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Abstract 

Forage legumes have long been lauded for their ability to fix atmospheric nitrogen and contribute to the sustainability 
of agricultural production systems. However despite the benefits they bring in terms of increased herbage and animal 
production they are not widely used in temperate or tropical regions. In this review the amounts of biological nitrogen 
fixation (BNF) needed to sustain the soil-plant-animal system are discussed and related to the amounts fixed in 
tropical pastures. The data suggest that tropical forage legumes have the capacity to meet the requirements to balance 
the N cycle of grazed pastures. The actual amounts required will depend on the rate of pasture utilization and the 
efficiency of recycling via litter, excreta and internal remobilization. The efficiency of nitrogen fixation (% of legume 
N derived from fixation) is usually high in tropical pastures (> 80%) and is unlikely to be affected by inorganic soil 
N in the absence of N fertilizer. Thus an estimate of the amounts of N fixed could be obtained from simple estimates 
of legume biomass provided tissue levels of other nutrients such as phosphorus and potassium are adequate. Key 
factors for the achievement of sustainable grass/legume pastures include the selection of appropriate germplasm 
adapted to the particular environment and the judicious use of fertilizers such as phosphorus, potassium, calcium, 
magnesium and sulphur on acid infertile soils typical of tbe sub-humid and humid tropics. The main constraints 
to the widespread adoption of forage legumes include a lack of legume persistence, the presence of anti-quality 
factors such as tannins, variable Bradyrhizobium requirements and lack of acceptability by farmers. Strategies for 
the alleviation of these constraints are discussed. Forage legumes can be used to recuperate degraded soils via 
their ability to improve the physical, chemical and biological properties of soils and these benefits could be of 
particular use for small-scale resource-poor farmers. The incorporation of forage legumes into agropastoral systems 
is discussed as an environmentally and economically attractive means to encourage the widespread adoption of 
legumes in the humid tropics. 

Introduction 

Twenty three percent of the world's total area or 3.4 bil- 
lion ha are permanent grasslands (FAO, 1993). Around 
1.5 billion ha of these grasslands are in the tropics as 
either wild or cultivated fodder plants (Pearson and 
Ison, 1987; UNESCO, 1979). In most developing trop- 
ical countries animal production from pastures is low 
compared with developed countries, e.g. beef produc- 
tion is around 20 kg per animal unit per year in devel- 
oping countries compared with 96 kg per animal unit 
per year in developed countries (Henzell, 1983). At 
least 700 million ha of relatively unproductive grass- 
lands in South America, Africa, Asia and Australia 
are considered to be "improvable grasslands" (Pearson 
and Ison, 1987). Technologies for the improvement 
of grassland production have been considered (Bre- 
man and de Wit, 1983; Sanchez and Salinas, 1981; 
Teitzel, 1992; Toledo and Nores, 1986) wherein the 
introduction of a legume into grassland systems fea- 
tures prominently (e,g., Toledo, 1985). The basis of this 
essentially low-input (but not zero input) technology 
is the reliance on legume-based pastures to provide N, 
via biological fixation, and hence higher quality for- 
age on offer to grazing animals. The provision of N 
via BNF in tropical pastures is particularly important 
as grasses (mainly Ca types) frequently contain levels 

of N of 1.3% or less which are inadequate for ani- 
mal production (Humphreys, 1991) and fertilizer N is 
generally less readily available to farmers for logistic 
and/or economic reasons. 

The grasslands of Latin American tropics frequent- 
ly suffer from pasture deterioration and degradation 
due to a number of causes including overgrazing and 
subsequent soil erosion, mineral deficiencies, espe- 
cially N and P, and occasional attacks from pests and 
diseases (Thomas et al., 1994a). In Australia the expan- 
sion of pastures peaked around 1971 and since then 
there have also been problems of declining pasture pro- 
ductivity due to acidification, salinization, waterlog- 
ging and compaction, lack of phosphorus fertilization 
and N deficiency (Blyth and Menz, 1987; Gramshaw 
et al., 1989; Myers and Robbins, 1991). In Sahelian 
pastures N and P limitations occur along with water 
shortages (Breman and de Wit, 1983). In SE Asia, 
savannas cover around 23 million ha and are domi- 
nated by the noxious, shallow rooting grass Imperata 
cylindrica (star grass or alang-alang), where nutrient 
cycling is incomplete and soils degrade (Von Uexkull 
and Mutert, 1993). These problems are often acute 
leading some to suggest that these areas should perhaps 
be left under extensive use (Pearson and Ison, 1987). 
However the constraints of these marginal areas, espe- 
cially in terms of soil quality, are well known (Sanchez 
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Fig. 1. Effect of variations in the % recovery of excreta-N and 
pasture utilization on the requirement for fixed-N. 

and Logan, 1992) and it is possible to design technolo- 
gies which would allow an intensification of grassland 
productivity using legumes (e.g., t'Mannetje, 1986; 
Thomas et al., 1992; Von Uexkull and Mutert, 1993). 
Such intensification should now consider the options 
for integrating more closely crop and livestock produc- 
tion in order to produce the additional food and fibre of 
animal and plant origin needed to satisfy the world's 
burgeoning population (Henzell, 1983; Worldwatch 
Institute, 1992). 

The purpose of this review is to demonstrate the 
role that forage legumes and BNF can play in both 
improved pasture production and in the recuperation of 
degraded pastures, and to outline the main constraints 
that retard the adoption of legume-based pastures in 
regions of the developing world where they are needed 
the most. 

The review is not comprehensive but attempts to 
complement several recent articles on BNF in pastures 
(Giller and Wilson, 1991; Ledgard and Steele, 1992; 
Peoples and Herridge, 1990; Peoples et aL, 1995). 

How much BNF is needed to sustain the 
soil-plant-animal system? 

The amount of legume needed in a pasture is an old 
question that has generally been addressed from the 
herbage or animal production standpoint. For exam- 
ple, estimates of the amounts of above-ground legume 
biomass necessary in a pasture to maximize herbage 
production are in the order of 30-50% dry matter (DM) 
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content (Harris and Thomas, 1973; Martin, 1960) with 
a range of 20-40% for maximum animal live weight 
gain (Simpson and Stobbs, 1981; Stewart, 1984; Wat- 
son and Whiteman, 1981). The question of how much 
legume and BNF is needed to maintain the N bal- 
ance in the soil-plant-animal system has seldom been 
addressed. It has been estimated that to maintain the N 
reserves of the soil in pastures receiving no N fertilizer, 
a range of legume biomass of 20-31% of the pasture 
DM is needed for moderately grazed pastures with 
a 10--40% utilization (consumption by animals). This 
range increases to 35-45% DM in intensively used pas- 
tures with a range of utilization of 50-70% (Thomas, 
1992). Others have indicated however, that as little 
as 10% legume could maintain the N requirements 
of temperate ryegrass/white clover swards (Sheehy, 
1989). 

The estimates by Thomas (1992) included the 
effects of likely variations in the recovery of N by 
plants via the main recycling processes, viz., excreta, 
plant litter decomposition and internal remobilization 
during senescence, on the requirement for fixed N to 
balance the N cycle without invoking a net drain on 
soil organic N (e.g. Fig. 1). Generally, as pasture uti- 
lization increases losses from the system also increase 
as more N passes through the animal and is excret- 
ed. Losses from excreta can be high via leaching and 
volatilization (e.g. 60-80%; Ball and Ryden, 1984; 
Simpson, 1987; Steele and Vallis, 1988) and constitute 
the "leaky" processes of the N cycle (in the absence 
of N fertilizer application). Consequently the require- 
ment for inputs via BNF must similarly increase with 
increasing utilization to balance the cycle (Fig. 2). 

These estimations did not include recycling via the 
root biomass, which can be large in N-deficient tropical 
pastures. Preliminary data from tropical grass/legume 
pastures in Colombia indicate a root:shoot ratio of 
approximately 1 in newly established pastures which 
are not excessively N-deficient. This ratio increases as 
deficiency increases (IM Rao, pers. commun.). Assum- 
ing a complete turnover of the root system per year and 
a N concentration in the roots of 0.5% N compared with 
1% N in shoot tissue (Rao, unpubl.) then a 10 t ha -1 
above ground DM will contain 100 kg N ha -1 shoot 
tissue plus 50 kg N ha-I root tissue. Table 1 shows 
what effect the inclusion of root biomass-N would have 
on the requirement for legume-N to balance the cycle 
assuming a complete root turnover each year and a 
50% recovery of root-N by growing plants. The effect 
varies from an additional 5% of the total plant biomass- 
N to 3% less depending on the % pasture utilization. 
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Table 1. Effect of the inclusion of roots on the requirement for legume-N to balance the N cycle of pastures grazed at different levels of utilization 

A B b C D E F G 

Pasture 

utilization 

Amount of a Amount of Amount of shoot Total amount Amount of Amount of N 

shoot-N shoot-N N available for of N (root + N needed needed to 

needed to available for recycling shoot) to balance balance cycle 

balance recycling assuming available for cycle as a % of total 

N cycle complete root recycling plant biomass 

turnover and 50% 

(% of shoot-N) recovery 

(B + C) (150-D) E/150 x 100 

Difference in 

estimates of % 

biomass-N needed 

to balance cycle 

between shoot only 

estimates and shoot 

+ root estimates 

(F-A) 

10 34.3 65.7 25 90.7 59.3 39.5 

20 38.6 61.4 25 86.4 63.6 42.4 

30 42.9 57.1 25 82.1 67.9 45.2 

40 47.2 52.8 25 77.8 72.2 48.1 

50 51.5 48.5 25 73.5 76.5 51.0 

60 55.8 44.2 25 69.2 80.8 53.9 

70 60.1 39.9 25 64.9 85.1 56.7 

+ 5.2 

+3.8 

+ 2.3 

+ 0.9 

- 0.5 

- 1.9 

- 3 .4  

"Data derived from Figure 4, Thomas (1992). 
bFor a 100 kg shoot N ha- 1 pasture this value is 100-A. 
Estimates are based on a 10 t DM ha -1 pasture with a shoot:root ratio of 1 and 1% N in shoot, 0.5% N in roots 
i.e. 100 kg shoot N + 50 kg root N ha - t  = total biomass-N is 150 kg N ha -1 . 

Less  N is needed  at h igher  rates o f  uti l ization as the 

calculat ions a s sume  no effect  o f  increased grazing on 

root  b iomass -N.  This  may  be a ques t ionable  assump-  

t ion but the data il lustrate that the absence  o f  root  data 

may  not  have  a large effect  on the es t imated amounts  

o f  B N F  requi red  to balance the cycle.  In addit ion the 

% N concent ra t ions  in shoot  t issues o f  a g rass / legume 

pasture are likely to be greater  than the value of  1% 

used here. Values for  shoot  N o f  greater  than 1% or 

a greater  d i f ference  be tween  % N  in shoots  and roots  

than that used in the es t imat ions  may  further  d imin ish  

the contr ibut ion o f  root N to the N balance.  Data on 



root production and turnover of both organic matter 
and nutrients are urgently needed to verify these esti- 
mates particularly as it is known that root systems of 
tropical grasses have the capacity to immobilize sub- 
stantial amounts of N resulting in pasture degradation 
(Bushby et al., 1992; Robbins et al., 1987). 

Notwithstanding the limitations of the above anal- 
yses (Thomas, 1992) it would appear that the amounts 
of legume required in a pasture to balance the N cycle 
in terms of soil reserves are not too different from the 
amounts needed to maximize herbage production and 
individual animal performance. Thus there may not be 
much of a trade-off between the apparently conflicting 
demands for BNF in pastures for agricultural produc- 
tion (meat and milk) and for the replenishment of soil 
reserves. The key factors will be the stocking rate of 
animals and the rate of utilization of the pastures, i.e. 
factors that are controlled by the land manager and 
which are discussed later. 

H o w  much  N can be fixed? 

Reliable estimates of the amounts of N fixed in trop- 
ical pastures have appeared only relatively recently 
with the increasing use of 15N isotope methodologies. 
These are summarized in Table 2 and the range report- 
ed matches the estimated annual inputs of 15-158 kg N 
ha-  ~ required to sustain soil-plant-animal systems pro- 
ducing 3-22 t forage DM ha - I  yr -1 (Thomas, 1992). 
There seems little doubt therefore that tropical forage 
legumes have the potential to sustain the N require- 
ments of a pasture. 

Noticeable in these estimations were the high pro- 
portions of legume-N derived from fixation (% Ndfa) 
under varying pasture conditions (average 84%). How- 
ever there has been little systematic research on the 
effects of factors such as soil type, soil nutrients, pas- 
ture age or grazing on the % Ndfa in tropical pas- 
tures. 

Factors affecting BNF in pastures 

Factors affecting BNF have been extensively covered 
by recent reviews (Giller and Wilson, 1991; Ledgard 
and Steele, 1992; Sprent and Sprent, 1990) and include 
soil inorganic N, acidity, salinity, nutrient deficiencies 
(P, K, Ca, Mo, Zn, Co, Fe) or toxicities (A1, Mn), 
water stress, high or low temperatures, pests and dis- 
eases. The reader is referred to the cited reviews for 
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further details and only some pertinent recent points 
are discussed here. 

Inorganic soil N 

Inorganic nitrogen in the soil is well known to be able 
to reduce BNF but generally in pastures and espe- 
cially in the absence of N fertilizer, levels are low 
and are unlikely to have an inhibitory effect (Simp- 
son, 1987). Sylvester-Bradley and Mosquera (1985) 
showed a reduced response to inoculation in terms 
of plant N in ploughed soil with subsequent higher 
nitrate-N levels compared with unploughed soil, but 
there were no differences between treatments in nodu- 
lation evaluations. In these experiments there was lit- 
tle competition for soil N from grasses. In rice (Or),za 
sativa)-pasture associations applications of up to 80 
kg urea-N ha-I  (in three split applications) to rice - 
Brachiaria dictyoneura-Centrosema acutifolium mix- 
tures sown after three different types of land prepara- 
tion, had little or no effect on the nodulation of the 
legume (Thomas, unpubl.). In these oxisols levels of 
nitrate-N remain below 2 pg nitrate-N g- I  soil after 
N fertilizer applications. Thus inorganic-N may not be 
a significant problem for BNF in relatively infertile 
acid-soils. 

Phosphorus and potassium fertilization 

Cadisch et al. (1989) reported a marked decrease in % 
Ndfa from a range of 70-88 with P and K fertilization 
to 44-84% with no added P or K for eight tropical 
forage legumes that were grown in strips cleared of 
native savanna. The same authors showed that P fertil- 
ization had a greater effect on the % Ndfa than K with 
Centrosema acutifolium and C. macrocarpum (Table 3 
adapted from Cadisch et al., 1993). 

In field experiments on two differing soils, inti- 
mate mixtures of the grass Brachiaria dictyoneura 
and one of three forage legumes (Arachis pintoi, Cen- 
trosema acutifolium, Stylosanthes capitata) were given 
amounts of fertilizer normally used f,~r the establish- 
ment of pastures in acid-soil savannas (kg ha- i ; 20 E 
20 K, 50 Ca, 20 Mg, 12 S, micronutrients and no N) 
and were compared with similar treatments receiving 
three times these amounts (Fisher et al., 1994). The % 
Ndfa were not significantly different between the two 
fertilizer treatments for any of the three legumes grown 
on either a sandy loam soil or a clay loam soil during 
the first year of establishment (Table 4). In the second 
year, in general, similar trends were noted with only 
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Table 2. Estimates of  N2 fixation and % plant N derived from fixation from tropical forage legumes using I5N methodologies 

Legume species (Kg N fixed h a -  1 ) % Ndfa Period of measurement Reference 

Calopogonium mucunoides 64 - 1 yr 

Centrosema acutifolium 43 82 17 wks 

C. macrocarpum 41 83 " 

Desmodium ovalifolium 25 70 " 

D. intortum 24--183 94 1 yr 

Macroptilium atropurpureum 15-24 92 1 yr 

" 23-79 83 1 yr 

Pueraria phaseoloides 9-23 82 3 mths 

" 115 88 17 wks 

Sesbania cannabina 121 - 141 80 1 season 

Stylosanthes capitata 38 87 17 wks 

S. guianensis 47 75 " 

S. macrocephala 71 88 " 

S. spp. 2-84 81 various 

Zornia glabra 61 88 17 wks 

Seiffert et al. (1985) 

Cadisch et al. (1989) 
II 

II 

Vallis et al. (1977) 
II 

Shivaram et al. (1988) 

Zaharah et al. (1986) 

Cadiseh et al. (1989) 

Chapman and Myers (1987) 

Cadisch et al. (1989) 
II 

II 

Vallis and Gardener (1985) 

Cadisch et al. (1989) 

Table 3. Effect of different levels of P and K fer- 
tilizer on the % of legume-N derived from fixa- 
tion in field grown Centrosema acutifolium and C. 
macrocarpum a 

Fertilizer % legume shoot-N 

kg h a -  1 derived from fixation 

P K C. acutifolium C. macrocarpum 

5 60 84.9 79.2 

40 60 94.6 91.6 

75 60 94.5 94.0 

75 30 94.8 93.0 

75 0 94.3 92.9 

LSD 0.05 3.1 

aDam from Cadisch et al. (1993), Fixation measured 
14 weeks after sowing. 

small differences in % Ndfa with fertilizer treatment 
(results not shown). The major effect of the lower level 
of fertilization was a reduction in legume biomass in 
the pastures at the two sites (Table 4). 

These results suggest that the % Ndfa in forage 
legumes will decrease only where extreme deficiencies 
of nutrients such as P and K occur. 

Efficiency of nitrogen fixation 

The efficiency of nitrogen fixation (defined here as 
% Ndfa) in forage legumes has rarely been stud- 
ied in grazed pastures for any length of time as 
most studies have dealt with the pasture establishment 
phase. Pasture legumes generally are poor competitors 
with grasses for soil N probably because of low root 
biomasses relative to grasses. Walker et al. (1956) and 
Eltilib and Ledgard (1988) showed that the propor- 
tion of nitrogen fixed by clover in a temperate pasture 
exceeded 80% over a wide range of mineral N supply. 
Vallis and Gardener (1985) showed with 10 accessions 
of Stylosanthes spp. that there were little differences 
in % Ndfa among accessions and little relationship 
between % Ndfa and total N uptake from the soil or 
with the age of the pasture up to 6 years old. Sim- 
ilarly Edmeades and Goh (1978) showed no change 
in the % Ndfa in grass/white clover pastures vary- 
ing in age from 2 to 20 years. These results imply 
that the % Ndfa remains stable over time. However it 
should be noted that in these studies phosphate fertil- 
izer was added either annually (Vallis and Gardener, 
1985) or at the beginning of the measurement period 
along with other nutrients (Edmeades and Goh, 1978). 
Thus there remains the uncertainty of what level of 
efficiency (%Ndfa) can be expected from long term 
grass/legume pastures that do not receive maintenance 
levels of fertilizer as is the case for much of Latin 



American pastures. The data of Cadisch et al. (t989, 
1992, 1993) indicate that tissue analysis for nutrient 
deficiencies could be a useful guide to the likely lev- 
el of % Ndfa in older pastures. Further research is 
needed to define the relationships between % Ndfa and 
mineral nutrient levels in tissues of different forage 
legumes. 

Estimates o f  BNF from biomass measurements ? 

The bulk of the available data suggests that in tropical 
grass/legume pastures the %Ndfa remains relatively 
high (> 80%). If this is so then relatively simple esti- 
mates of legume biomass may be sufficient to estimate 
the amounts of nitrogen fixed using a value of around 
80% for the plant N derived from fixation. In temperate 
grass/legume pastures Sanford et al. (1993) reported a 
range of % Ndfa of 0-100% with means for different 
species between 70-80% measured at over 200 sites. 
Such a comprehensive survey has not yet been report- 
ed for tropical legumes but is required to verify the use 
of legume biomass as a measure of N2 fixation. 

The data in Table 4 and other reports (e.g. 
Edmeades and Goh, 1978; Peoples et al., 1995; Vallis 
and Gardener, 1985) show that the amounts of nitro- 
gen fixed will be dependent mainly on the amounts of 
legume present and legume productivity. Of paramount 
importance then is the maintenance of a legume pop- 
ulation of 20% or greater to ensure a continued input 
of amounts of N that meet the requirements of both 
animal production and the soil N balance. 
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mal excreta can also be an important although seldom 
quantified process in tropical pastures. 

The benefits of fixed N in terms of increased for- 
age production and quality and gains in animal perfor- 
mance (liveweight, milk production and reproduction) 
have been reviewed recently (Thomas et al., 1992, 
1994a; Thomas and Lascano, 1994) and were high- 
lighted by spectacular 10-fold increases in productivi- 
ty per hectare and 2-fold liveweight increases per head 
of cattle from grass/legume pastures compared with 
unimproved native savanna grasses. 

Fate of  fixed N 

Evidence for the transfer of fixed N to companion 
grasses was recently discussed by Ledgard and Steele 
(1992) and Giller and Wilson (1991). Generally levels 
appear to be low with around 25% of the legume-N 
being transferred to the grass via the decomposition of 
above- and below-ground tissues, leaching from tis- 
sues into the soil and gaseous effluxes with subsequent 
re-uptake by grasses, and perhaps direct transfer via 
mycorrhizal connections. Recent evidence has shown 
wide variation in the short term decomposition and 
release of N and other nutrients from six different trop- 
ical forage legumes and it was estimated that between 
2-38% of a pasture's requirement for above-ground 
N could be obtained from recycling via above-ground 
litter (Thomas and Asakawa, 1993b). Transfer via ani- 

How can sustainable grass/legume pastures be 
achieved? 

Some strategies for achieving sustainable grass/legume 
pastures with a continuing input of N via BNF are dis- 
cussed in this section along with the major constraints 
that need to be addressed. 

Selection of  appropriate forage legumes 

The key to the success of forage legumes in provid- 
ing N for tropical pastures is firstly the selection of 
germplasm adapted to the edaphic and environmental 
conditions and resistant to pests and diseases. In most 
of the tropics, soils are acid (pH <5.5) and conse- 
quently the soil constraints include acidity and often 
the associated toxic levels of aluminum and low avail- 
ability of other plant nutrients (Sanchez and Logan, 
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Table 4. Amounts of N2 fixed over 12 weeks, legume biomass and % N derived from fixation (% Ndfa)*. Values followed 
by same letter under each parameter are not significantly different, p < 0.05 

A. pintoi C. acutiJblium S. capitata 

Site Fertility (kg N fixed Biomass % Ndfa (kg N fixed Biomass % Ndfa (kg N fixed Biomass % Ndfa 

ha-  1) (kg DM ha-  l) (kg DM ha-  l ) (kg DM 

ha - l  ) ha - l  ) ha - t  ) 

Sandy Low 0.8a 89.9a 81.5a 1.7a 130.5a 88.9a 21.0a !510.4a 85.6a 

Loam High 7.4b 619.7b 87.1a 2.5a 143.8a 91.7a 40.0b 2528.5b 90.2a 

Clay Low 0.9a 96.8a 71.7a 3.5a 248.0a 91.4a 14.8a 1390,1a 79.7a 

Loam High 6.8b 607.8b 85.6a 5.2a 340.9b 92.9a 31.0b 2808.6b 89.1a 

* N2 fixation measured by 15N isotope dilution (Thomas and Asakawa, 1993a). 

Table 5. Forage legumes for different Latin American ecosystems a 

Ecosystem 
Legumes Savannas 

Colombia/Venezuela 
Savannas Brazil Humid tropics Subhumid tropics 

Arachis pintoi + b 

Centrosema acutifolium + 

C. brasilianum + 

C. macrocarpum 

C. pubescens 

Calopogonium mucunoides 

Cratylia argentea + 

Desmodium ovalifolium + 

D. velutinum + 

Pueraria phaseoloides + 

Stylosanthes capitata + 

S. guianensis vat. pauciflora + 

S. guianensis vat. vulgaris 

+ 

+ + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ + 

aData from Miles and Lapointe (1992). 
b+ = adapted to the ecosystem; - = not adapted 

1992). A large collection of over 18,000 herbaceous 
and woody legume accessions from over 100 genera 
and 600 species is maintained at CIAT, Cali, Colom- 
bia along with a collection of over 4000 strains of 
Bradyrhizobium (Franco et al., 1993). Other sources 
of Rhizobium and Bradyrhizobium are listed in Bush- 
by et al. (1986). The majority of the forage legumes in 
the CIAT collection have been selected from acid infer- 
tile soils of Latin America and are extremely tolerant 
of low acidity. For example there was little response 
to liming when legumes were grown in an oxisol with 
pH 4.5 and 90% aluminum saturation (Fig. 3, adapt- 
ed from Spain, 1979). Most of the legumes produced 

maximum growth at 0 or 0.5 t lime ha- 1. The promis- 
ing species have been evaluated in a multi-institutional 
decentralized network operating throughout the Latin 
American region (Toledo, 1985, 1986) and a summa- 
ry of their adaptation to different ecosystems in Latin 
America is presented in Table 5. Note that there is not 
a legume that is adapted to each of the four ecosys- 
tems. Thus although a wide adaptation to climate, soil 
and management has been advocated, especially for 
forage legumes introduced into native Australian pas- 
tures (Miller and Stockwell, 1991), legumes for target- 
ed niches would seem a more appropriate objective. 
For the humid tropical areas of Australia Centrose- 
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ma pubsecens, C. schiedianum and Pueraria phase- 
oloides have been selected for productive and persis- 
tent grass/legume mixtures on relatively fertile soils 
and Calopogonium mucunoides, Arachis pintoi and 
Centrosema spp. have been suggested as better alter- 
natives for pastures on poorer soils with a tendency for 
poorer drainage and grazing mismanagement (Teitzel, 
1992). 

The introduction of a new legume into an area can 
be very successful as exemplified by Stylosanthes guia- 
nensis which is grown on over 13,000 ha in tropical 
China 8 years after its introduction in 1982 (CIAT, 
1991). In 1993 over 5,200 ha were sown in Guangdong 
province alone (Devendra and Sere, pers. commun.). 
In Australia two legumes, Stylosanthes hamata cv. Ver- 
ano (Caribbean stylo) and Stylosanthes scabra cv. Seca 
(shrubby stylo), introduced from Venezuela and Brazil 
respectively, were released in 1973 and 1976. At the 
end of 1991 it was estimated that these legumes had 
been sown on 500,000 and 300,000 ha respectively 
(Cameron et al., 1993). These examples should encour- 
age further selection trials. 

Use of fertilizers 

The second important factor in sustainable grass/legume 
pastures is the judicious use of fertilizers. As pointed 
out by Sanchez and Salinas (1981) the low-input soil 
management technology associated with grass/legume 
pastures does not imply the elimination of fertilizer 
use but rather a more rational and efficient use of 
limited amounts of fertilizer, especially phosphorus, 
which farmers can afford. Even with a compatible 
grass/legume mixture there is a need for maintenance 
levels of nutrients, particularly phosphorus but also 
in some instances, potassium, sulphur, calcium, mag- 
nesium and micronutrients. In the Australian humid 
tropics for example, a reapplication of 30 kg ha-1 of 
soluble P every 2 years and an application of trace ele- 
ments every 4 years is recommended for productive 
and persistent grass/legume pastures (Teitzel, 1992). 
However further work is needed on maintenance fer- 
tilizers for different grass/legume pastures on different 
soil types based on long term evaluations. 

Alleviation of constraints 

The most serious constraints to the widespread use of 
forage legumes in pastures include problems of lack of 
persistence, anti-quality factors, variable Rhizobium 
requirements and poor acceptability by farmers. 

Legume persistence 
Lack of legume persistence is common to temperate 
and tropical pastures. For example in spite of ear- 
ly work showing that the composition of grass/white 
clover swards could be manipulated by timing and 
pressure of grazing (Jones, 1933), it is only relatively 
recently that guidelines have become available for the 
management by grazing of ryegrass-white clover pas- 
tures. These include longer resting intervals between 
grazing, integration of cattle and sheep grazing with 
conservation cuts and maintenance of sward heights 
around 6 cm (Evans et al., 1992; Grant and Barthram, 
1991; Orr et al., 1990; Wilkins, 1982). Emphasis 
appears to be on the maintenance of white clover grow- 
ing point numbers and avoidance of burial during wet 
periods (Laidlaw et al., 1992). Little or no information 
of this type exists for tropical species which have only 
been domesticated recently. Clements (1989) demon- 
strated the increasing susceptibility of some twining 
tropical legumes to loss of growing points as grazing 
pressure (animals per unit green DM) increased com- 
pared with more prostrate legumes which suggests that 
a similar strategy, i.e. maintenance of growing points 
under grazing, is likely to contribute to a better persis- 
tence of tropical forage legumes. 

Tropical legumes show a variety of responses to 
grazing ranging from a rapid disappearance, e.g. Cen- 
trosema acutifolium, to legume dominance in Desmod- 
ium ovalifolium (e.g. de Santana et al., 1993). The 
latter contains high levels of tannins thus reducing its 
palatability to animals and digestibility (for discussion 
see Humphreys, 1991). Clements ( 1989) also reported 
that the low acceptability of the more prostrate species 
Cassia rotundifolia was a more important factor in its 
tolerance to grazing than the disposition of its growing 
points. 

One of the most persistent and promising legumes 
to date is the forage Arachis species, A. pintoi. In graz- 
ing experiments in the eastern plains of Colombia this 
legume has persisted under heavy grazing pressure for 
over 6 years in association with the grass Brachiaria 
humidicola and formed good associations with three 
other Brachiaria species (Lascano, 1994). Similarly 
A. glabrata cv. Florigraze has persisted for 8 years 
in association with Cynodon daco, lon and Hemarthria 
altissima in Florida (Dunavin, 1992). Possible reasons 
for the persistence of forage Arachis spp. include a 
prostrate stoloniferous habit (similar to white clover), 
an ability to flower and set seeds profusely and bury 
the seeds via fruiting pegs. Furthermore A. pintoi is 
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easily propagated via vegetative stolons which may 
be detached from the mother plant by trampling. It is 
shade tolerant, rapidly re-establishes its leaf area index 
after defoliation and can survive relatively long dry 
periods even though it loses its leaves and appears des- 
iccated (Fisher and Cruz, 1994). An ability to acquire 
aluminum-bound phosphorus from acid soils (Rao and 
Kerridge, 1994) may also be a factor in the superior 
persistence of A. pintoi. All the features listed above 
are consistent with the legume ideotype necessary for 
a persistent forage legume (Marten, 1989). 

Grazing management is the most readily available 
tool to the land manager whereby a target legume 
content can be maintained. However a blanket rec- 
ommendation cannot be made because of differences 
in grass and legume behaviour under grazing. Stud- 
ies at CIAT have suggested that the grazing system 
(i.e. continuous, rotational and deferred grazing) is as 
important as the grazing intensity (animals/unit green 
biomass) with respect to maintaining an appropriate 
grass/legume balance (Lascano, 1991). A system of 
flexible grazing management has been proposed (Spain 
et al., 1985) for the evaluation of grass/legume mix- 
tures which depends upon: 

1. the adjustment of stocking rate (animals ha - l )  to 
maintain the amount of forage on offer between 
3--6 kg DM 100 kg-1 liveweight day-l  and 

2. the alteration of the grazing system to maintain the 
legume content between 15 and 50%. 

With a high legume content an increase in the rest 
period from grazing is thought to increase the grass 
component whereas at low legume levels increased 
grazing via reductions in the rest period is thought to 
encourage the legume component at the expense of the 
grass component. While this experimental methodol- 
ogy has had some success with Desmodium ovalifoli- 
urn, a vigorous, prostrate and unpalatable legume (de 
Santana et al., 1993), it has yet to be translated into 
management options for contrasting grass/legume pas- 
tures that are based on some simple evaluation of the 
state of the pasture such as the use of sward height 
in temperate ryegrass pastures (Hodgson et al., 1985; 
Parsons, 1984). Studies on the ecophysiology of trop- 
ical grass/legume pastures are required to determine if 
a simple indicator of sward state exists which could 
be used as a guideline for the persistence of a forage 
legume. Such an indicator will probably need to be dif- 
ferent for associations with either the prostrate grasses 
(e.g., Brachiaria) or with the more erect bunch types 
(e.g., Andropogon). 

Fisher and Thornton (1989) hypothesized that 
because grasses in tropical pastures are predominantly 
C4 types whilst the legumes are C3 types it is inevitable, 
other factors being equal, that grasses will dominate the 
pasture as a result of their superior rates of photosyn- 
thesis and growth. In order to obtain legume persis- 
tence the above authors argued that the legume must 
have some competitive or demographic advantage or 
that the grass must be preferentially grazed. Decision 
rules for grazing should therefore take these objectives 
into account in order to maintain the legume in the 
pasture even if there is a penalty in terms of animal 
production. 

Anti-quality factors 
The presence of anti-quality factors such as tannins 
in many tropical legumes (Humphreys, 1991; Swain, 
1979) can be thought of as both advantageous and 
disadvantageous. Preferential grazing of the grass in 
a grass/legume mixture due to the unpalatability of a 
legume which contains anti-quality factors can result 
in an increase in the proportion of the legume in the 
pasture. It could however result in poor animal intake 
and production and a lower rate of litter decomposi- 
tion and hence slower nutrient recycling (Thomas and 
Asakawa, 1993b). The latter could be a disadvantage 
if there is a need for a rapid release of nutrients for a 
subsequent crop, for example. 

Is there a need to inoculate tropical forage 
legumes? 

The previous classification of tropical forage legumes 
into three groups, viz., promiscuous effective, promis- 
cuous ineffective and specific with only the latter two 
requiring inoculation (Date, 1977) has tended to lose its 
usefulness as more legumes are tested and more excep- 
tions are reported. For example legumes previously 
classified as promiscuous effective such as Pueraria 
phaseoloides, Centrosema macrocarpum, and Arachis 
pintoi (Sylvester-Bradley, 1984; Sylvester-Bradley et 
al., 1988, 1991) responded to inoculation when grown 
in infertile acid soils (oxisols). Lack of an ability to 
generalize about the inoculation requirements of a par- 
ticular forage legume is due to many factors including 
the wide variation in both numbers, competitiveness 
and effectiveness of the indigenous rhizobial popula- 
tion, environmental factors such as soil acidity, temper- 
ature, moisture, and microbial predators all of which 
can affect the survival and success of the inoculant 



strain. Models have been developed to predict the 
native rbizobial population, based on factors such as 
% legume covet, rainfall and extractable bases in soils 
(Woomer and Bohlool, 1989) and also to predict the 
likelihood of success of inoculation based on indige- 
nous rhizobial populations and availability of soil min- 
eral N (Thies et al., 1991). However there has been little 
or no verification of these models in tropical pastures. 
As suggested by Date (1977) the simplest approach, 
in the absence of an ability to predict an inoculation 
response, is to conduct simple need-to-inoculate tests. 
Details of these tests are available (Brockwell et al., 
1988; Date, 1977; Sylvester-Bradley, 1984; Vincent, 
1970) and some have been discussed further by Giller 
and Wilson (1991). Briefly, these tests compare the 
growth of uninoculated and inoculated plants with a 
third treatment receiving doses of N fertilizer of 30 
kg ha-1 every 2 weeks. The uninoculated control will 
reveal the presence of native rhizobia and their effec- 
tiveness when compared with the other treatments. The 
inoculated treatment will examine the effectiveness of 
the inoculant strain(s) and the N fertilized treatment 
will indicate the growth potential in the absence of N 
limitation. 

Acceptability of forage legumes by farmers 

Farmers are generally reluctant to invest the lime and 
resources into the establishment of legumes in pas- 
tures. There is abundant research evidence available 
which demonstrates the benefits of legumes to beef 
production e.g. in the eastern plains of Colombia on- 
farm trials showed an increase of between 32 to 61% in 
beef production from grass/legume pastures compared 
with grass only pastures (Ferguson, 1992). Constraints 
to the adoption of forage legumes include the inher- 
ent slowness of the adoption of a novel component 
by pastoralists, an unawareness of the relevance and 
benefits to beef and milk production (let alone soil 
improvement), low availability of coramercial legume 
seed, limited availability of technical assistance, lack 
of capital and credit requirements, lack of experience 
in identifying "niches" for particular legumes (Fergu- 
son, 1992). All these issues need addressing as well 
as a need for suitable policy incentives to improve the 
adoption of forage legumes by farmers (for discussion 
of the latter point see Bohlool et al., 1992). 

One can conclude from the information presented 
above that the long-term success of a grass/legume pas- 
ture will be a function of the persistence of the legume 
and that this is a complex interaction between plant 
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types, relative growth rates of the grass and legume, 
shade tolerance of the legume, relative palatability of 
the grass and legume or grazing preference of the ani- 
mals, capacity for recruitment via legume seed or vege- 
tative material, ability to withstand trampling and buri- 
al. In addition the socio-economic factors need to be 
more favourable to encourage the widespread adoption 
of forage legumes by farmers. 

Role of forage legumes in recuperation of 
degraded land 

Pastures can stabilize soils mainly by the complete 
ground cover conferred by the grass species. Legumes 
can also fulfill this role if they can cover the ground 
rapidly. Figure 4 shows that the % area covered by a 
number of forage legumes can be sustantial after 12 
weeks growth on a hillside site in the coffee growing 
region of Colombia. The forage Arachis species, A. 
pintoi, was the most successful legume in this experi- 
ment achieving 80% ground cover. 

Forage legumes have also been shown to improve 
the physical, chemical and biological properties of 
soils by increasing factors such as organic matter, 
cation exchange capacity, aggregate stability, infil- 
tration rates, moisture retention, mineralisable N and 
P fi'actions and numbers of earthworms (Dalal et al., 
1991; Lal et al., 1979; Mytton et al., 1993; Thomas et 
al.. 1994b; Wilson etal., 1982). These are essentially 
the reversal of the degradative processes occurring in 
many tropical soils. The effect of forage legumes on 
the soil fauna may be particularly valuable for small- 
scale farmers as a relatively simple and cheap means 
to initiate remedial treatment of degraded soils and 

C,mlcrocarpum C.pubeicenl D,ovlHfollum P.phlleoloides A.pintoi 

Legume species 

Fig. 4. Percentage soJl cover with forage legumes after 12 weeks 
growth. 



114 

this topic merits further research (e.g., Lavelle et al., 
1989). 

The potential use of forage legumes in 
agropastoral systems 

The use of agropastoral systems similar to the classic 
ley farming systems of the pre-fertilizer era has been 
discussed as an option for land management in the 
tropics (Saleem and Fisher, 1993). The introduction 
of a relatively short-term pasture phase of 3-5 years 
with a forage legume component is attractive from 
the viewpoint of the constraints noted above to the 
widespread use of legumes. Such a system is currently 
being tested in the savanna lands of Brazil, Colombia 
and Venezuela where a grass/legume mixture is sown 
simultaneously with an acid-soil tolerant upland rice 
variety (Sanz et al., 1994; Vera et al., 1992; Zeigler 
et al., 1994). The rice crop is harvested after 105-120 
days and the pasture establishes at a much faster rate 
than the traditional methods as a result of the resid- 
ual fertilizer not removed by the rice crop. Grazing 
of the pasture is possible after 3-5 months compared 
with one year using the traditional low-input pasture 
technology. Other advantages include a more efficient 
land preparation (less machinery operations), reduced 
soil erosion and leaching by establishing a ground cov- 
er more rapidly and completely compared with either 
rice or pasture alone (Thomas et al., 1994a). The pas- 
ture phase can be of short duration of 3-5 years and can 
be followed by another crop which can benefit from the 
input of N via BNF. In this system the persistence of 
the forage legume assumes less importance as it can be 
re-introduced or replaced by another forage legume or 
legume mixture with each crop phase. The use of rice 
as a pioneer crop for a grass/legume pasture is envi- 
ronmentally and economically attractive. An analysis 
of the cash flow for example indicates a net return after 
3 years with rice-pasture compared with a least 5 years 
with pasture alone (Vera et al., 1992) and, in addition, 
the costs of establishing the rice-pasture association 
are recovered in the first year with income generated 
from selling the rice crop (Rivas et al., 1991). 

Ley fanning systems have also been estimated 
to be a profitable option for subtropical Australia 
on soils with low fertility although the lack of suit- 
able tropical forage legumes is a current limitation 
(Lloyd et al., 1991). In semi-arid regions of Aus- 
tralia, germplasm is available but the economics of 
cropping and the increasing complexity of the manage- 

ment skills required in these areas with greater risks of 
crop failure due to the vagaries of climate, appear to be 
constraining the widespread adoption of legume-based 
leys (Jones et al., 1991). 

The use of forage legumes in agropastoral sys- 
tems holds great promise for the humid tropics and 
is considered to be one of the sustainable land use 
options currently available which can bring benefits 
such as improved control of pests and diseases through 
rotations, more efficient nutrient cycling, less loss 
of soil and increased productivity (National Research 
Council, 1993). Agropastoral systems also offer a 
means to overcome some of the constraints noted 
above for the widespread adoption of forage legumes. 
Further research is needed on increasing the number 
of crop options, on the competition between crops, 
grass/legume pasture and weeds in different environ- 
ments, on improvements in fertilizer use efficiency and 
integration with the use of biologically fixed N. 

Conclusions 

Forage legumes can provide sufficient amounts of 
biologically-fixed N to increase herbage and animal 
production and maintain the N balance of the soil pro- 
vided the legume content of the pasture is maintained 
at a minimum value of around 20%. As utilization of 
the pasture increases the requirement for legume N 
also increases. Careful grazing management using dif- 
ferent grazing systems as well as grazing pressure can 
ensure the persistence of an adequate legume content 
but further research is required to define the manage- 
ment options for different tropical grass/legume asso- 
ciations. 

The % Ndfa is usually greater than 80% in tropi- 
cal pastures but can decline below this value if other 
mineral nutrient deficiencies occur. Further research 
is necessary to define the critical nutrient concentra- 
tions for maintaining % Ndfa above 80% especially in 
long-term pastures which may not receive maintenance 
levels of fertilization. 

The forage species Arachis pintoi appears to be 
closest to the plant ideotype required for a persistent 
pasture legume in the tropics and an examination of 
the characters that confer persistence in this species is 
warranted. 

At present the variable requirements for inoculation 
of forage legumes cannot be predicted with accuracy 
and the use of simple need-to-inoculate tests is encour- 
aged. 



Perhaps the greatest challenge for researchers is 
to address the issue of the poor acceptability of for- 
age legumes by farmers and use this experience to 
redirect the large amount of effort currently undertak- 
en on improving the knowledge base of the processes 
of biological nitrogen fixation. The latter has yet to 
result in any practical improvement of BNF in farmer's 
fields. 

The integration of grass/legume pastures with crop- 
ping appears to be a promising option for increasing 
agricultural production, recuperating degraded soils 
and facilitating the wider use of forage legumes in envi- 
ronments where fertility is inherently low and where 
the use of N fertilizer is restricted by availability or 
COSt. 
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