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A B S T R A C T  
The problem of a cracked adhesive bonded DCB-type fracture specimen has been analyzed using a hybrid 
stress model finite element analysis which incorporates an advanced crack tip element. Stresses in the near 
and far fields have been studied as a function of adherend/adhesive modulus ratio and adhesive thickness. 
The results are compared to monolithic systems with regard to the stress intensity factor and the 
localization of the singular stress domain associated with the crack tip. 

1. Introduction 

The propagation of cracks in structural adhesive joints is a significant fracture 
problem for which little theoretical development is available. The characteristics of 
the stress field in the adhesive and adherend near the crack tip have been difficult to 
obtain even for elastic behavior due to the complexity introduced by the singular 
nature at the crack tip and the discontinuous material properties. Numerical solutions 
are further complicated by the vast disparity in moduli and dimensions between the 
gross adherend boundaries and the region across the adhesive layer thickness where 
the stress distribution must be accurately described. 

In contrast to the theoretical complications, the special characteristics of 
adhesive bonded systems lead to relatively simple techniques of fracture toughness 
testing. The most common type of fracture test specimen is the double cantilever 
beam (DCB) type [1, 2]. In this test, adherend beams (usually metallic) are bonded 
together with the adhesive, and the crack is propagated along the adhesive layer in the 
opening mode by pin loading at the beam ends (Fig. 1). The usual problem of the 
colinear propagation of the crack common in monolithic materials is not as significant 
in the adhesive system, and nonlinear effects are limited to the adhesive layer. Cracks 
usually propagate in a cohesive mode, although some cases of adhesive (interface) 
propagation have been reported [1]. Data from the test are reduced by beam theory or 
an experimental calibration to give the critical strain energy release rate [3]. A similar 
test specimen using tapered beams to obtain an approximately linear compliance at 
various crack lengths is now recommended by ASTM [4]. 

The interest in the adhesive fracture problem and the widespread use of fracture 
mechanics techniques to characterize the toughness have lead to a more detailed 
study of the stress distribution in the crack tip region. This paper describes an elastic 
analysis which uses the hybrid stress finite element model and incorporates an 
advanced crack tip superelement. Results are given for the case of a crack in the 
center-of-bond plane of a DCB specimen, but the analysis is not limited to symmetric 
problems. 
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2. Formulation of the analysis 

2.1. General [ormulation 

The hybrid stress approach of the finite element method, pioneered by Pian [5, 6], is 
characterized by the use of an assumed stress field in the element and an assumed 
displacement field along element boundaries. The formulation of the analysis is 
based on the minimum complementary energy principle (a modified complementary 
energy functional is used in the formulation of the crack tip superelement). Additional 
features of the method are flexibility of formulation, selection of elements and 
expedient achievement of interelement compatibility. More accurate solutions and 
faster convergence rates than those of conventional displacement models can be 
obtained. The singular behavior of the crack tip region, which is critical to the fracture 
problem, can be exactly modeled in the formulation without an increase in the number 
of elements. The complex geometric variables and multiphase materials effects are 
also conveniently taken into account. 

The hybrid stress finite element method procedure is specialized for application 
to the current plane crack problem by the introduction of a crack tip superelement 
within which the singular stress behavior is considered by properly selected stress 
functions. This assumed stress hybrid model for the problem was first introduced by 
Pian [5], and later refined by Tong, et al. [7] by the use of the complex variable 
formulation of Muskhelishvili stress functions. The general formulation of the 
procedure is given here for the case of the plane crack problem in a DCB adhesive 
joint. The formulations for the crack tip superelement and its surrounding regular 
(non-singular) hybrid elements have been described in detail elsewhere [5, 7], and only 
a brief outline is given here. 

Consider a crack of length a, as described in Fig. 1. The complementary energy 
functional of the whole domain of the specimen (after dividing into a finite number of 
discrete elements) may be expressed as 

ri~ = IIm + ~ II~/~ (1) 

where rim is referred to the crack tip superelement and II~/) to the /th regular 
surrounding element in the given domain. Applying the variational energy principle to 
the functional IIc, one obtains 
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H ~ = ~ [ 2 q r ,  k , q , - q r ,  O. ] (2) 

where 

k. = G~H~1G. 

represents the general form of the element stiffness matrix, and is calculated in 
different ways in the crack tip superelement and the surrounding regular elements as 
described in the next section. The equivalent nodal force Q, is defined as 

0 ,  T = t ; .  13. (3) 

The matrices, G~, H. and 13. are defined in following sections in detail. 
Assembling all the element stiffness matrices together, a set of linear equations of 

the form 

K q  = O (4) 

is established. The displacement field can be solved by a standard Gauss-Cholosky 
elimination scheme 

q = K-~Q (5) 

The stress parameters 13, for the nth element are then calculated from 

13~ = H~tG~q.  (6) 

The associated stress field at the location (xp, yp) of interest can be obtained from 

tr(xv, Yv) = P(xp, yv)H~G~b~q~ (7) 

where b. is a Boolean transformation. 

2.2. Superelement formulation 

The conventional displacement model and non-singular hybrid stress element have 
difficulty handling the crack problem even in a monolithic material, since the use of 
high order polynomials as interpolation functions does not improve the rate of 
convergence for this kind of problem. The reason for this is that the convergence rate 
of the finite element method is controlled by the nature of the solution in the 
singular region [7]. However, the use of the complex variable technique in the hybrid 
element formulation permits proper consideration of the stress singularity and of 
higher order effects in the crack tip region, and it leads to highly accurate results with 
a relatively coarse mesh. 

The modified complementary energy functional, IIm, is used for the crack tip 
superelement. Consider a plane elasticity problem with prescribed boundary traction 
Ti over the boundary s~ and prescribed displacement ti,- over the boundary s.. The 
functional is defined in the form 

(8) 

The Euler equations for this functional are 

1 
(ui,~ + uj, i) = Sijktcr~t (9) 

crij.j = 0 (1 O) 

Int. Journ. o[ Fracture, 14 (19781 39-58 



42 S. S. W a n g  et al. 

Following Muskhelishvili's formulation [8], the stress and displacement fields in 
the plane elasticity problem can be expressed in terms of two stress functions d~(Z) 
and ~b(Z) of the complex variable Z as 

and 

~ryy + Crx~ = 2[d~'(Z) + ~b'(Z)] 

¢ryy - or= + 2io'xy = 212~b"(Z) + q/(Z)] 

2 G ( u  + iv) = nd~(Z) - Zdp'(Z) - ~ ( Z )  

where both 4~(Z) and ~O(Z) are analytical in the Z-plane, and G = El2(1 + v) with 

= ( 3 -  v)/(1 + v) for plane stress 

o r  

(11) 

(12) 

2 G ( u  + iv) = ~¢k(~) - w(~) tk ' (~ ) /w ' (~)  - ~(~)  

By imposing the traction free boundary condition (Tx = Ty = 0) on the crack surfaces, 
a s  

i fs (T~ + iTy) ds  = 0 = ¢k(Z) + Z~p'(Z) + ¢,( z ) (16) 

gJ(~') "can be calculated from 4~(~') 

~b(¢) = - d ~ ( -  ¢ )  - w ( -  ¢)~'(¢)] w ' ( ¢ )  ( 1 7 )  

In constructing the superelement stiffness matrix, ~b(£) is assumed to have the 
form 

N 

dp(~) = ~ ,  bj~ i (18) 

Thus, from Eqn. (17) we have 

~b(~') = - ~ [/~(- 1) j + ~  b,]~' (19) 

Int. Journ. of Fracture, 14 (1978) 39-58 

and 

= ( 3 -  4v) for plane strain (13) 

In order to choose proper stresses and displacements for the crack element which 
would account for possible singularities of all order, as well as higher order terms, the 
following mapping function is introduced 

Z = w(~')= s r2 (14) 

with 

- ~r[2 <~ arg~ <~ ~r/2 

Thus, on the ~-plane the stress functions ~(~) and ~b(~) are analytical functions of 
~. Using this mapping function, Eqn. (11) becomes 

O'yy + O'x x = 4 Re[~'(~')/w'(~)] 

tryy - trxx + 2itr~r = 2{w(~)[~' (~')/w'(~')]' + tp'(~')}/w'(~') (15) 
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where 

bj =//s + i//N+j (non-symmetric case) 

bj =//i (symmetric case) 

with the/ / ' s  being real constants. 
Substituting Eqns. (18) and (19) back into Eqn. (15), the stresses and displace- 

ments can be explicitly expressed in terms of ~" as 

o'~ - iO'xy { Re(jCs-2) - 4 ¢2 4 

+ ~  - Imq~ "j-2)-i 4 ¢2 

~%+iO'xy = ~ (Re(jsr'-2)+ [ ( j -2)~2 j 
4 ~-2 4 

4 2) ~-2 + ~ (-Im(j~'l-2)+ if ( j -  

1 1)J]j~j_2}//j ~(-- 

J ÷ ~ (--1)i]j~[i-2}//N+j 
4 

1 1)J]j~j_2}//i ~(- 

J ÷ l (-1)']j¢J-2}//t~+s 
4 

and 

(20a) 

(20b) 

2G(u+ iv)-- ~ {[~4 + ( -  1)i~i] - 2 j~i-2(~'2- ~)}//s 

+ i  ~ ([~ ' i  + ( -  1)s~i] + ~ ]~i-2(~ "2- ~)}//N+s (20c) 

From Eqns. 20(a, b, and c) one can express the boundary tractions and interior 
displacements as 

T = R/$c 
u = U[3c (21) 

where /~c is a column vector with its components being//t,//2 . . . .  //2N. The boundary 
displacement a shall be assumed in terms of generalized nodal displacement q as 

= Lq (22) 

A substitution of Eqns. (21) and (22) into Eqn. (8) and taking variation of the 
functional IIm with respect to/$c yields the crack element stiffness matrix k~ 

kc = GrH-1G (23) 

and 

[3c = H-JGq (24) 

where 

1 fo (UTR +RrU) ds 

l f~ RrLds G=2 A,,, 

After obtaining the displacement field of the system by solving the assembled 
global stiffness matrix K, the stress field in the superelement can be calculated from 
Eqns. 20(a, b and c). The stress intensity factors KI and Kn can be related to/]~ by 
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2.3. Regular hybrid stress element formulation 

The complementary energy functional to be varied for the regular element is given by 

ffA 1 II~/") = ~ ~rrS~r dA  - ~ rT  ds (26) 
ra Urn 

Along each boundary of the element, an assumed displacement field is selected, and 
expressed in terms of the nodal displacements q 

= L q  (27) 

where L is the interpolation function. The stresses in the interior of the element are 
expressed by undetermined stress parameters/] 

o" = P(x, y)/~ (28) 

where P is chosen to satisfy the homogenous equilibrium equation 

tr0j = 0 (29) 

The surface tractions, which are related to the stress components by Ti = tri~nj, 
can be written in the form 

T = R~I (30) 

Substituting Eqns. (27), (28) and (30) into (26), the functional III7 ~ becomes 

II~"~ = 213rHI3 - 13 rGq (31) 

where 

H=f f  A p r S P d A  
r n  

G = f R r L d s  

Taking the variation of the functional II~ m~ with respect to the stress parameters/~ 
to minimize the complementary energy, the element stiffness matrix can be obtained 
as  

kr = G T H - I G  (32) 

3. Accuracy of the analysis 

The accuracy and convergence of the analysis are complicated by several unusual 
features of the problem and of the crack tip superelement. As mentioned earlier, the 
finite element mesh must accommodate both the small dimension of the adhesive 
thickness and the larger dimensions of the remainder of the specimen, a difference of 
three orders of magnitude. It is essential to model the adhesive layer and the crack tip 
region accurately with a number of elements across the adhesive thickness so that the 
high stress gradient within the adhesive layer may be discerned. This geometric 
characteristic combines with the extreme difference in adhesive and adherend elastic 
moduli to cause significant numerical round-off errors, so double precision mode 
was required for accurate solutions. 

Optimization of the mesh discretization is also complicated by the differences 
between the crack tip superelement and the surrounding elements. The superelement 
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Figure 2. Typical FEM mesh near the crack tip. 

gives an exact stress distribution, and it is advantageous to use as large a crack tip 
superelement as possible. On the other hand, the regular elements surrounding the 
crack tip must be sufficiently small to give accurate results in the domain beyond the 
superelement, which also is of interest. As a result, a compromise must be reached 
which yields an accurate solution both very close to the crack tip and in the 
surrounding region which also gives the minimum band width for the stiffness matrix. 
Arrangement of the mesh must also satisfy the geometric constraint that the crack tip 
superelement be embedded in the adhesive layer, and that the number of degrees of 
freedom of the entire system be minimum in terms of computer run time. 

A study of the accuracy and convergence of the analysis has been made using 
test cases for which independent solutions are available in the literature. Figures 3 and 
4 give the convergence of the solution for the double-edge-cracked tension configura- 
tion previously analyzed by Bowie [9]. Figure 3 indicates that convergence of the 
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Figure 3. Effect of crack tip superelement size on stress intensity factor for various elements and mesh 
configurations, 
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solution is slower for smaller crack tip superelement sizes, but that satisfactory 
convergence can be obtained even with superelement dimensions significantly less 
than 10 -3 in if surrounding non-singular elements have compatible sizes. Typically, the 
accuracy of the converged solution is within one percent of Bowie's solution. This 
figure also demonstrates the superiority of the hybrid stress elements relative to 
conventional displacement elements for the domain beyond the superelement. Figure 4 
further defines the total number of degrees of freedom necessary to obtain con- 
vergence for various superelement dimensions. 

Figure 5 compares the results of Kanninen [10] for the monolithic DCB-type 
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Figure 5. Comparison of current analysis and Kanninen's solution (homogeneous material). 
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Figure 6. Convergence of solution for TDCB adhesive specimen for various mesh breakdowns. 

specimen with results from the present analysis. The two solutions are in good 
agreement over a range of crack lengths. 

Due to a lack of existing solutions, it was not possible to test the analysis against 
other results for adhesive crack problems. However, the convergence of the solution 
has been tested for various mesh configurations, as indicated in Fig. 6. This figure 
clearly demonstrates that the solution converges to within one percent for a broad 
range of degrees of freedom above 400. These results are for one of the most difficult 
cases from the viewpoint of numerical analysis (the tapered DCB specimen with a 
shape factor, m, of 90 in-', and a crack length of 7.0 in). The ratio of adherend to 
adhesive elastic modulus for this case is 20, a typical value. Results for the straight- 
sided specimen would not differ significantly from those in Fig. 6. 

The data of Figs. 3-6 and other results obtained in the course of development of 
the analysis clearly indicate that a solution may be obtained which is within 
approximately one percent of the exact solution if the proper superelement size and 
mesh configuration are maintained. Figure 2 represents a typical mesh configuration 
in the crack tip region; mesh configurations of this type are sufficiently fine to give an 
accurate representation of the full stress field around the crack tip as well as in 
regions removed from the crack tip. The exact solution obtained within the 
superelement for a given loading on its boundary enables a meaningful test of the type 
and extent of singular behavior for distances arbitrarily close to the crack tip. The 
superelement size and mesh configuration used to obtain the results in the following 
sections in all cases are well within the limits of convergence of the analysis. 

4. Results 

This section describes the elastic stress distribution near the crack tip for several 
adhesive moduli and thicknesses. While these results refer to the DCB specimen with 
a specific crack length of 2.0 in, and beam height, h, of 0.5 in, they represent the 
character of the stress field found for cases of opening mode adhesive cracks with 
specimens of this general type. Changes in specimen shape or crack length only serve 
to alter the intensity of the stress field or the scale of the stresses and distances, but 
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not the essential character of the distributions. The specific effects of specimen shape 
and crack length will be considered elsewhere. Figure 1 gives the coordinates and 
dimensions of the problem. The parameters considered are the normal stresses tr= 
and tryy, the in-plane shear stress trxy and the stress intensity factor for the near crack 
tip region, KI. The results obtained from the analysis are normalized by the applied 
load P and are for a unit width specimen. The moduli of the adhesive and adherend in 
the analytical work are taken as a ratio, E21EI, the Young's modulus ratio of adherend 
to adhesive. If the adherend is aluminum, a modulus of approximately 107psi is 
appropriate. This gives an E2/E~ ratio of 20 to 40 for typical epoxy adhesives, but a 
broader modulus range is considered in most cases for purposes of generality. 

4.1. Loading of the adhesive and effects of modulus ratio 

Figure 7 gives the displacement in the y-direction of the adhesive-adherend interface 
in the region of the crack tip. This figure illustrates the shape into which the beam 
deforms for various modulus ratios. Comparison of the distortions for the monolithic 
case (E21E1 = 1) with those for the softer adhesive systems is informative in charac- 
terizing the general nature of the problem in the crack tip region. When the adhesive 
is relatively soft, the beam displacements do not reflect any severe disturbance at the 
crack tip but gradually decrease over a long distance ahead of it. While the curvature 
of the beam does reverse at this point in response to the loading of the now 
continuous adhesive, the rapid closure evident in the monolithic case just ahead of the 
crack tip is not present. As will be clear from the following, this is indicative of the fact 
that the beams do not experience a high gradient crack tip stress field, since the 
singular region becomes localized within the adhesive layer. 

It is evident from Fig. 7 that the deformation and traction on the adhesive layer is 
dictated by the displacement pattern of the relatively stiff beams along the interface. 
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Figure 8. Effect of the ratio of elastic moduli on the stress intensity factors (straight-sided DCB specimen). 

In the region of the crack tip, the beams impose a slowly varying displacement for a 
distance of many adhesive layer thicknesses each way. The softer the adhesive is 
relative to the adherend, the greater is the displacement imposed by the beam, and the 
longer is the region over which the significant displacement occurs ahead of the crack. 
The stress intensity factor determined at the crack tip in the adhesive is a function of 
the loading by the beam and of the modulus ratio, Figure 8 gives the stress intensity 
factor in the adhesive as a function of modulus ratio over a broad range. The data are 
well described on the log-log plot by a straight line with a slope of -1/2. 

4.2. K - G  relationship in the adhesive system 

The K - G  relationship is of concern in the adhesive system due to the possibility that 
the constraint of the adherend could disturb the local crack tip response. This is 
particularly true for the thin adhesive layer/long crack geometry considered here. The 
results plotted in Fig. 8 provide some confirmation of the relationship between K~ and 
the strain energy release rate, G~, for the adhesive system according to the following 
line of reasoning: 

I. The value of G~ is determined primarily by the beam geometry and modulus for 
the DCB specimen. It may be calculated approximately from beam theory including the 
shear effect [ll] as 

4p 2 [3a 2 

where P is the applied force. The value of G~ is relatively insensitive to the presence 
of the adhesive. 

2. Kb the stress intensity factor in the adhesive, is calculated from the finite element 
results. (There is no K~ in the beams, as will be discussed later.) 

3. From Fig. 8, K 2 is proportional to EJE2, and from Eqn. (33), Gt is 
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proportional to l/E2. The relationship between KI and Gx must then be of the form 

GI = f (E1,  E2, a)K? (34) 

where ot is a geometric parameter. 
4. The parameter f may be calculated from GI and KI (1 and 2) and Eqn. (34). The 

form of f is found to be 

f(E,,, = c [  E2'  
\ E l /  

where C is not a function of geometry. Results to be published for the tapered DCB 
specimen confirm the independence of the relationship from geometric factors for this 
class of specimens. 

5. Substitution of f into Eqn. (34) gives 

Ol = C(~II)K2 

6. C may be evaluated from the monolithic case, E2IEI = 1. The relationship for the 
monolithic case in plane stress is well known [12] as 

GI = K___~ 
E2 

so that 

C =  1 
E:  

7. Thus, the G I - K ,  relationship for adhesive bonded specimens of this general 
class is 

_ K? 
G , -  E-~ (35) 

The value of KI in the adhesive can therefore be determined for the DCB-type 
specimen if the value of GI is known from experimental calibration or from an 
analytical calibration for a monolithic system. Results reported by Trantina [13] 
suggest that this may hold for other specimen geometries as well if the adhesive layer 
is thin. 

4.3. Stresses near the crack tip 

Figures 9 and 10 give the peeling stress, try, along the x and y axes close to the crack 
tip. The stress distributions are similar to those that would be expected in a monolithic 
system, being dominated by the l /~/r  singularity close to the crack tip, then deviating 
from singular behavior further away. However, the region over which the singular 
behavior dominates is greatly reduced in the adhesive systems (EdE~ > 1) as compared 
to the monolithic (E2IE~ = 1). The stress close to the crack tip is reduced significantly as 
E2IEI increases as expected from Fig. 8, but the inverse is true further from the crack tip 
as is necessary to satisfy force equilibrium. Deviation from the singular behavior occurs 
well within the crack tip element boundaries for the adhesive cases. Figure 10 indicates 
that the singular behavior extends well into the adherend region for EelE~ = 1, but that 
there is no singular distribution in the adherend for higher modulus ratios; the entire 
singular domain being localized near the crack tip in the adhesive. 

The fact that the effect of adhesive thickness on KI is found to be negligible in 
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Figure 12. Effect of adhesive thickness on ~ .  along the x-axis, DCB, a = 2.0 in. 
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Figure 13, Effect of adhesive thickness on o-yy along the y-axis ,  DCB,  a = 2.0 in. 
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Figure 14. Deviat ion of o'yy f rom classical singularity in near  crack tip region, DCB, a = 2.0 in. 
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Fig. 11 for various modulus ratios (the beam height, h, is 0.50 in all cases) further  
confirms the characteristic of a very confined singular domain. The effect of thickness 
is more evident in Figs. 12 and 13, where significant differences in tryy are observed at 
small  distances away from the crack tip despite convergence of the curves as the 
crack tip is approached and singular behavior becomes dominant. 

The deviations from singular behavior are clearer on the expanded scale of Fig. 
14. For  the adhesive systems, the amount  of deviation from singular behavior at a 
given value of x is greater for  the thinner adhesives. The value of x at which a 
particular amount  of deviation occurs is roughly proportional to the adhesive thick- 
ness. Returning to Fig. 9, it is also apparent  that the value of x at which a particular 
amount  of deviation occurs is not sensitive to the modulus ratio as long as EE/E~ > 1. 
These characteristics suggest that the extent  of the domain which is dominated by 
singular behavior is governed by the adhesive thickness, whereas in monolithic systems, 
it is governed by the crack length or specimen dimensions. The value of x at which the 
stress deviates 10% from the singular relationship is approximately t[40 for the adhesive 
systems, but h[33 for the monolithic system, where t = h/50. The localization of the 
singular domain has certain implications for the limits of applicability of K~c as fracture 
criterion which will be discussed elsewhere. 

4.4. Stresses in the [ar Iield 

Figure 15 gives the distribution of tryy further ahead of the crack tip, along the full 
length of the specimen. As anticipated from force equilibrium, the stress decreases 
and then becomes compressive at distances of several tenths of an inch ahead of the 
crack tip. The maximum compressive stress is only a small fraction of the tensile 
stresses closer to the crack tip. 

Figures 16-18 give the variation of stresses try. tr= and o'xy, respectively across 
the adhesive thickness and into the adherend at various distances ahead of the crack 
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Figure 15. Distribution of o~, in the far field ahead of crack tip, DCB, a = 2.0 in, t = l0 mils. 
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t ip.  The  s t r e s se s  ~yy and  (r~y are  n e c e s s a r i l y  c o n t i n u o u s  a c r o s s  the  in t e r f ace ,  whi le  (r= 
is d i s c o n t i n u o u s  due  to the  change  in e las t i c  m o d u l u s  ( the c o r r e s p o n d i n g  s t ra in  is 
con t inuous ) .  T h e s e  f igures d e m o n s t r a t e  tha t  the  s t ress  field wi th in  a d i s t a n c e  o f  less  
than  one  a d h e s i v e  t h i cknes s  a h e a d  o f  the  c r a c k  tip is e f f ec t ive ly  un i fo rm  t ens ion  in 
the  a d h e s i v e  as  it is s t r e t c h e d  by  the  a d h e r e n d s .  This  is a n o t h e r  i nd ica t ion  o f  the  
l oca l i za t i on  o f  the  c r a c k  tip d i s t u r b a n c e  in the  a d h e s i v e  sys t em.  
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Figure 19. (ryy along the interface, DCB, a = 2.0 in, t = I0 mils, E2/EI = 20. 
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Figures 19-21 give the stresses along the adhesive-adherend interface. In each 
case there is a rapid rise in the stress along the crack flank within one adhesive layer 
thickness of the crack tip. The stresses trxx and tryy peak just ahead of the crack tip, 
and then slowly decrease. The stress (rxy peaks just before the crack tip and decreases 
rapidly ahead of it. While the stresses at the interface are concentrated near the crack 
tip, they are still significantly lower than those closer to the crack tip within the 
adhesive (Figs. 16-18). 

It should be noted that the effects of residual stresses due to thermal contraction 
and the effects of the mismatch in Poisson's ratio at the interface on the stresses in 
the third direction have not been considered. These effects and inelastic behavior of 
the adhesive may be of great significance in actual adhesive bonded systems. 

5. Summary and conclusions 

An analysis based on the hybrid stress model of the finite element method and 
including a special crack tip element has been implemented and used to investigate the 

Int. Journ. o[ Fracture, 14 (1978) 39-58 



58 S. S. Wang et al. 

stress distribution in a DCB-type adhesive fracture specimen. Results have been 
obtained for a range of adherend/adhesive modulus ratios and adhesive thicknesses to 
elucidate some fundamental characteristics of the problem. The only case considered 
is that of the crack embedded in the adhesive, although the crack may propagate close 
to the interface in some instances. 

The stress field very close to the crack tip is found to be similar to that in 
monolithic systems. The stresses are singular and may be described by the con- 
ventional stress intensity factor and strain energy release rate. K~ and GI are shown to 
be related through the adhesive modulus in the usual manner. Since GI is determined 
primarily by the adherends, K~ is proportional to the square root of the adhesive 
modulus for a fixed adherend modulus. K~ is independent of adhesive thickness over 
the range studied due to the localization of the stress singular domain in the adhesive. 

Significant differences from the monolithic case are observed in the stress field 
outside of a very limited region at the crack tip. The distance from the crack tip over 
which the singular behavior dominates is reduced in the adhesive case to a small 
fraction of the adhesive thickness, while the corresponding dimension for the monoli- 
thic case is the beam height. The stress field in the adherend is non-singular and is not 
characterized by the high stress gradients typical of a crack tip stress field. The stress 
field in the adhesive becomes nearly uniform at a distance of less than one adhesive 
layer thickness ahead of the crack tip. 
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RI~SUMI~ 
Le probl~me d'une 6prouvette de rupture Double Poutre Cantilever comportant une liaison par adh~sif fissur(~e 
a ~t~ analys~e en utilisant un module de contrainte hybride et une analyse par ~l~ment fini qui incorpore un 
~lrment particulier ~ la pointe de la fissure. Les contraintes dans le champ proche et dans le champ ~loign6 ont 
~t~ ~tudi~es en fonction du rapport des modules de l'adh~sff et de l'adh~rent, et de l'(~paisseur de l'adhrsif. Les 
r~sultats sont compares ~t un syst~me monolitique en ce qui regarde le facteur d'intensit6 des contraintes et la 
Iocalisation du domaine singulier des contraintes associ6 h I'extrrmit6 de la fissure. 

Int. Journ. of Fracture, 14 (1978) 39-58 


