(VI)/l M: 3 g/d, l only Cr(VI) is capable of	
Cs) is prefere nuclei is co HPl -			(I) in the cell sap, whereas Rel. harmless	Cs ⁺
	Sp: Cs	¹³⁴ release	d during	nuclear fis	sion	R: 0.2		
Cu	Bac +	Alg +	Fun +	HP1 +	An +	S: 1-80 P: 2-20 mg/l R: 10	Toxic* Pl: 0.5–8 mg/l M: 250 mg/d	CuOH ⁺ CuCO ₃
	Lychnia glaberri F: Ene De: E. (respira	s alpina, l ima rgy metab g. grey spe ition), ana	Polycarpa olism, N n eck diseas emia, cha	ea spirosty netabolism	vlis, Silen a, oxidizin s, drying ne format	e dioica, Silene vulga g systems, elastin cros of leaf tips, wilting, sp tion	iense, Elsholtzia haichowe ris, Triumfetta welwitsch s-linkage, catalytic function oot chlorosis of young leav	i, Uapaca ssp., Veronic n in many redox reaction
Эу		Alg – ya spec. e under La	Fun –	HP1 -	An -	S: 5 P: 0.025–0.05 R: 0.03	Slightly toxic	Dy ³⁺ DyOH ²⁺
Er	Bac – A: Car	Alg – ya spec.	Fun –	HPI -	An -	S: 2 P: 0.015-0.030 R: 0.02	Slightly toxic	Er ³⁺ ErOH ²⁺

Appendix 1. Continued.

	Essent	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Eu	Bac -	Alg – rya spec.	Fun –	HPI -	An -	S: 1 P: 0.005–0.015 R: 0.008	Slightly toxic	Eu ³⁺ EuOH ²⁺
		ee under L	a					
F	Bac	Alg	Fun	HPl	An	S: 10-1000	Toxic*	F -
	-		-	-	+	P: 2–20 R: 2	Pl: 5 mg/l M: 20 mg/d	HF
	F: In from g Sp: *H	mammals razing ani Fluorine is	fluorine sti mals in No	rengthens orth Africa com the ce	the teeth t ramic, ce	during development. As ment and brickmaking	, Porifere Dysidea crawsl n excess of fluorine can le industry. The resulting du	ad to fluorosis as known
fe	Bac		Fun	HPI	An	S: 0.7–42%	Hardly toxic	Fe ²⁺
IC	+	Alg +	+	+	+	P: $5-200$ R: 150	Pl: 10–200 mg/l m: 200 mg/d	$Fe(OH)_2^+$
		aemolysis		HPI	An	S: 0.1–10	Pote 10 mg/d	
Ga	Bac	Alg -	Fun -	-	-	P: 0.01-0.23	Rat: 10 mg/d	Ga(OH) ₄ -
Ga	-	-	-	-	-		Kat: 10 mg/d	Ga(OH)₄ [−]
Ga Gd	-	-	-	-	-	P: 0.01-0.23 R: 0.1 is medical applications S: 4 P: 0.03-0.06	Slightly toxic	Ga(OH) ₄ - Gd ³⁺ GdOH ²⁺
	- Sp: U Bac - A: Ca	- sed for an	– titumorgen Fun –	– lic purpos	– es, variou	P: 0.01-0.23 R: 0.1 as medical applications S: 4		Gd ³⁺
	- Sp: U Bac - A: Ca	- Sed for an Alg - rya spec.	– titumorgen Fun –	– lic purpos	– es, variou	P: 0.01-0.23 R: 0.1 Is medical applications S: 4 P: 0.03-0.06 R: 0.04 S: 1 P: 1-2.4		Gd ³⁺
Gd	- Sp: U Bac - A: Ca Sp: So Bac - Sp: G	- Seed for an Alg - rya spec. ee under L Alg - Alg - dermanium	- Fun - .a Fun - organic co	- hic purpos HPl - HPl - ompounds	– es, variou An – An – are used	P: 0.01-0.23 R: 0.1 Is medical applications S: 4 P: 0.03-0.06 R: 0.04 S: 1 P: 1-2.4 R: 0.01 as chemotherapeutical	Slightly toxic Hardly toxic	Gd ³⁺ GdOH ²⁺ Ge(OH) ₄ D-germanium (4.4-dialkyl
Gd Ge	- Sp: U Bac - A: Ca Sp: So Bac - Sp: G	- Seed for an Alg - rya spec. ee under L Alg - Alg - dermanium	- Fun - .a Fun - organic co	- hic purpos HPl - HPl - ompounds	– es, variou An – An – are used	P: 0.01-0.23 R: 0.1 Is medical applications S: 4 P: 0.03-0.06 R: 0.04 S: 1 P: 1-2.4 R: 0.01 as chemotherapeutical aazaspiro (4.5) decane S: variable	Slightly toxic Hardly toxic (apart from GeH ₄) agents for bacteria. Spiro	Gd ³⁺ GdOH ²⁺ Ge(OH) ₄ D-germanium (4.4-dialkyl
Gd Ge	- Sp: U Bac - A: Ca Sp: So Bac - Sp: G 4-germ	- Seed for an Alg - rya spec. ee under L Alg - dermanium nacyclohex	- Fun - .a Fun - organic co anone and	- HPl - HPl - ompounds . 8.8-dialk	- es, variou An - An - are used yl-8-germa	P: 0.01-0.23 R: 0.1 Is medical applications S: 4 P: 0.03-0.06 R: 0.04 S: 1 P: 1-2.4 R: 0.01 as chemotherapeutical aazaspiro (4.5) decane	Slightly toxic Hardly toxic (apart from GeH ₄) agents for bacteria. Spiro is used for antitumorgeni	Gd ³⁺ GdOH ²⁺ Ge(OH) ₄ D-germanium (4.4-dialkyl c purposes
Gd	- Sp: U Bac - A: Ca Sp: So Bac - Sp: G 4-germ Bac +	- sed for an Alg - rya spec. ee under L Alg - termanium hacyclohex Alg + rticipates i	- titumorgen Fun - a Fun - organic co anone and Fun +	- HP1 - HP1 - ompounds 8.8-dialky HP1 +	- es, variou An - An - are used yl-8-germa An +	P: 0.01-0.23 R: 0.1 Is medical applications S: 4 P: 0.03-0.06 R: 0.04 S: 1 P: 1-2.4 R: 0.01 as chemotherapeutical aazaspiro (4.5) decane S: variable P: 4.1-7.2% R: 6.5%	Slightly toxic Hardly toxic (apart from GeH ₄) agents for bacteria. Spiro is used for antitumorgeni	Gd^{3+} $GdOH^{2+}$ $Ge(OH)_4$ 0-germanium (4.4-dialkyl c purposes H_2O
Gd Ge	- Sp: U Bac - A: Ca Sp: Sc Bac - Sp: G 4-germ Bac + F: Pat	- sed for an Alg - rya spec. ee under L Alg - termanium hacyclohex Alg + rticipates i	- titumorgen Fun - a Fun - organic co anone and Fun +	- HP1 - HP1 - ompounds 8.8-dialky HP1 +	- es, variou An - An - are used yl-8-germa An +	P: 0.01-0.23 R: 0.1 Is medical applications S: 4 P: 0.03-0.06 R: 0.04 S: 1 P: 1-2.4 R: 0.01 as chemotherapeutical aazaspiro (4.5) decane S: variable P: 4.1-7.2% R: 6.5%	Slightly toxic Hardly toxic (apart from GeH ₄) agents for bacteria. Spiro is used for antitumorgeni As D ₂ O	Gd^{3+} $GdOH^{2+}$ $Ge(OH)_4$ 0-germanium (4.4-dialkyl c purposes H_2O

Appendix 1. Continued.

	Essent	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Hg	Bac	Alg	Fun	HPl	An	S: 0.01–1	Toxic*	Hg(OH) ₂
	-	-	-	-	-	P: 0.005-0.2 R: 0.1	M: 0.4 mg/d	HgOHCl

A: Minuartia setacea, Betula papyrifera

Sp: *Toxicity increases from elemental mercury, ionic mercury to organomercury compounds. Amalgam dental fillings may lead to allergies. Minamata disease: a disease which occurred from 1953–1960 in Minamata Bay, Japan. Water containing methyl mercury had contaminated the food fish. In humans, the disease took the form of serious kidney damage and damage to the immunological system also leading to fatalities.

Ho	Bac –	Alg –	Fun –	HP1 -	An -	S: 0.6 P: 0.005-0.015 R: 0.008	Slightly toxic	Ho ³⁺ HoOH ²⁺
		rya spec. e under L	a					
,	Bac	Alg	Fun	HPI	An	S: 1–5	Rel. untox.*	Ι-
	-	+/-	-	-	+	P : 0.07–10	Pl: 1 mg/l	IO_3^-
						R: 3	M: 2 mg/d	
	Sp: *V		ine isotop	es are rele		ng nuclear weapons test e thyroid glands of man	ts and reactor accidents mals and humans	which may become d
	Bac	Alg	Fun	HPI	An	S: 0.2-0.5	Rat: 200 mg/d, 1	$In(OH)_4^-$
n	Dac							
n	- -	-	-	-	-	P: 0.0005-0.002		
n	- -	-	-	_	_	P: 0.0005-0.002 R: 0.001		
	- Bac	_ 	– Fun	– HPl	- An			
	_	_	– Fun	- HPl -	- An -	R: 0.001		
	_	_	– Fun –	– HPl –	- An -	R: 0.001 S: ?		
	– Bac –	_	-	- HPl -	- An -	R: 0.001 S: ? P: ?		
ſr	– Bac –	Alg –	-	- HP1 - HP1	- An - An	R: 0.001 S: ? P: ?	Rel. harmless	 K+
ŕ	- Bac - Sp: Se	Alg – te under P	- t	_	_	R: 0.001 S: ? P: ? R: 0.00001	Rel. harmless	K*
ŕ	- Bac - Sp: Se Bac	Alg - ee under Pr Alg	- t Fun	- HPl	- An	R: 0.001 S: ? P: ? R: 0.00001 S: 0.2-2.2%	Rel. harmless	K +
ŕ	- Bac - Sp: Se Bac + F: Ele	Alg - Alg + ctrochemic	- Fun + cal, catalyt	- HPl + ical, enzyı	An + ne activat	R: 0.001 S: ? P: ? R: 0.00001 S: 0.2-2.2% P: 0.5-3.4% R: 1.9%		
ŕ	- Bac - Sp: Se Bac + F: Ele	Alg - Alg + ctrochemic	- Fun + cal, catalyt	- HPl + ical, enzyı	An + ne activat	R: 0.001 S: ? P: ? R: 0.00001 S: 0.2-2.2% P: 0.5-3.4% R: 1.9%	Rel. harmless urling (wilting) on older 1	
in ir K	- Bac - Sp: Se Bac + F: Ele	Alg - Alg + ctrochemic	- Fun + cal, catalyt	- HPl + ical, enzyı	An + ne activat	R: 0.001 S: ? P: ? R: 0.00001 S: 0.2-2.2% P: 0.5-3.4% R: 1.9%		
ſr K	- Bac - Sp: Se Bac + F: Ele De: D	Alg - Alg Alg + ctrochemic eficiency d	- Fun + cal, catalyt isturbs the	- HPl + ical, enzyn e water ba	An + ne activat lance (dry	R: 0.001 S: ? P: ? R: 0.00001 S: 0.2-2.2% P: 0.5-3.4% R: 1.9% tion ying of leaf tips), Leaf cu	urling (wilting) on older	leaves, root rot

the Harkins rule which says that a lanthanide with an odd atomic number occurs in a lower concentration than the directly adjacent lanthanide element with an even atomic number

Appendix 1. Continued.

	Essent	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Li	Bac	Alg –	Fun –	HPI -	An ?	S: 1-100 P: 0.01-3.1 R: 0.2	Slightly toxic Pl: 30 mg/l M: 200 mg/d	Li ⁺
			n arid clim npounds a		treat ma	nic depressives. Possible	-	als under discussion
Ju	Bac –	Alg –	Fun –	HPI -	An -	S: 0.4 P: 0.0025–0.005 R: 0.003	Slightly toxic	Lu ³⁺ LuOH ²⁺
		rya spec. ee under L	a					
Мg	Bac +	Alg +	Fun +	HP1 +	An +	S: 500-5000* P: 1000-9000 R: 2000	Hardly toxic	Mg ²⁺ MgOH ⁺
Mn	De: D	eficiency of	auses stur	nted growt	h and int	ure, electrochemical and ercostal chlorosis on old he case of rock containing S: 20-3000 P: 1-700	der leaves	Mn ²⁺
	and H F: Nu metabo	alocynthia cleic acid olism of th	synthesis, j ne mucopo	photolysis lysaccharie	of water des, supe	-	of photosynthesis, stab ase, pyruvate carboxylas	
мo	Bac	Alg	Fun	HPi	An	S: 0.2–5	Slightly toxic	MoO ₄ ^{2 –}
	+	+	+	+	+	P: 0.03-5	Pl: 0.5–2 mg/l	
	F: N f De: D bohydi Sp: Lo	isturbed g rates	metabolis rowth and le require	shoot def	ormation		dges, disturbance of fatt	e y acid formation from ca fixation by the symbiot
N	Bac	Alg	Fun	HPl	An	S: 2000	Ecotoxic	NO ₃ -
	+	+	+	+	+	P: 1.2-7.5% R: 2.5%		NH ₄ ⁺
	De: S Sp: *S	tunted gro Simple nitr	wth or dw	arfism, bu pounds to	lky growi day repre	any metabolic physiolog th and skleromorphosis,	, premature yellowing of xicological problem, e.g	the nitrate problem asso

Appendix 1. Continued.

	Essenti	ality					irrence kg DW)	Toxicity	Uptake in the form of
Na	Bac + / -	Alg + / -	Fun –	HPl + / -	An +	S: P: R:	variable 35–1000 150	Rel. harmless	Na ⁺
	Rhizop	hora		-				eae, mangroves such as	Avicennia, Bruguiera a
	F: Elec	trochemic	al, enzym	e activatio	n				
łb	Bac	Alg	Fun	HPl	An	S:	10	Slightly toxic	
		-	-	-	_	P :	0.28		
	A: Asc	idian: Mo	lgula man	hattensis		R:	0.05		
			_						27.13.1
ld	Bac	Alg	Fun	HPI	An	S: Di	35	Slightly toxic	Nd ^{3 +} NdOH ^{2 +}
	-	-	-	-	_	P: R:	0.1–0.25 0.2		Nuon
		ya spec. e under La	a			κ.	0.2		
	-								
i	Bac	Alg	Fun	HP	An	S:	2-50	Toxic**	Ni ²⁺
Ji	Bac + / - A: Aly	+/- ssum berto	– olinii and	+/- Alyssum r	+ nurale, D	P: R: icoma ss	0.4–4 1.5 p., Homalium ss	Pl: 0.5-2 mg/l Rat: 50 mg/d sp., Hybanthus floribur	Ni ²⁺ ndus, Pimelia suteri, Pla
Ji	Bac +/- A: Aly chonela F: Inte De: Gr Sp: *F	+/- ssum berto a ssp., Psy craction wi cowth redu	- olinii and chotria ss th iron re action lants and	+/- Alyssum r p;, Rinore sorption	+ nurale, D a bengale	P: R: icoma ss nsis, Set	0.4–4 1.5 p., Homalium ss pertia ssp. Porife	Pl: 0.5–2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea	
	Bac +/- A: Aly chonela F: Inte De: Gr Sp: *F toxic in	+/- ssum berta a ssp., Psy graction wi cowth redu or some p dustrial pr	- olinii and chotria ss ith iron re action lants and roduct	+ / – Alyssum r p;, Rinore sorption microorga	+ nurale, D a bengale anisms N	P: R: icoma ss nsis, Set	0.4–4 1.5 p., Homalium sepertia ssp. Porife nponent of ureas	Pl: 0.5–2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent	ndus, Pimelia suteri, Pla tial. **Ni(CO)4 is a high
	Bac +/- A: Aly chonela F: Inte De: Gr Sp: *F toxic in Bac*	+/- ssum berta a ssp., Psy rraction wi cowth redu or some p idustrial pu Alg	- olinii and chotria ss ith iron re action lants and roduct Fun	+ / – Alyssum r p;, Rinore sorption microorga HPl	+ nurale, D a bengale anisms Ni An	P: R: icoma ss nsis, Set i is a con S:	0.4-4 1.5 sp., Homalium sepertia ssp. Porife nponent of ureas 49%	Pl: 0.5-2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent Toxic in the	ndus, Pimelia suteri, Pla tial. **Ni(CO) ₄ is a high O ₂
	Bac +/- A: Aly chonela F: Inte De: Gr Sp: *F toxic in	+/- ssum berta a ssp., Psy graction wi cowth redu or some p dustrial pr	- olinii and chotria ss ith iron re action lants and roduct	+ / – Alyssum r p;, Rinore sorption microorga	+ nurale, D a bengale anisms N	P: R: icoma ss nsis, Set	0.4–4 1.5 p., Homalium sepertia ssp. Porife nponent of ureas	Pl: 0.5–2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent	ndus, Pimelia suteri, Pla tial. **Ni(CO)4 is a high
	Bac +/- A: Aly chonela F: Inte De: Gr Sp: *F toxic in Bac* +/- F: Stru	+/- ssum berta a ssp., Psy rraction wi cowth redu or some p dustrial pu Alg +	- olinii and chotria ss ith iron re action lants and roduct Fun + many orga	+ / - Alyssum r p;, Rinore sorption microorga HPl + nic compo	+ nurale, D a bengale anisms Ni An + punds, pro	P: R: icoma ss nsis, Set i is a con S: P: R: vvides ox	0.4-4 1.5 sp., Homalium sepertia ssp. Porife nponent of ureas 49% 40-44% 42.5%	Pl: 0.5-2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent Toxic in the form of O ₃	ndus, Pimelia suteri, Pla tial. **Ni(CO)4 is a high O2
)	Bac +/- A: Aly chonela F: Inte De: Gr Sp: *F toxic in Bac* +/- F: Stru	+/- ssum berta a ssp., Psy rraction wi cowth redu or some p idustrial pu Alg + ncture of m	- olinii and chotria ss ith iron re action lants and roduct Fun + many orga	+ / - Alyssum r p;, Rinore sorption microorga HPl + nic compo	+ nurale, D a bengale anisms Ni An + punds, pro	P: R: icoma ss nsis, Set i is a con S: P: R: vvides ox isms S:	0.4-4 1.5 sp., Homalium ss portia ssp. Porife nponent of ureas 49% 40-44% 42.5% idation equivalen ?	PI: 0.5-2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent Toxic in the form of O ₃ and peroxide nts in the metabolism	ndus, Pimelia suteri, Pla tial. **Ni(CO) ₄ is a high O ₂
)	Bac +/- A: Aly chonela F: Inte De: Gn Sp: *F toxic in Bac* +/- F: Stru Sp: *L	+/- ssum berta a ssp., Psy rraction wi cowth redu or some p dustrial pr Alg + acture of m ethal for o	- olinii and chotria ss ith iron re lation lants and roduct Fun + nany orga	+ / - Alyssum r p;, Rinore sorption microorga HPl + nic compo- naerobic m	+ nurale, D a bengale anisms Ni An + punds, pro- icroorgan	P: R: icoma ss nsis, Set i is a con S: P: R: vvides ox isms S: P:	0.4-4 1.5 sp., Homalium ss portia ssp. Porife nponent of ureas 49% 40-44% 42.5% idation equivalen ? ?	PI: $0.5-2 \text{ mg/l}$ Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent Toxic in the form of O ₃ and peroxide nts in the metabolism	ndus, Pimelia suteri, Pla tial. **Ni(CO) ₄ is a high O ₂
)	Bac +/- A: Aly chonela F: Inte De: Gr Sp: *F toxic in Bac* +/- F: Stru Sp: *L Bac -	+/- ssum berta a ssp., Psy rraction wi cowth redu or some p dustrial pr Alg + acture of m ethal for o	- olinii and chotria ss ith iron re lation lants and roduct Fun + nany orga obligate an Fun -	+ / - Alyssum r p;, Rinore sorption microorga HPl + nic compo- naerobic m	+ nurale, D a bengale anisms Ni An + punds, pro- icroorgan	P: R: icoma ss nsis, Set i is a con S: P: R: vvides ox isms S:	0.4-4 1.5 sp., Homalium ss portia ssp. Porife nponent of ureas 49% 40-44% 42.5% idation equivalen ?	PI: 0.5-2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent Toxic in the form of O ₃ and peroxide nts in the metabolism	ndus, Pimelia suteri, Pla tial. **Ni(CO) ₄ is a high O ₂
Vi))))	Bac +/- A: Aly chonela F: Inte De: Gn Sp: *F toxic in Bac* +/- F: Stru Sp: *L Bac - Sp: Se	+ / - ssum berto a ssp., Psy raction wi cowth redu or some p idustrial pr Alg + neture of m ethal for o Alg - e under Pt	- olinii and chotria ss ith iron re iction lants and roduct Fun + many orga obligate an Fun - t	+ / - Alyssum r p;, Rinore sorption microorga HPl + nic compo naerobic m HPl -	+ nurale, D a bengale anisms N An + punds, pro- icroorgan An -	P: R: icoma ss nsis, Set i is a con S: P: R: vvides ox isms S: P: R: R:	0.4-4 1.5 sp., Homalium ss portia ssp. Porife nponent of ureas 49% 40-44% 42.5% idation equivalen ? 0.000015	PI: 0.5-2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent Toxic in the form of O ₃ and peroxide nts in the metabolism Very toxic in the form of OsO ₄	ndus, Pimelia suteri, Pla tial. **Ni(CO) ₄ is a high O ₂ CO ₂
))s	Bac +/- A: Aly chonela F: Inte De: Gr Sp: *F toxic in Bac* +/- F: Stru Sp: *L Bac -	+ / - ssum berta ssp., Psy rraction wi cowth redu or some p idustrial pr Alg + neture of m ethal for o Alg -	- olinii and chotria ss ith iron re lation lants and roduct Fun + nany orga obligate an Fun -	+ / - Alyssum r p;, Rinore sorption microorga HPl + nic compo- naerobic m	+ nurale, D a bengale anisms Ni An + punds, pro- icroorgan	P: R: icoma ss nsis, Set i is a con S: P: R: vvides ox isms S: P:	0.4-4 1.5 sp., Homalium ss portia ssp. Porife nponent of ureas 49% 40-44% 42.5% idation equivalen ? ?	PI: 0.5-2 mg/l Rat: 50 mg/d sp., Hybanthus floribur rae Dysidea se and therefore essent Toxic in the form of O ₃ and peroxide nts in the metabolism	ndus, Pimelia suteri, Pla tial. **Ni(CO) ₄ is a higi O ₂

De: Disturbance of reproductive processes (flowering inhibition), bulky growth, dry tips in the case of conifer needles Sp: *Eutrophication of waters, phosphate esters which enter the water as insecticides have a toxic effect on much aquatic life, phosphates are relatively harmless, phosphoric acid esters and PH₃ are very toxic

Appendix 1. Continued.

	Essenti	ality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Pa	Bac –	Alg –	Fun -	HPI -	An -	S: ? P: ? R: ?		
2b	Bac -	Alg -	Fun	HP1 -	An* ?	S: 0.1-200 P: 0.1-5 R: 1	Toxic Pl: 3-20 mg/l M: 1 mg/d	РЬСО3
	F: *Es	sentiality	for vertebr	ates under	discussio	en Stereocaulan pileatur on. Pb enters into the er antiknock agent for petr	wironment (currently to	a decreasing extent) pa
' d	Bac -	Alg -	Fun –	HPI -	An -	S: ? P: ? R: 0.0001	Toxic	
	Sp: Se	e under P	't					
? 0	Bac –	Alg –	Fun -	HPl -	An -	S: 8-220 Bq/kg P: 8-12 Bq/kg R: ?	Highly toxic for vertebrates	
r	Bac –	Alg –	Fun -	HP1 -	An -	S: 3-12 P: 0.03-0.06 R: 0.05	Slightly toxic	Pr ^{3 +} PrOH ^{2 +}
		rya spec. ee under L	a					
Pt	Bac –	Alg –	Fun –	HPI -	An -	S: ? P: ? R: 0.00005	Slightly toxic	
	Cis-dic ural we pound consec	chloroplati ear from e s are releas juences of	num(II) co exhaust cat sed into th this are st	omplexes a talytic con e air in a h till unclear	re used in verters in ighly disp , particula	atalytic converters. Pt n n cancer therapy. Pt and cars. Together with all persive metallic from as s arly since the concentra	t its family enter into the minium oxide as the casuspended matter and su	e environment due to n arrier material, these co ibsequently deposited. T
Ra	Bac –	Alg -	Fun –	HPI -	An -	S: ? P: 0.03–1.6 ppt R: ?	Radioactive*	Ra ²⁺
	Sp: *S					a, therefore incorporation	on into the bone substa	nce. 10–20 μg is suffici
						S: 10-100	Slightly toxic	Rb ⁺

Appendix	1.	Continued.
----------	----	------------

	Essent	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Re	Bac	Alg	Fun	HPI	An	S: ?		ReO ₄
	-	-		-	-	P: ?		
						R: ?		
Rh	Bac	Alg	Fun	HPl	An	S: ?		
	-	-	-	-	-	P : ?		
	Sp: Se	e under Pt				R : 0.00001		
								· · · · · · · · · · · · · · · · · · ·
Ru	Bac	Alg	Fun	HPI	An	S: ? P: ?		
	-	-	-	-	-	R: 0.00001		
	Sp: Se	e under P	't			K. 0.00001		
3	Bac	Alg	Fun	HPI	An	S: 200–2000*	Ecotoxic**	SO2 =
5	Bac +	Alg +	Fun +	HP1 +	An +	S: 200–2000* P: 600–10000	Ecotoxic**	SO4 - HSO4-
S	+ A: Ind F: Cor	+ lividual pla	+ ants of the	+ Crucifera	+ e, Alium	P: 600-10000 R: 3000 ssp; sulphur bacteria, v		HSO ₄ -
S	+ A: Ind F: Con ters De: Ve Sp: *C	+ lividual planstitute of ery similar	+ ants of the amino aci to N defici bly higher of	+ Crucifera ds (cystein ciency, into	+ e, Alium ie and me ercostal c	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzymes hloroses of young leave	ertebrate hair, feathers	HSO ₄ - s and sulphuric acid leaves and needles
	+ A: Ind F: Con ters De: Ve Sp: *C age, so	+ lividual pla nstitute of ery similar Considerab il acidifica	+ ants of the amino aci to N defic oly higher o tition	+ Crucifera ds (cystein ciency, inte contents of	+ e, Alium le and me ercostal c n gypsum	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzyme: hloroses of young leave soils. **Influence of an	ertebrate hair, feathers s, acid mucopolysacharide s, premature yellowing of 1thropogenic SO ₂ emission	HSO ₄ - s and sulphuric acid leaves and needles is on 'new' forest d
	+ A: Ind F: Con ters De: Ve Sp: *C	+ lividual planstitute of ery similar Considerab	+ ants of the amino aci to N defici bly higher of	+ Crucifera ds (cystein ciency, into	+ e, Alium ie and me ercostal c	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzyme: hloroses of young leave soils. **Influence of an S: 0.01-1	ertebrate hair, feathers s, acid mucopolysacharide s, premature yellowing of thropogenic SO ₂ emission Toxic*	HSO ₄ - s and sulphuric acid leaves and needles
	+ A: Ind F: Con ters De: Ve Sp: *C age, so	+ lividual pla nstitute of ery similar Considerab il acidifica	+ ants of the amino aci to N defic oly higher o tition	+ Crucifera ds (cystein ciency, inte contents of	+ e, Alium le and me ercostal c n gypsum An	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzyme: hloroses of young leave soils. **Influence of an	ertebrate hair, feathers s, acid mucopolysacharide s, premature yellowing of 1thropogenic SO ₂ emission	HSO ₄ - s and sulphuric acid leaves and needles is on 'new' forest d
	+ A: Ind F: Con ters De: Vo Sp: *C age, so Bac -	+ lividual pla nstitute of ery similar Considerab il acidifica Alg –	+ ants of the amino aci to N defic oly higher o tition	+ c Crucifera ds (cystein ciency, inter- contents of HPl -	+ e, Alium le and me ercostal c n gypsum An –	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzyme: hloroses of young leave soils. **Influence of an S: 0.01-1 P: 0.1-200 ppb	ertebrate hair, feathers s, acid mucopolysacharide s, premature yellowing of i nthropogenic SO ₂ emission Toxic* M: 100 mg/d	HSO ₄ - s and sulphuric acid leaves and needles is on 'new' forest d
Sъ	+ A: Ind F: Con ters De: Vo Sp: *C age, so Bac -	+ lividual pla nstitute of ery similar Considerab il acidifica Alg –	+ ants of the amino aci to N deficient to N deficient to N deficient state the state Fun -	+ c Crucifera ds (cystein ciency, inter- contents of HPl -	+ e, Alium le and me ercostal c n gypsum An –	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzyme: hloroses of young leave soils. **Influence of an S: 0.01-1 P: 0.1-200 ppb	ertebrate hair, feathers s, acid mucopolysacharide s, premature yellowing of i nthropogenic SO ₂ emission Toxic* M: 100 mg/d	HSO ₄ - s and sulphuric acid leaves and needles is on 'new' forest d
SЪ	+ A: Ind F: Con ters De: Vo Sp: *C age, so Bac - Sp: *S	+ lividual pla nstitute of ery similar Considerab il acidifica Alg - 5b(III) is n	+ ants of the amino aci to N defid ly higher o tion Fun - nore toxic	+ Crucifera ds (cystein ciency, inte contents of HPl - than Sb(V	+ e, Alium le and me ercostal c n gypsum An -	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzyme: hloroses of young leave soils. **Influence of an S: 0.01-1 P: 0.1-200 ppb R: 0.1	ertebrate hair, feathers s, acid mucopolysacharide s, premature yellowing of in hthropogenic SO ₂ emission Toxic* M: 100 mg/d Rat: 10-75 mg/d, 1	HSO ₄ - s and sulphuric acid leaves and needles ns on 'new' forest d Sb(OH) ₆ -
Sъ	+ A: Ind F: Con ters De: Vo Sp: *C age, so Bac - Sp: *S	+ lividual pla nstitute of ery similar Considerab il acidifica Alg - 5b(III) is n	+ ants of the amino aci to N defid ly higher o tion Fun - nore toxic	+ Crucifera ds (cystein ciency, inte contents of HPl - than Sb(V	+ e, Alium le and me ercostal c n gypsum An - () An	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzymes hloroses of young leave soils. **Influence of an S: 0.01-1 P: 0.1-200 ppb R: 0.1 S: 0.5c45	ertebrate hair, feathers s, acid mucopolysacharide s, premature yellowing of in hthropogenic SO ₂ emission Toxic* M: 100 mg/d Rat: 10-75 mg/d, 1	HSO ₄ - s and sulphuric acid leaves and needles ns on 'new' forest d Sb(OH) ₆ -
Sb Sc	+ A: Ind F: Con ters De: Vo Sp: *C age, so Bac - Sp: *S	+ lividual pla nstitute of ery similar Considerab il acidifica Alg - 5b(III) is n	+ ants of the amino aci to N defid ly higher o tion Fun - nore toxic	+ Crucifera ds (cystein ciency, inter- contents of HPl - than Sb(V HPl - HPl	+ e, Alium le and me ercostal c n gypsum An - () An	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzyme: hloroses of young leave soils. **Influence of an S: 0.01-1 P: 0.1-200 ppb R: 0.1 S: 0.5c45 P: 0.01-0.2 R: 0.02 S: 0.01	ertebrate hair, feathers s, acid mucopolysacharide: s, premature yellowing of in thropogenic SO ₂ emission Toxic* M: 100 mg/d Rat: 10-75 mg/d, 1 Slightly toxic Toxic*	HSO ₄ - s and sulphuric acid leaves and needles ns on 'new' forest d Sb(OH) ₆ -
S Sb Sc Sc	+ A: Ind F: Con ters De: Vo Sp: *C age, so Bac - Sp: *S Bac -	+ lividual pla nstitute of ery similar Considerab il acidifica Alg - Sb(III) is n Alg -	+ ants of the amino acid to N defined ly higher of tition Fun - nore toxic Fun -	+ c Crucifera ds (cystein ciency, inter- contents of HPl - than Sb(V HPl -	+ e, Alium le and me ercostal c n gypsum An - () An -	P: 600-10000 R: 3000 ssp; sulphur bacteria, v thionine), of coenzyme: hloroses of young leave soils. **Influence of an S: 0.01-1 P: 0.1-200 ppb R: 0.1 S: 0.5c45 P: 0.01-0.2 R: 0.02	ertebrate hair, feathers s, acid mucopolysacharide: s, premature yellowing of in thropogenic SO ₂ emission Toxic* M: 100 mg/d Rat: 10-75 mg/d, 1 Slightly toxic	HSO ₄ - s and sulphuric acid leaves and needles ns on 'new' forest d Sb(OH) ₆ - Sc(OH) ₃

Astragalus) and the Rubiaceae

F: Component of glutathione peroxidase

De: Deficiency causes lipid peroxidation, endemic cardiomyopathy and haemolysis in animals and man

Sp: *Selenites and selenates are very toxic. The toxicity of As, Hg, Cd, Tl and NO_3^- is reduced if Se is taken up at the same time. The toxic effect results from the replacement of sulphur by Se in amino acids

Appendix 1. Continued.

	Essent	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
Si	Bac +	Alg –	Fun –	HPl +/-	An +	S: 33%* P: 200-8000 R: 1000	Physically e.g. in the form of asbestos	Si(OH) ₄
	F: Stri De: G Sp/ *C	uctural con rowth dist Clearly low	mponent o curbances, ver content	of siliceous bone defo ts on part	skeletons rmation icular soil	s, calcification	aceae, Gramineae, Junca nic Si compounds may	
Sm	Bac –	Alg –	Fun –	HPI -	An -	S: 4.5 P: 0.020.04 R: 0.04	Slightly toxic	Sm ³⁺ SmOH ²⁺
		rya spec. e under L	a					
Sn	Bac –	Alg –	Fun –	HPI -	An* ?	S: 1-20 P: 0.8-7 R: 0.2	Hardly M: 2 g/d	SnO(OH) ₃ -
	De: G	rowth dist		occur in v	ertebrates		enzymes are not secreted	
Sr	Bac –	Alg –	Fun –	HPl -	An –	S: 20-3500 P: 3-400 R: 50	In the form of Sr ⁹⁰ *	Sr ²⁺
Sr	Bac - A: Pro Sp: Sr	Alg 	Fun – anthometra be essenti	HPl – a, brown a al for som	An - Ilgae e organis	S: 20-3500 P: 3-400 R: 50 ms. However, this requ	In the form	Sr ²⁺ . *Sr ⁹⁰ is a decay produ
	Bac - A: Pro Sp: Sr from n Bac -	Alg 	Fun – anthometra be essenti plosions an Fun –	HPl – a, brown a al for som	An - Ilgae e organis	S: 20-3500 P: 3-400 R: 50 ms. However, this requ	In the form of Sr ⁹⁰ * ires further investigation.	Sr ²⁺ . *Sr ⁹⁰ is a decay produ
	Bac - A: Pro Sp: Sr from n Bac -	Alg 	Fun – anthometra be essenti plosions an Fun –	HPl - a, brown a al for som id as a con	An – Ilgae e organiss issequence	S: 20-3500 P: 3-400 R: 50 ms. However, this requer to fits similarity to Ca S: $0.5-4$ P: < 0.001	In the form of Sr ⁹⁰ * ires further investigation. is incorporated into bond Slightly toxic	Sr ²⁺ . *Sr ⁹⁰ is a decay produ
Га	Bac - A: Pro Sp: Sr from n Bac - A: Aso Bac -	Alg 	Fun – anthometra be essenti plosions an Fun –	HPl - a, brown a al for som id as a con	An – Ilgae e organiss issequence	S: 20-3500 P: 3-400 R: 50 ms. However, this requer to fits similarity to Ca S: $0.5-4$ P: < 0.001	In the form of Sr ⁹⁰ * ires further investigation. is incorporated into bond Slightly toxic	Sr ²⁺ . *Sr ⁹⁰ is a decay produ
Га	Bac - A: Pro Sp: Sr from n Bac - A: Aso Bac - A: Ca	Alg 	Fun - anthometra be essenti olosions an Fun - a plicata Fun -	HPl al for som id as a con HPl 	An - ligae e organism nsequence An - An	S: 20-3500 P: 3-400 R: 50 ms. However, this requered of its similarity to Ca S: 0.5-4 P: <0.001 R: 0.001 S: 0.7 P: 0.005-0.015	In the form of Sr ⁹⁰ * ires further investigation. is incorporated into bond Slightly toxic Rat: 300 mg/d, l	Sr ²⁺ . *Sr ⁹⁰ is a decay produce substance
Sr Ta Tb Te	Bac - A: Pro Sp: Sr from n Bac - A: Aso Bac - A: Ca	Alg 	Fun - anthometra be essenti olosions an Fun - a plicata Fun -	HPl al for som id as a con HPl 	An - ligae e organism nsequence An - An	S: 20-3500 P: 3-400 R: 50 ms. However, this requered of its similarity to Ca S: 0.5-4 P: <0.001 R: 0.001 S: 0.7 P: 0.005-0.015	In the form of Sr ⁹⁰ * ires further investigation. is incorporated into bond Slightly toxic Rat: 300 mg/d, l	Sr ²⁺ . *Sr ⁹⁰ is a decay produce substance

Appendix 1. Continued.

	Essent	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of
T1	Bac –	Alg –	Fun -	HPl -	An -	S: 0.01-0.5 P: 0.03-0.3 R: 0.05	Toxic Pl: 1 mg/l M: 600 mg/d	Tl+
	Sp: Pa	urticularly	high envir	onmental	concentrat	ions in the vicinity of c	ement factories	
ï	Bac –	Alg –	Fun –	HPI -	An* -	S: 1500-5000** P: 0.02-56 R: 5	Hardly toxic***	Ti(OH) ₄
	N ₂ fixa ** 15% tor of c	tion by L (in the up contamina	eguminosa pper layers tion by so	e. s of lateriti il particles	c soils. Tl	ne measured Ti content	may play a positive role t during plant analysis m assified as dust pollution.	
m		Alg - ya spec.	Fun -	HP1 -	An –	S: 0.6 P: 0.0025-0.005 R: 0.004	Slightly toxic	Tm ³⁺ TmOH ²⁺
	Sp: Se	e under L	a					
	Bac -	Alg –	Fun –	HPI -	An -	S: 0.01-1 P: 0.005-0.06 R: 0.01	Highly toxic Rat: 36 mg/d, l	UO ₂ (CO ₃) ⁴ ₃ -
	A: Cop	prosma ar	borea, Un	cinia lepto	stachya, s	ome corals		
	Bac –	Alg + / -	Fun -	HPl +/-	An + / -	S: 10-100 P: 0.001-10 R: 0.5	Toxic P: 10–40 mg/l Rat: 0.25 mg/d	H ₂ VO ₄ ⁻ HVO ₄ ² ⁻
	F: Inhi De: Gi Sp: So cies of	ibition of rowth reduced one sea cu ascidians	chlorestero uction, cha ucumbers, have a var	ol synthesis anges in lip in isolated adium pro	s oid metabo cases mo otein comp		cidians contain high V co other species a pyrrole co	
	Bac	Alg	Fun	H P l -	An -	S: 1.5 P: 0.0005-0.15	Slightly toxic Pl: 10 mg/l	WO ₄ ² -
r	-	-	_					
V	- A: Pin Sp: Th		ogical effect			R: 0.2 n antagonist to molybo generally leads to a dro	Rat: 30–50 mg/d, l lenum where the replaced op in activity	ment of Mo by W in t

Appendix 1. Continued.

	Essent	iality				Occurrence (mg/kg DW)	Toxicity	Uptake in the form of	
Yb	Bac	Alg	Fun	HPl	An	S: 3	Slightly toxic	Yb ^{3 +} YbOH ^{2 +}	
	_	_	_	-	-	P: 0.015-0.030 R: 0.02		YDOH	
		rya spec. e under L	a						
Zn	Bac	Alg	Fun	HPl	An	S: 3–300	Toxic	Zn ²⁺	
	+	+	+	+	+	P : 15–150	Pl: 60-400 mg/l	ZnOH ⁺	
						R: 50	M: 150-600 mg/l	ZnCO ₃	
	A · Arr	neria mar			muanua	verna, onene vulgaris,	Thlaspi alpestre, Viola tr	icolor var. calalilliaria	
	F: Chl growth De: G Sp: To	orophyll f substanc rowth inh oxic sympt	formation, e (IES), tr ibition, wh	enzyme a anscription itish green mans are	n i discolora	ation of older leaves, fro	hydrogenases), protein du uctification disturbances ad grey hair. Soils rich in	gradation, formation	

Appendix 2

Estimated annual production of individual elements for the year 2000 (if not specified otherwise) and examples of their technical application. The data used in appendix 2 were extracted from Bowen 1979; Council of Environmental Quality 1980; Kabata-Pendias & Pendias 1984; Merian 1991; Nriagu 1988 and Streit 1991.

Sym- bol	Estimated annual produc- tion in the year 2000 (in 1000 t)	Examples of technical application
Ac		Ac is used as a radioactive source to generate alpha radiation.
Ag	12	Ag is used for photographic material, for electric controllers and conductors, for coins, medals, jewellery, silverware, alkali batteries, mirrors, catalysts, hard alloys and silver-plated objects.
Al	60 000	Aluminium is applied, for example, in pro- ducing sheet metal, wires and alloys. Al salts are used in sewage plants to precipitate phosphate.
As	51	Metallic arsenic is used as an alloying ele- ment to increase hardness. Copper ars- enide, $Cu(AsO_2)_2$, is effective as an insec- ticide and fungicide.
Au	2	Gold is applied in electroplating, electron- ics and jewellery production.
B	1000 (in 1974)	Boron is a component of alloys. Boron ni- trides (in the diamondlike modification) are important abrasives. Boron compounds are used in the glass, ceramic and enamel in- dustry (particularly borax and boric acid) and also serve as fertilizers and pesticides.
Ba	5000	Barium sulphate is used in X-ray diagnos- tics as a contrast medium, barium carbon- ate is applied for waste water purification and as a rat poison.
Be	15	Be is used for X-ray windows. Alloys of Be with Cu, Al, Ni, Co and Fe increase hard- ness, temperature- and corrosionstability. Also found in clock springs, surgical instru- ments, electrical engineering (as electric in- sulators) and in aerospace applications.

Appendix 2.	Continued.

Sym- bol	Estimated annual produc- tion in the year 2000 (in 1000 t)	Examples of technical application
Bi	6	Bi preparations (bismuth oxide chloride and other salts) are used for cosmetic articles and as soluble salts for pharmaceuticals. Bi is used for easily fusible alloys and also to silver mirrors as well as in battery cathodes, semiconductors and catalysts.
Br	35	Bromium and its compounds are applied as antiknock agents, as fumigants, preserva- tives, as insecticides, flameproofing agents and in the production of pesticides, dyes, pharmaceuticals and photochemicals.
С	6 × 10 ⁶	Carbon in its elemental form (diamond or graphite) or in the form of its compounds is used in a large number of technical pro- cesses, particularly as an energy carrier.
Cd	20	Production of Ni/Cd batteries, used for cor- rosion control, for pigments and as a plas- tic stabilizer.
Ce	0.3 (1979)	Cerium oxides are important constituents of self-cleaning ovens, the element also serves as a glass polishing agent (see also La).
Cl	81000 (1979)	Cl is a basic material for the production of solvents and an active substance in bleaches. It is applied for the sterilizing and conditioning of water (chlorination).
Co	30	Co is utilized for hard alloys, to harden tungsten carbide and as a catalyst. Further- more, it is also a constituent of glasses, pot- tery, and of blue and green pigments.
Cr	3750	Cr is used in metallurgy to prevent rust and as basic material for the production of paints. Furthermore it is also applied for catalysts, in tanneries and for the impreg- nation of wood.
Cs	0.03	Utilized in photocells and as a solid rocket propellant (CsBH ₄). CsCl is used in electric bulbs and lamps, Cs ₂ CO ₃ as a catalyst and for the production of cathode material.

24

Appendix 2. Continued.

Sym- bol	Estimated annual produc- tion in the year 2000 (in 1000 t)	Examples of technical application
Cu	12000	50% of Cu applications are in electrical en- gineering. Also used for alloys, water mains, roofing, household goods and coins. Cu^{2+} in the form of copper sulphate is applied in agriculture as an additive to green fodder in the case of Cu deficiency, in various com- positions as a fungicide or bactericide, and as an algicide and molluscicide in water.
Dy		Dy is occasionally applied in nuclear engi- neering (see also La).
Er		Er is applied in alloys, in nuclear engineer- ing and to colour glasses and enamel (see also La).
Eu		Eu serves as a neutron absorber, further- more also as an activator in scintillation crystals, as a material in lasers and colour television picture tubes (see also La).
F	3500	Fluorine is released from the aluminium, ceramic, cement and brick-making indus- try. The resulting dusts and gases contain- ing fluoride may cause the fluoride contents of soils in the vicinity of such industrial areas to rise dramatically and lead to agri- cultural and forest damage.
Fe	1 × 10 ⁶	Fe is applied as a construction material and for many special purposes. Relatively small quantities of Fe oxides and Fe salts are used as paint pigments or to precipitate water impurities in the so-called third purification stage and thus end up in the discharge flow
Ga	0.015 (1974)	Gallium is a byproduct of aluminium pro- duction. It is primarily applied in the semi- conductor industry. Gallium arsenide can be found in solar cells, in various telecom- munication sectors and in supercomputing
Gd		Gd is used for high-temperature alloys, superconductors, magnets and electronic components (see also La).
Ge	0.2	Ge is applied for optical components such as lenses, prisms and windows in infrarec spectroscopy. Ge is also used as a catalyst as an alloying element and in semiconduc tor technology.
н		Hydrogen in its elemental form or in the form of its compounds is utilized for a wide range of technical processes.

Appendix 2. Continued.

Sym- bol	Estimated annual produc- tion in the year 2000 (in 1000 t)	Examples of technical application
Hf	0.0013 (1974)	Hafnium is applied for control rods in nu- clear reactors, as a filling for flash bulbs and for alloys.
Hg	14	Application in scientific instruments (ther- mometers, barometers), electrical equip- ment, dental fillings.
Но		(See under La).
I	7 (1974)	Iodine is used in the chemical industry (e.g. as a catalyst and stabilizer, paint industry), in photography and medicine (tincture of iodine, X-ray contrast medium, iodine tab- lets).
In	0.06	Used for alloys, in the semiconductor in- dustry, for special coatings and for fusion treads. InCl ₃ is used in the manufacture of fluorescent lamps.
Ir		It is utilized for hard platinum alloys, for contacts and fountain pen nibs.
К	18 500 (1979)	Used for alloys and organic synthesis. Sol- uble potassium salts are used as a fertilizer.
La	0.3 (1979)	Used in alloys and as an additive in inten- sive light sources. Lanthanum oxide is added to glasses as a stabilizer to combat base influences. The lanthanides are used in industry as catalysts, for mineral oil crack- ing, as luminescent material for colour TV sets and as additives for Hg and fluorescent lamps. They are also employed to improve light spectra, for special glasses, permanent magnets and as control rods for nuclear fuel rods.
Li	33	Used in alloys (e.g. in the production of wheel bearings), a component of electrodes and lubricating greases, reactor coolant. LiH is also used as a reactor fuel and for drying, condensation and reduction agents, LiOH as an 'air purifier' and LiClO ₄ as rocket fuel.
Lu		Lu is used as a catalyst (see also La).
Mg	242	Constituent of many alloys, fertilizers.

26

Appendix 2. Continued.

Sym- bol	Estimated annual produc- tion in the year 2000 (in 1000 t)	Examples of technical application
Mn	18000	Mn is used in steel production to bind ox- ygen and sulphur, and also in alloys and batteries. Of the organic compounds, the fungicide manganese-ethylene-bis-dithio- cabamate and the antiknock agent methyl- cyclopentadienyl-manganese-tricarbonyl should be mentioned.
Мо	130	Molybdenum is applied in steel production. as well as in pigments, catalysts, lubricants and in flameproofing agents.
Ν	120 × 10 ³ (1979)	N_2 serves as an inert protective gas for welding and is employed in semiconductor production, for deep freezing of food, to displace air from partially filled fuel tanks and as a propellant in aerosol sprays and fire extinguishers. Liquid N_2 is an important coolant. In largescale manufacturing N in an important raw material for the synthesis of compounds containing nitrogen (N ox- ides, amides, cyanides, nitrides etc.).
Na	53000 (1979)	Used to produce antiknock agents, in met- allurgy, for gas-discharge lamps, in fast breeders and solar power stations as a cool- ant, sodium salts used as fertilizers (e.g. so- dium nitrate and sodium molybdate).
Nb	5 (1979)	Nb is used for alloys. It furthermore also serves as a construction material in space capsules, for welding stainless steels and as a material for fuel rod claddings.
Nd		Nd is utilized to colour glass and enamel and as a laser material (see also La).
Ni	1500	Ni is employed in many Ni alloys (kitchen appliances, coins, juwellery, turbines etc.), furthermore as Ni/Cd accumulators and in catalysts. Nickel tetracarbonyl occurs as an intermediate product in nickel purification and is also used for production processes.
0	23 × 10 ⁶	Oxygen in its elemental form or in the form of its compounds is used for a wide range of technical processes.
Os		Os is used for very hard alloys, for pen nibs, bearings, contacts and also for staining in microscopy.

Appendix 2.	Continued.
-------------	------------

Sym- bol	Estimated annual produc- tion in the year 2000 (in 1000 t)	Examples of technical application
P	11200 (1979)	The major proportion of technically pro- duced phosphorus products are used for phosphoric acids and phosphates (e.g. for detergents). Further possibilities of apply- ing P are copper phosphide, friction sur- faces on match boxes (red P), military in- cendiaries and semiconductors.
Pa		
РЪ	5000	Pb is used in the accumulator industry, for cable coatings, die castings and antiknock agents.
Pd		Used as a catalyst, in dental protheses and for juwellery alloys.
Ро		Radioactive, therefore no general applica- tion.
Pr		Applied in electrodes for arc lamps (see also La).
Pt	0.2 (all Pt metals) (1991)	Used as a catalyst, also for crucibles, elec- trodes and articles of jewellery. In the form of the cis-dichloro-platinum (II) complex it is used in medicine for cancer therapy.
Ra		Previously used in the clockmaking indus- try (dial illumination) and in radiotherapy, today used together with beryllium as a source of high-energy neutrons.
Rb	0.003	Rb is utilized in semiconductor technology and as a material for photocathodes, rubid- ium carbonate is used to manufacture spe- cial glasses.
Re	0.014	Re is used for heating filaments, thermo- couples, fountain pen nibs, filaments in flashlights and as a catalyst.
Rh		Rh is used for various alloys and, for ex- ample, is processed into catalysts, heating spirals, thermocouples and also used in jewellery.
Ru		Ru serves as a catalyst and is also used for alloys.
S	120 × 10 ³ (1979)	The major fraction is processed in sulphuric acid production, a small fraction is used in elemental form for vulcanization and the manufacture of matches, fungicides, paints, gunpowder and medical preparations.

Appendix 2. Continued.

Sym- bol	Estimated annual produc- tion in the year 2000 (in 1000 t)	Examples of technical application
Sb	100	Used in the semiconductor industry as ar alloy component, in rubber additives, in pigments and paints.
Sc		Sc is released during uraninum smelting. In is used in nuclear engineering and as an additive for light sources.
Se	2	Selenium dioxide is used for the glass in dustry and for electroplating, selenites also for the gas industry and as a feed additive Cadmium selenide is applied in semicon- ductor production.
Si	380 × 10 ³ (1979)	In its elemental form Si is almost exclu- sively used as a semiconductor. Si com- pounds are major constituents of glass, po- celain, earthenware and cement. SiC is a crystalline solid of great hardness and strength.
Sm		Sm is utilized as a neutron absorber in nu- clear reactors, in permanent magnets and also as a catalyst (see also La).
Sn	300	Sn is as a coating for sheet iron (corrosior protection, manufacture of tin cans). Orga- notin compounds (e.g. thriphenyltin) serve as fungicides, insecticides and bactericides and are also used as PVC and PCB therma stabilizers.
Sr	120	Used to refine alloys.
Ta	0.5 (1979)	Ta is utilized for electric capacitors and for lining chemical reactors. It is a componen of steel alloys. Cutting tools often contair tantalum carbide.
ТЪ		Tb is applied in lasers, fluorescent materials and in high-temperature fuel cells (see also La).
Te	0.25	Tellurium is added to steel, lead alloys etc It is also used in photography and medi- cine.
Th	0.7 (1984)	²³² Th is used in breeder reactors as a fertile material to produce 233 U. ThO ₂ is applied in the production of crucibles, for heating conductors and as a catalyst for organic syntheses. ThC ₂ (thorium carbide) is uti- lized as a nuclear fuel in nuclear power sta- tions.

Appendix 2. (Continued.
---------------	------------

Sym- bol	Estimated annual produc- tion in the year 2000 (in 1000 t)	Examples of technical application
TI	0.03 (1984)	Used for alloys, low-temperature thermometers, in electronics and for special glasses Tl_2SO_4 is used as rat poison.
Ti	1800	Ti is used for titanium dioxide pigments in the production of oil-based paints, plastics rubber, paper, ceramics, fibres, printing inks, cosmetics and foodstuffs.
Tm		
U	250	Uranium is primarily utilized as a fuel in nuclear reactors and to breed plutonium and other transuranic elements. ²³⁵ U serves as bomb material and as an additive to natu- ral uranium for nuclear fuel rods.
v	35	V is mainly used for steel production. Va nadium pentoxide serves as a catalyst in technical processes.
w	47	Tungsten is used for the production of hard metals, for electrodes, coiled filaments heating elements and as a contact materia for electric switches.
Y		Yttrium is applied for the red components in the picture tubes of colour TV sets and for alloys. Furthermore, in the form of bar ium yttrium cuprates it is suitable for high temperature superconductors.
Yb		Ytterbium is applied as an alloying elemen (see also La).
Zn	11000	In its metallic form Zn is mainly used as corrosion protection for electroplating in iron and steel production. Zinc oxide is used, for example, for catalysts and pig ments; zinc bacitracin is used as a growth promoting agent in pig and poultry breed ing. Various zinc salts serve as insecticides and fungicides.
Zr	500	Zr is a material applied in aerospace and reactor technology. Zr compounds are also used to impregnate textils, in leather tan ning and in the glass and ceramics industry ZrO_2 is used as an abrasive, a white pig ment for porcelain and for fireproof apparatus.

References

- Adriano, D. C. 1986. Trace elements in the terrestrial environment. Springer Verlag, New York, 533 pp.
- Anke, M., Baumann, W., Bräunlich, H. & Brückner, C. (eds.) 1989a. 6th International Trace Element Symposium, Karl-Marx-Universität, Leipzig, Vol. 1–5.
- Anke, M., Brückner, C., Gürtler, H. & Grün, M. (eds.) 1989b. Mengen- und Spurenelemente, Arbeitstagung, Karl-Marx-Universität, Leipzig, 383 pp.
- Baumeister, W. & Ernst, W. 1978. Mineralstoffe und Pflanzenwachstum. Gustav Fischer Verlag, Stuttgart, New York, 416 pp.
- Bazilevich, N. I. & Rodin, L. E. 1966. The biological cycle of nitrogen and ash elements in plant communities of the tropical and subtropical zones. Forestry Abstr. 27: 357– 368.
- Berrow, M. L. & Burridge, J. C. 1984. Aufnahme, Verteilung und Wirkungen bei Pflanzen. In: Merian, E. (eds.), Metalle in der Umwelt. VCH Verlagsgesellschaft mbH, Weinheim, 125–133.
- Bowen, H. J. M. 1979. Environmental chemistry of the elements. Academic Press, London, 333 pp.
- Bodek, I., Lyman, W. J., Reehl, W. F. & Rosenblatt, D. H. (eds.) 1988. Environmental inorganic chemistry, properties, processes, and estimation methods. Pergamon Press, New York, 1067 pp.
- Brümmer, G. W. 1986. Heavy metal species, mobility and availability in soils. In: Bernhard, M., Brinckman, F. E. und Sadler, P. J., (eds.), The importance of chemical 'speciation' in environmental processes. Springer Verlag, Berlin, Heidelberg, New York, 169–192.
- Bundesministerium für Forschung und Technologie (ed.) 1988. Umweltprobenbank. Springer Verlag, Berlin, Heidelberg, New York, 158 pp.
- Caroli, S., Iyengar, G. V. & Muntau, H. (eds.) 1989. Bioelements: health aspects. Annali Dell'Instituto Superiori Di Sanita, 25, 373–378.
- Clüsener Godt, M. 1990. The content of Mg, Ca and K in plant tissues and their relationship to soils in natural ecosystems. In: Lieth, H. und Markert, B. (eds.), Element Concentration Cadasters in Ecosystems, VCH Verlagsgesellschaft mbH, Weinheim, 345-356.
- Council on Environmental Quality (ed.) 1980. The global 2000 report to the president. U.S. Government printing Office, Washington, 1509 pp.
- Davies, B. E. 1990. Trace metals in the environment: retrospect and prospect, Keynote lecture given at the International Conference on Metals in Soils, Waters, Plants and Animals, April 30-May 3, 1990, Grenelefe Resort and Conference center, Orlando, Florida, U.S.A.
- Duvigneaud, P & Denaeyer-De Smet, S. 1968a. Biomass, productivity and mineral cycling in deciduous mixed forests in Belgium. In: H. E. Young, (ed.), Symposium on primary productivity and mineral cycling in natural ecosystems, Univ. Maine Press, Orono, 167–196.

- Duvigneaud, P & Denaeyer-De Smet, S. 1968b. Essai de classification chimique (éléments minéraux) des plants gypsicoles du bassin de l'Ebre. Bull. Soc. Roy. Bot. Belg. 101: 279-291.
- Duvigneaud, P & Denaeyer-De Smet, S. 1973. Biological cycling of minerals in temperate deciduous forests. In: Reichle, D. E., (ed.), 1973: Analysis of temperate forest ecosystems, Ecological Studies 1. Springer Verlag, Berlin, Heidelberg, New York, 199–225.
- Epstein, E. 1972. Mineral nutrition of plants, principles and perspectives. Wiley, New York, 412 pp.
- Ernst, W. H. O. 1974. Schwermetallvegetation der Erde. Gustav Fischer Verlag, Stuttgart, 194 pp.
- Ernst, W. H. O. & Joosse Van Damme, E. N. G. 1983. Umweltbelastung durch Mineralstoffe. Gustav Fischer Verlag, Stuttgart, 234 pp.
- Ernst, W. H. O. 1990. Element allocation and (re)translocation in plants and its impact on representative sampling. In: Lieth, H. und Markert, B., (eds.), Element concentration cadasters in ecosystems, VCH Verlagsgesellschaft mbH, Weinheim, 17-40.
- Fiedler, H. J. & Rösler, H. J. (eds.) 1988. Spurenelemente in der Umwelt. Ferdinand Enke Verlag, Stuttgart, 278 pp.
- Fortescue, J. A. C. 1980. Environmental Geochemistry. Springer Verlag, Berlin, Heidelberg, New York, 347 pp.
- Fränzle, O. 1990. Representative sampling of soils in the Federal Republic of Germany and the EC Countries. In: Lieth, H. und Markert, B. (eds.), Element concentration cadasters in ecosystems. VCH Verlagsgesellschaft mbH, Weinheim, 63-72.
- Freedman, B. 1989. Environmental ecology, the impact of pollution and other stress on ecosystem structure and function. Academic Press, San Diego, 454 pp.
- Golley, F. B., Richardson, T. & Clements, R. G. 1978. Elemental concentrations in tropical forests and soils of northwestern Columbia. Biotropica 10: 144–151.
- Hamilton, E. I. 1979. The chemical elements and man. John Wiley, New York, 578 pp.
- Hamilton, E. I. 1980. The need for trace element analyses of biological materials in the environmental sciences. In: International Atomic Energy Agency, (ed.), Element analysis of biological materials – current problems and techniques with special reference to trace elements. Technical Report Series No. 197, Wien, 39–54.
- Heinrichs, H. & Mayer, R. 1980. The role of forest vegetation in the biogeochemical cycle of heavy metals. J. Environ. Qual. 9: 111-118.
- Horovitz, C. T. 1988. Is the major part of the periodic system really inessential for life? J. Trace Elem. Electrolytes Health Dis. 2: 135–144.
- Irgolic, K. J. & Martell, A. E. (eds.) 1985. Environmental inorganic chemistry. VCH Verlagsgesellschaft mbH, Weinheim, 654 S.
- Isermann, K. 1979. Neuere Erkenntnisse der Pflanzenernährung. Chemie in unserer Zeit 13: 97–110.
- Iyengar, G. V., Kollmer, W. E. & Bowen, H. J. M. 1978. The

elemental composition of human tissues and body fluids, a compilation of values for adults. VCH Verlagsgesellschaft mbH, Weinheim, 151 pp.

- Iyengar, G. V. 1988. Biological trace element research: A multidisciplinary science. Sci. Total Environ. 71: 1–5.
- Iyengar, G. V. 1989. Elemental analysis of biological systems, biological, medical, environmental, compositional and methodological aspects. CRC Press, Boca Raton, 430 pp.
- Jayasekera, R. 1987. Growth characteristics and uptake of minerals of the two mangrove species Rhizophora mangle L. and Rhizophora mucronata Lamk. under different environmental conditions. Diss., Univ. Osnabrück, 216 pp.
- Kabata-Pendias, A. & Pendias, H. 1984. Trace elements in soils and plants. CRC Press, Boca Raton, 315 pp.
- Kiem, J. & Feinendegen, L. E. 1985. Essentielle Spurenelemente in der Medizin. In: KFA Jürlich, (ed.), Umweltforschung 1985: 9–17.
- Kinzl, H. 1982. Pflanzenökologie und Mineralstoffwechsel. Verlag Eugen Ulmer, Stuttgart, 534 pp.
- Kovacs, M. 1982. Chemical composition of the lesser reedmace (Typha angustifolia) in lake Balaton. Acta Bot. Acad. Sci. Hung. 28: 297–307.
- Kovacs, M., Turcsanyi, G., Nagy, L., Koltay, A., Kaszab, L. & Szöke, P. 1990. Element concentration cadasters in a Quercetum petraeae-cerris forest. In: Lieth, H. und Markert, B., (eds.), 1990: Element concentration cadasters in ecosystems, VCH Verlagsgesellschaft mbH, Weinheim, 255-265.
- Kovalskij, V. V. M. 1977. Geochemische Ökologie-Biogeochemie. VEB Deutscher Landwirtschaftsverlag, Berlin, 358 pp.
- Lieth, H. & Markert, B. 1985. Concentration cadasters of chemical elements in contrasting ecosystems. Naturwiss. 72: 322-324.
- Lieth, H. & Markert, B. 1988a. Aufstellung und Auswertung ökosystemarer Element-Konzentrations-Kataster. Springer Verlag, Berlin, Heidelberg, New York, 193 pp.
- Lieth, H. & Markert, B. 1988b. The establishment of element concentration cadasters for ecosystems (ECCE) in the different vegetation zones of the earth. Biology International 16: 7–11.
- Lieth, H., Jayasekera, R. & Markert, B. 1989. The application of element concentration cadasters to different ecological and ecophysiological problems. In: Caroli, S., Rossi, G., Sabbioni, E. und Zimmer, K., (eds.), Proceedings of the Third Italo-Hungarian Symposium on Spectrochemistry, CEC, Joint Research Center, Ispra, 8.–12. Juni 1987, 71– 86.
- Lieth, H. & Markert, B. (eds.) 1990. Element concentration cadasters in ecosystems, Methods of assessment and evaluation. VCH Verlagsgesellschaft mbH, Weinheim, 448 pp.
- Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S. & Johnson, N. M. 1977. Biogeochemistry of a forest ecosystem. Springer Verlag, Berlin, Heidelberg, New York, 205 pp. Looffer, C., Betrides, B. F., Weise, L. & Harrey, M. A. 1070.
- Loeffler, G., Petrides, P. E., Weiss, L. & Harper, H. A. 1979.

Physiologische Chemie. Springer Verlag, Berlin, Heidelberg, New York, 940 pp.

- Markert, B. 1986. Aufstellung von Elementkonzentrationskatastern in unterschiedlichen Pflanzenarten und Bodentypen in Deutschland, Österreich und Schweden. In: Stoeppler, M. und Dürbeck, H. W., (eds.), Beiträge zur Umweltprobenbank, Jül. Spez. 360, 166 pp.
- Markert, B. & Jayasekera, R. 1987. Elemental composition of different plant species. Journal of plant nutrition. 10, 7: 783-794.
- Markert, B. 1988. Biorecycling Biologische Entsorgung schwermetallbelasteter Böden durch Pflanzen. BioEngineering 3: 227–231.
- Markert, B. & Weckert, V. 1989. Use of Polytrichum formosum (moss) as a passive biomonitor for heavy metal pollution – Cd, Cu, Pb, and Zn. Sci. Total Environ. 86: 289– 294.
- Markert, B. & Klausmeyer, N. 1990. Variations in the elemental composition of plants and computer aided sampling in ecosystems. Toxicological and Environmental Chemistry 25: 201–212.
- Markert, B. & Thornton, I. 1990. Multi-element analysis of an english peat bog soil. Water, Air, and Soil Pollution 49: 113-123.
- Markert, B. 1991a. Element concentration cadasters in ecosystem, Research proposal presented and accepted as international project sponsored by the International Union of Biological Sciences at the 24rd General Assembly of IUBS in Sept. 1991 (Amsterdam), 16 pp.
- Markert, B. 1991b. Multi-element analysis in plant material. In: Esser, G. and Overdieck, D. (eds.): Modern Ecology: Basic and Applied Aspects. Elsevier, Amsterdam-London-New York-Tokio, 275-293.
- Markert, B. 1991c. Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin, Part 1: Mosses and peat profiles as bioindicators for different chemical elements. Vegetatio 95: 127–136.
- Markert, B. & Zhang De Li 1991. Natural background concentrations of lanthanides in a forest ecosystem. The Science of the Total Environmant 103: 27–35.
- Markert, B. 1992a. Instrumentelle Multielementanalyse an Pflanzenproben. VCH-Verlagsgesellschaft mbH, Weinheim (in press.).
- Markert, B. 1992c. Multi-element analysis in plants analytical tools and biological questions. In: Adriano, D. C. (ed) Biogeochemistry of trace metals, Lewis Publishers, Boca Raton; 401–428
- Markert, B. (ed.) 1992b. Plants as biomonitors for heavy metal pollution of the terrestrial environment, VCH-Verlagsgesellschaft, Weinheim, New York (in press.).
- Markert, B. & Wtorowa, W. 1992. Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin, Part 3: Comparison of the multielement budget with a forest ecosystem in Germany – aspects of rejection, indication and accumulation of chemical elements. Vegetation 98: 43– 58.

- Marschner, H. 1983. General introduction to the mineral nutrition of plants. In: Läuchli, A. und Bieleski, R. L., (eds.), Encyclopedia of Plant Physiology, New Series, Vol. 15A, 5-60.
- Marschner, H. 1986. Mineral nutrition of higher plants. Academic Press, London, New York, 762 pp.
- McKenzie, H. A. & Smythe, L. E. (eds.) 1988. Quantitative trace analysis of biological materials. Elsevier Science Publications, Amsterdam, New York, Oxford, 791 pp.
- Mengel, K. 1984. Ernährung und Stoffwechsel der Pflanze. Fischer Verlag, Stuttgart, New York, 431 pp.
- Merian, E. (ed.) 1991. Metals and their Compounds in the Environment. VCH-Verlagsges., Weinheim und New York.
- Mertz, W. 1981. The essential trace elements. Science 213, 1332-1338.
- Mertz, W. (ed.) 1986–1987. Trace elements in Human and Animal Nutrition. Academic Press, New York, Vol. 1, 525 pp. und Vol. 2, 499 pp.
- Newbould, P. J. 1967. Methods of estimating the primary production of forests. Blackwell Scientific Publication, Oxford und Edinburgh, 730 pp.
- Nriagu, J. O. & Pacyna, J. M. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134–139.
- Rodin, L. E. & Bazilevich, N. I. 1967. Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, Edinburgh and London, 288 pp.
- Roth-Holzapfel, M. 1990. Multi-element analysis of invertebrate animals in a forest ecosystem (Picea abies L.). In: Lieth, H. und Markert, B., (eds.), Element concentration cadasters in ecosystems. VCH Verlagsgesellschaft mbH, Weinheim, 281-296.

- Sansoni, B. & Iyengar, V. 1978. Sampling and sample preparation methods for the analysis of trace elements in biological materials. Forschungszentrum Jülich, Jül. Spez. 13, 77 pp.
- Sansoni, B. (ed.) 1985. Instrumentelle Multielementanalyse. VCH Verlagsgesellschaft mbH, Weinheim, 782 pp.
- Schramel, P. & Li-Qiang Xu 1991. Determination of arsenic, antimony, bismuth, selenium, and tin in biological and environmental samples by continuous flow hydride generation ICP/AES without gas-liquid separator, Fresenius J. Anal. Chem. 340: 41-47.
- Stoeppler, M., Dürbeck, H. W. & Nürnberg, H. W. 1982. Environmental specimen banking, A challenge in trace analysis. Talanta 29: 963–972.
- Streit, B. 1991. Lexikon Ökotoxikologie. VCH-Verlagsgesellschaft, Weinheim, New York, 731 pp.
- Tölg, G. 1989. Analytical chemistry and the quality of life. Kontakte, Darmstadt, 20-29.
- Vanoeteren, C., Cornelis, R. & Sabbioni, E. 1986. Critical evaluation of normal levels of major and trace elements in human lung tissue, Commission of the European Community, Joint Research Centre, Ispra, EUR 10440 EN, 141 pp.
- Wiersma, G. B., Harmon, M. E., Baker, G. A. & Grenne, S. E. 1987. Elemental composition of Hylocomium splendens in the Hoh Rain Forest Olympic National Park Washington, U.S.A. Chemosphere 16: 2631–2645.
- Zeisler, R., Stone, S. F. & Sanders, R. W. 1988. Sequential determination of biological and pollutant elements in marine bivalves. Anal. Chem. 60: 2760–2765.