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Abstract 

At a micro-scale, fracture often starts in the vicinity of inclusions in a deforming matrix where the local stress 
and strain conditions may lead to either failure of the inclus ion/matr ix  interface or of the particle itself. Analytic 
solutions are available for the local stress and strain fields near an elastic inclusion in an elastically deforming 
matrix but for plastic deformation it is necessary to resort to numerical analyses. Here a numerical solution is 
presented for a spherical elastic inclusion in an elastic/plastic matrix, concentrating largely on the par t ic le /ma-  
trix interface which is of relevance to ductile fracture. Solutions are also presented for rigid and elastic inclusions 
in hardening and non-hardening matrices. 

Nomenclature 

Basic symbols 
E 
e 

k 
n 

Y 

B 
a 

T 

Meaning 
uniaxial elastic modulus 
strain 
yield stress in shear 
power hardening index 
principal loading direction 
1st slip direction in plane strain 
2nd slip direction in plane strain 
normal stress 
shear stress 

Superscripts 
el 

P 
- (overbar) 

Meaning 
elastic component  
plastic component  
effective, representative or equivalent value 

Subscripts 
0 
m a x  

YY 
r E  

O0 

o ~  

Meaning 
initial yield value in uniaxial tension 
maximum value 
component  in loading direction 
component  in radial direction 
component  in 1st spherical direction 
component  in 2nd spherical direction 
remote value of variable 

1. Elastic solutions 

The general problem of the elastic stress and strain fields for ellipsoidal elastic inclusions 
has been solved by Eshelby [1] who found that the fields within the inclusion are 
homogeneous. Although solutions for spherical and cylindrical inclusions may be derived 
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as special cases of Eshelby's analysis, it is often more convenient to refer to earlier work 
by Goodier [2]. In this, the solution for uniaxial tension is expressed in terms of arbitrary 
constants which are adjusted such that the appropriate boundary conditions are met on a 
closed path equivalent to the interface of the inclusion. The boundary condition for a rigid 
inclusion gives vanishing resultant displacements on the interface, while vanishing re- 
sultant stresses give the condition for a void. Goodier's [2] results show that the maximum 
radial stress on the interface of a cylindrical inclusion under a remote uniaxial tensile 
stress o~ occurs in the loading direction and has a magnitude 

O'r . . . .  = 1 . 5  Ooo. 

The solution for a general multiaxial loading can be obtained from the uniaxial solution 
by superposition. The elastic stress field for a remote pure shear r~ is then found by 
adding the stress field for a uniaxial tension of magnitude + r~ to that for a uniaxial 
tension of magnitude - z ~  rotated through an angle of ~ = rr/2 from the + r~ direction 
(Fig. 1). The maximum value of the interfacial radial stress for a rigid cylindrical inclusion 
under pure shear loading then becomes 

Or . . . .  = 2 r ~  

at ~ = 0, at which point the shear stress is zero and art is a principal stress. The remote 
principal stresses for an incompressible material in plane strain and subject to pure shear 
are 

a lo  o = "roo o 2 ~  = --ro~ Or3~ = 0 .  

The relation between the shear stress ¢ and the effective stress g 
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Figure 1. Cylindrical inclusion. 
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allows the maximum interfacial radial stress to be written as 

Or . . . .  = ( 2 / ~ 3 ) 6 ~ .  

Since the principle of superposition is valid for linear elastic materials, the stress field for 
any remote plane strain triaxial loading may be obtained by summing a remote pure shear 
field and a remote stress field with the appropriate hydrostatic component  am~ to give 

Or . . . .  = 1.15ffoo + or.oo. 

For a rigid spherical inclusion in uniaxial tension, Goodier [2] found that 

O r  . . . .  = 2o~ 

due to a remote uniaxial stress o~ which can also be generalised to any axisymmetric 
loading by superimposing an appropriate hydrostatic stress to give: 

Or . . . .  = 1 . 6 7 ~  + % ~ .  

2. Elastoplastic solutions for cylindrical inclusions 

The problem of a cylindrical elastic inclusion in both hardening and nonhardening 
elastic/plastic matrices was addressed by Orr and Brown [3]. Plane strain finite difference 
solutions for different biaxial loadings indicated that the stress distribution around the 
interface for triaxial loading was the sum of the stresses due to the pure shear component  
and the hydrostatic or mean component. While superposition may not be rigorously 
applied to elastic/plastic problems, this numerical result is of considerable practical use. 
In all the solutions, the maximum interfacial stress occurred at about ~r/8 from the 
direction of the remote maximum principal stress. If the initial yield stress in uniaxial 
tension is defined as % then for remote plastic strains of the order of 15 times the remote 
initial yield strain, the distribution of the radial stress around the inclusion took the 
approximate form 

% = 1.75% sin 4¢0 + Om~ ~r/24 < w < 11~r/24 

in the non-hardening case and 

% = 2.10% sin 4w + am~ ~ / 2 4  < w < 11~r/24 

in the hardening case. Interestingly, despite significant plastic strains the solution of Orr 
and Brown [3] did not reach a steady state and while indicating the location and 
instantaneous value of the maximum interfacial radial stress, these expressions are not 
applicable throughout the loading history. 

A useful feature of the Orr and Brown [3] solution is their plot of the directions of 
maximum shear strain around the inclusion from which the form of a possible slip-line 
field may be inferred (Fig. 2). For pure shear, the slip-lines remote from the inclusion are 
at an angle w = ~r/4 to the greatest principal stress and the symmetry of the problem 
implies that the slip-lines meeting the inclusion at multiples of 7r/4 must remain straight 
until they meet the interface. The a-line which meets the inclusion at ~r/4 in Fig. 2 must 
be straight and it follows that the local mean stress on the interface is the same as the 
mean stress in the remote field. Since the remote mean stress is zero in pure shear, then 

% = o r ~ = 0  at ¢0=~r/4. 

For a plastically deforming matrix adjacent to a rigid inclusion the a-slip-lines must meet 
the interface radially and the fl-slip-lines tangentially. The B-line tangential to the 
interface must cross the remote tensile axis (w = 0) at qr/4 if it is to be orthogonal to the 
a-line from the other side of the axis. The B-line must therefore break away from the 
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F i g u r e  2. F o r m  o f  a s l ip - l ine  f ie ld  a r o u n d  a c y l i n d r i c a l  i nc lus ion .  

interface at some angle ~0 = f~ which is indeterminate at present but has limiting values 
f2 = 0 and a = ~r/4. Application of the Hencky equations gives the maximum possible 
radial stress around the interface in terms of the remote yield stress k in shear as 

% = 2 k ( r / 4 - a ) .  

If the case of f~ = ~r/4, all but the point on the interface at 7r/4 is rigid and the straight 
slip-lines form a square which circumscribes the inclusion. In the case when ~2 approaches 
0, the maximum possible interfacial radial stress approaches 0.5~rk which with 

% = ¢ ~ k ,  

==> O'r . . . .  = 0.9% 

in the direction of the maximum principal stress (0~ = 0). This limiting case of a = 0 will 
give an upper limit on the interfacial stress concentration. Superposition of a hydrostatic 
stress does not change the nature of the slip-line field for an incompressible material and 
leads finally to an expression of the form 

Or . . . .  = 0.9% + O m ~ .  

Argon, Im and Safoglu [4] modelled the inclusion problem in plane strain as a rigid 
cylinder embedded in a finite element mesh of triangular elements. The stress and strain 
fields in the matrix were evaluated for an applied shear loading using the elastic/plastic 
finite element program of Marcal and King [5]. The analysis was performed for a 
linear-elastic/perfectly-plastic matrix up to remote strains of the order of the elastic yield 
strain when the interracial radial stress is given approximately by 

% =  1.5k cos 2~.  

This implies a maximum value a r . . . .  of 1.5k, in accord with the (~r/2)k for the limiting 
value of the slip-line field. In contrast with the work of Orr and Brown [3], this finite 
element result is interpreted as a steady state solution, although the remote plastic strain is 
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only of the order of the yield strain, and gives 

o r . . . . .  = 0.87%. 

In order to incorporate strain hardening in an approximate manner, the initial yield stress 
% was replaced by the current remote flow stress 6~ leading to 

Or . . . .  : 0 . 8 7 0 ~ .  

Following McClintock and Rhee [6], strain hardening materials were viewed as being 
intermediate between non-hardening and purely elastic materials. Interpolation between 
the stress concentration resulting from the finite element analysis and Goodier's [2] 
analytic elastic solution gave 

Orr max = ~ 

which was taken to represent the approximate behaviour of strain hardening materials. 
For triaxial stress states the remote mean stress % ~  is added to give the simple result 

Orr  max : ¢~oe ~- ffrnc~" 

4. Numerical analysis 

In the present work, the problem of a spherical inclusion in a matrix subject to large 
remote plastic strains has been analysed using the MARC finite element program as 
modified by Rice and Tracey [7]. The program has a finite strain capability based on the 
analysis of McMeeking and Rice [8] with the stress and strain fields determined incremen- 
tally using the variational principle of Nagtegaal, Parks and Rice [9] applied over a mesh 
of isoparametric quadrilateral elements. Classical non-dilating constitutive relations were 
used for the inclusion analyses although it is possible from the work of Parks (unpub- 
lished) to specify dilating elements which behave according to the constitutive law 
associated with the Gurson [10] yield surface and hence to model the dilation of a porous 
aggregate material. The elements may be linear-elastic/perfectly plastic, linear- 
elastic/power-hardening or piecewise-linear and the program allows both axisymmetric 
and plane strain solutions to be obtained. 

5. Analysis of a spherical inclusion 

As the inclusion is symmetric, only the first quadrant of the complete problem need be 
modelled, as in Fig. 3, where the origin of the coordinate system is the centre of the 
inclusion. The finite element mesh was generated automatically using a procedure devel- 
oped by Zienkeiwicz and Phillips [11] and is made up of 160 quadrilateral elements 
bounded by generators extending radially from the origin and by concentric circles. The 
origin is common to the 10 quadrilateral elements in the innermost ring which therefore 
appear as triangles. Smaller elements were specified towards the origin while larger 
elements were considered adequate for the remote boundaries. The inclusion comprises 
the 50 elements in the 5 rings nearest the origin while the remaining elements represent the 
matrix. This gives a remote boundary at approximately 6 times the inclusion radius. 
Symmetry implies that nodes on the y-axis (x = 0) should be constrained such that no 
displacement occurs in the x-direction and nodes on the x-axis ( y - - 0 )  should be 
constrained such that no displacement occurs in the y-direction. The boundary conditions 
at the inclusion-matrix interface depend on the assumed constitutive response of the 
inclusion. 

It is not practicable to describe the behaviour of real materials in finite element terms 
without some simplification of inclusion and matrix response. This may take the form of 
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Figure 3. Finite element grid. 

allowing only elastic deformation of the inclusion or indeed of considering the inclusion to 
be rigid. A rigid inclusion was simulated by constraining the nodes along the inclusion- 
matrix interface to have zero displacement in both the x and y directions. Such a model 
allows analysis of the matrix flow field but gives identically zero stress and strain fields 
within the inclusion. The model cannot therefore give any information about the interior 
of a real inclusion or of any internal stress or strain gradients. 

A number of solutions have been obtained using different combinations of inclusion 
and matrix response. For comparison with the existing solutions, it is instructive to 
consider a rigid inclusion in a rigid/perfectly-plastic matrix. This cannot be modelled 
exactly using the available finite element program but the response of such a material is 
approximated by considering the matrix to have a high but finite elastic modulus. The 
effect of the elasticity of the matrix may be illustrated by a similar analysis of a rigid 
inclusion in an elastic/perfectly plastic matrix with an elastic modulus typical of struc- 
tural steels. The role of matrix strain hardening may then be inferred from an analysis of a 
rigid inclusion in an elastic/power-hardening m~trix. These solutions are presented in the 
following sections, the most general case being discussed first. In this, a power law 
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stress-strain curve of the form 

= 

where 

e o = % / E  

was used for the matrix although such an expression has a limited ability to describe the 
stress-strain relationship of real materials. An elastic modulus (E)  of 210.0 GPa, an initial 
remote yield stress (%) in uniaxial tension of 0.14 GPa and a power hardening index (n) 
of 0.28 were chosen to give a constitutive response (Fig. 4) representative of a low yield, 
strongly strain hardening material. In cases where it is necessary to model a specific 
material, a piecewise linear relation is more appropriate and such a relation was used for 
the analysis of the Swedish iron used in associated experimental work by Thomson and 
Hancock [12]. 

6. Results 

6.1. Rigid inclusion in an elastic, power hardening matrix  

The finite element model was subjected to 53 increments of displacement controlled 
uniaxial tensile loading along the remote boundary parallel to the x-axis, reaching a final 
remote plastic strain of approximately 15% or 220 times the initial yield strain. The finite 
element results typically showed the greatest stresses and strains in elements near the 
interface while contour plots of field variables such as the local flow stress 6 (Fig. 5) and 
the local effective plastic strain ~P showed very small stress and strain gradients in the 
remote boundary elements. Significant gradients only developed near the inclusion-matrix 
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Figure  5. Flow stress remote  f rom a rigid inclusion in a plas~ically de fo rming  power -harden ing  matr ix  ( + denotes  

e lement  centroid:  6 = 0 .6% at contour  60). 

interface (Fig. 6) which justified the representation of an isolated inclusion in an infinite 
matrix by a remote boundary at 6 times the inclusion radius. Contour plots can give a 
useful appreciation of the variation of quantities throughout the field of the analysis but 
some care is required in interpreting the region near the inclusion-matrix interface. Finite 
element solutions give values for field variables only at the centroids of elements and in 
this case the contouring routines which interpolate between these centroidal values 
attempt to draw some contours within the inclusion itself (Fig. 6), although the prescribed 
boundary conditions imply that field variables should be identically zero inside the 
interface. A finer mesh would reduce the spread of contours at the interface but the 
difficulty exists in principle for any grade of mesh. 

Yielding first occurred above the pole of the inclusion but at a small distance from it, 
rather than at the interface itself. The resulting plastic zone spread with each increment of 
remotely applied load (Fig. 7) but the polar interfacial element did not yield until some 
time after its neighbours. This plastic zone extended to leave an elastic lobe at about 60 ° 
to the loading direction before full plasticity was finally reached. No large plastic strain 
concentrations were found on the interface while at large remote plastic strains the 
maximum plastic strain over the whole field was found to occur above the pole of the 
inclusion, a small distance from the interface. The maximum plastic strain on the interface 
developed at approximately ~r/4 to the loading direction, as shown by the contours in Fig. 
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Figure 6. Flow stress near the interface of a rigid inclusion m a plastically deforming power-hardening matrix 
(6 = 0.600 at contour 60). 
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Figure 7. Development of the plastic zone around a rigid inclusion in a plastically deforming power-hardening 
matrix. 
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8. Figure 9 compares the local effective plastic strain (gP) in a number of significant 
elements. Since the remote elements were initially elastic, ordinates were plotted against 
the total remote strain component  (eyy~) in the loading direction, normalised with respect 
to the remote initial yield strain (e0) in uniaxial tension. From Fig. 9 it is apparent that 
the plastic strain became progressively smaller as the pole of the inclusion was approached 
through the elements directly above it. These moderate interfacial strain concentrations 
became almost constant at large remote plastic strains, tending, for example, to approxi- 
mately 1.1 at about ~r/4 to the loading direction and 0.8 in the polar element. The 
maximum interracial effective stress coincides with the maximum interfacial effective 
plastic strain at approximately 7r/4 to the loading direction. In contrast, the maximum 
interfacial normal or radial stress o r . . . . .  calculated by transforming the stress compo- 
nents, was found to develop initially at the pole of the inclusion as shown in Fig. 10. As 
the deformation continued, the greatest interfacial radial stress moves away from the pole 
as shown in Fig. 11 which is also a feature of the work of Orr and Brown [3] and Argon, 
Im and Safoglu [4]. Figure 12 shows the maximum radial interfacial stress o r . . . .  

normalised with respect to the remote flow stress. 
For strain hardening materials, the mean stress continues to rise with deformation but 

following an observation by Argon, Im and Safoglu [4] on the results of Orr and Brown 

I 1 1 I I l I I I l 

© 

,8 ,2 ,4. ,B ,8 I ,I] 1,1 

Figure 8. Effective plastic strain near the interface of a rigid inclusion in a plastically deforming power-hardening 
matrix (~P = 0.5e 0 at contour 500, ~ = tro). 
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Figure 9. Effective plastic strain in significant elements of a plastically deforming power-hardening matrix 
surrounding a rigid inclusion. 

[3], the maximum interfacial radial stress was assumed to be of the form 

Orrma x = Coc~ q- Ornco 

in which the appropriate remote meab stress Om~ is simply superimposed on the local 
interfacial stress field resulting from a purely deviatoric remote stress state of magnitude 
6oo. Figure 13 plots the value of C with increasing remote strain and shows that the 
interfacial radial stress concentration is not a constant, in contrast to the approximation of 
Argon, Im and Safoglu [4]. 

6.2. Rigid inclusion in an elastic, perfectly plastic matrix 

A similar analysis was performed for a rigid inclusion in an elastic/perfectly plastic 
matrix with identical elastic constants to those used in the power hardening case ie 
o 0 = 0.14 GPa  and E = 210 GPa. The results of this large strain analysis of a non-harden- 
ing material showed similar trends to that of the power hardening analysis in the 
development of the plastic strain field (Fig. 14) and the stress fields (e.g. Fig. 15 for 
Or . . . .  ) .  The development of the maximum interracial radial stress (Fig. 16) did not reach a 
steady state value within the prescribed deformation. 

6.3. Rigid inclusion in a high modulus, perfectly plastic matrix 

It  is not possible to specify infinite elastic stiffness in the finite element program used but 
the behaviour of such a material may be inferred from that of an elastic/perfectly-plastic 
material with a high elastic modulus. A finite element analysis was therefore performed 
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Figure 10. Stress component in a radial direction from the centre of a rigid inclusion for small remote effective 
plastic strains (o.. = 1.4% at contour 140, 600 = %). 

with a matrix of elastic modulus of 106 GPa. Increments of remote displacement loading 
were applied up to a total remote strain of 0.0570 which though absolutely small, 
nevertheless corresponds to approximately 3500 times the initial yield strain. The trends of 
the results were similar to the previous analyses in that while the plastic strain concentra- 
tion did appear to approach a constant value, no steady state occurred for the maximum 
interfacial radial stress. 

The increase in the maximum interfacial radial stress was very rapid but can be 
conveniently shown by plotting the interfacial radial stress concentration against the 
remote effective plastic strain normalised with respect to the initial yield strain, e 0 = 
0.14/106. With this scaling factor, the interfacial radial stress concentration is seen to 
develop in a manner which is remarkably similar to that for the elastic/perfectly-plastic 
material up to strains of the order of 80 times e 0 (Fig. 17), although the curves are very 
different when expressed as functions of absolute strain, which emphasises the importance 
of the elastic response of the matrix. 

6.4. Oxide inclusion in an iron matrix  

Swedish iron is a metallurgically simple material containing a single population of large 
iron oxide inclusions. The nature of the inclusion/matrix interface in this material is of 
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Figure 11. Stress component in a radial direction from the centre of a rigid inclusion for large remote effective 

plastic strains (err = 14% at contour 140, 8~ = 4.8%). 

direct relevance to experimental work by Thomson and Hancock [12] and has been 
investigated by a finite element analysis of an elastic inclusion in an elastic/strain-harden- 
ing matrix, since the elastic constants of iron and the only oxide for which figures were 
available (Fe304) are of the same order [13]. 

Deformation of the inclusion was permitted by removing the displacement boundary 
conditions around the interface and extending the existing constraints along the coordi- 
nate axes to include the nodes within the inclusion itself. The specification of a high yield 
stress for the inclusion elements ensured that the deformation of the inclusion was purely 
elastic. For the analysis of this real material it was considered advisable to avoid the 
limitations of a power law through the use of a piecewise-linear approximation to the 
stress-strain equations of Swedish iron. The subsequent finite element analysis was found 
to be numerically stable up to very large plastic strain and remote displacements were 
applied to give a final absolute remote strain of 47% or 700 times the initial yield strain. 
This range was sufficient to cover the expected limits of void nucleation. Stress and strain 
gradients developed progressively within the inclusion itself with the maximum values of 6 

et occurring near the interface at approximately ~r/4 to the axes and minimum and of eyy 
values in the central elements. Graphs of the effective stress and elastic strain component 
in these elements (Fig. 18 and Fig. 19) show this progressive development but indicate that 
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Figure 12. Maximum interfacial radial stress around a rigid inclusion in a power-hardening matrix. 
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Figure 14. Effective plastic strain in significant elements around a rigid inclusion in a non-hardening matrix. 
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Figure 20. Maximum interfacial radial stress concentration around an elastic inclusion in a Swedish iron matrix. 

the elastic deformation of the inclusion is homogeneous up to remote strains of the order 
of 10 times the matrix yield strain. Again the radial stress concentration on the interface 
does not reach a steady state (Fig. 20). No simple analytic expression was found to relate 
maximum interfacial radial stress to the remote loading but for specific materials 
subjected to finite strains it is perfectly adequate to express the variation of maximum 
radial stress in a piecewise analytic form. In the case of Swedish iron, the simplest 
expression which gave a reasonable description of the interfacial radial stress concentra- 
tion was found to comprise a quadratic segment and two linear segments such that 

C = - 3 . 8 9 . 1 0 - 4 ( ~ P / e o )  2 + 4.83.10 -2(~e~/eo) +0 .8  0 < ( ~ / e o )  < 60 

C = 9 . 7 9 . 1 0 - 3 ( ( ~ / e o )  - 60) + 2.3 60 < ( ~ / e o )  < 530 

C = 1 . 4 0 . 1 0 - 2 ( ( ~ / e o )  - 530) + 6.9 530 < ( ~ / e o ) .  

7.  D i s c u s s i o n  

The study of the stress and strain fields around an elastic inclusion in a plastically 
deforming matrix is motivated towards the determination of the local conditions which 
lead to failure of the interface. Initially it is instructive to examine the conditions at the 
pole of an inclusion where the symmetry conditions require that the interfacial shear strain 
be zero. For the rigid inclusion, compatibility demands that the total matrix hoop strains 
ee0 and e,~ are zero. These total strains hc~wever can have an elastic and plastic 
component  such that, 

e l ' l -  P ~ 0 .  e o o  - -  e o  o 
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Plastic flow at the pole is then only possible provided that plastic strains are balanced by 
equal and opposite elastic strains. In all the numerical analyses presented, the polar 
element has yielded but this may be a consequence of the finite dimensions of the mesh 
and it is not possible to say whether this would be a feature of an exact analytic solution. 
It must however be concluded that in the polar region the elastic strains cannot be 
neglected during plastic flow. In a steady state solution, the stress and strain concentra- 
tions are time independent provided geometry changes are insignificant. In a rigid/per- 
fectly-plastic problem this steady state is usually reached soon after general yield and in 
finite-elastic/perfectly-plastic materials it is to be expected that steady state would be 
reached when the elastic strains become insignificant relative to the plastic strains. For the 
inclusion problem this condition is never reached at the pole as long as it continues to 
deform plastically. A steady state stress concentration may be attained in this location 
only if the polar material stops deforming and becomes rigid but this condition was not 
reached by any of the numerical solutions, including those by Argon, Im and Safoglu [4] 
and by Orr and Brown [3]. 

A common feature of all the elastic/plastic solutions is that the development of the 
plastic strain displaces the position of the maximum radial stress around the interface, 
away from the pole. This shift in the position of the maximum interracial stress does not 
affect the validity of the argument for the pole but the existence of a shear strain may 
allow steady state to be reached earlier at this location. It is however clear that the 
proximity of the maximum interracial stress to the pole means that the elastic strains are 
significant and the finite elastic response of the matrix inhibits the development of steady 
state to such an extent that interracial failure in real materials is unlikely to occur in 
steady state conditions. 
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Figure 21. Maximum interfacial radial stress concentration around a rigid inclusion in a power-hardening matrix 
for small remote plastic strains. 
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In all the large strain solutions presented here the maximum interfacial radial stress 
continued to rise as the remote strain increased to more than two orders of magnitude 
times the initial yield strain, even for a non-hardening matrix. A similar conclusion was 
reached by Orr and Brown [3], in contrast to the conclusions of Argon, Im and Safoglu [4] 
whose analysis was however restricted to effective plastic strains of the order of the matrix 
yield strain. When the scale at the lower end of Fig. 13 was expanded to give Fig. 21, the 
value of the interfacial stress concentration was found to initially fall to a value of 1.2 at a 
remote strain of the order of the initial yield strain, in broad agreement with their results. 
As the loading continued, the interfacial stress concentration began to rise again and the 
apparent approach to a steady state is shown as the approach to a minimum turning 
point. This minimum turning point and the slow approach to a steady state in the 
development of the maximum interracial radial stress are also features of the analyses' of a 
hardening material. However, the data given allow estimates of the interfacial stresses and 
have been used by Thomson and Hancock [12] to determine the interfacial conditions 
leading to void nucleation at second-phase particles. 
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R6sum6 

A une 6chelle microscopique, une rupture drmarre souvent au voisinage d'inclusions dans une matrice drformre 
o6 les conditions de contrainte et de drformation locales peuvent conduire soit ~t une rupture de l'interface 
inclusion/matrice ou de la particule eUe-mrme. Des solutions analytiques sont disponibles pour drterminer les 
champs locaux de contrainte et de drformation au voisinage d'une inclusion blastique dans une matrice 
61astiquement d6form~e, mais pour des drformations plastiques, il est nbcessaire de recourir h des analyses 
numrriques. On prrsente ici une solution numbrique applicable/t une inclusion 61astique sphrrique dans une 
matrice 61asto-plastique, en se concentrant largement sur i 'interface particule/matrice qui est en cause dans la 
rupture ductile. Des solutions sont 6galement prbsentres pour des inclusions rigides et 61astiques situres dans des 
matrices en matrriau durcissable ou non durcissable. 


