
International Journal of Fracture 54:117-130, 1992. 
(': 1992 Kluwer Academic Publishers. Printed in the Netherlands. 117 

A fracture-mechanical theory of subcritical crack growth 
in ceramics 

T. FETT 
Ker~forschungszentrum Karlsruhe. lnstitut fiir Material- und Festk6rpet;~rschunq I V. D 7500 Karlsruhe~ Germany 

Received 15 November 1989; accepted in revised form 20 July 1990 

Abstract. An interpretation is proposed of the power law describing the relation between subcritical crack growth 
rate and stress intensity factor. It is based on the idea that thermal transients both break and re-establish bonds. 
The effects, which occur during these processes are mathematically described using a Morse potential. Already the 
rough model employed provides enough information on bond breaking to understand the principle of subcritical crack 
growth. 

1. Introduction 

Subcritical crack growth is responsible for delayed failure of statically loaded components. 
In experimental investigations carried out with various materials it has been found that over a 
wide range of stress intensity factors K 1, the subcritical crack growth rate ~' is given by a power 
law: 

v = A K ~  (1) 

K~is defined by 

KI = axfaY,, (2) 

where a denotes the stress and a the depth of a crack in a structure, and Y is the geometric 
correction factor dependent on the shape of the crack and the component. 

Measurements by Evans [1] demonstrate for glass that this power law relation is satisfied 
over a comparatively wide range of values for K~. In the literature a fairly large number of 
theoretical explanations are reported to describe measured data [2] [6]. In these various 
attempts, the functional dependence ~, = f(Kl) is always described - as a consequence of the 
Arrhenius equation by exponential functions, the arguments of which are linear, quadratic, or 
mixed-quadratic functions of the stress intensity factor. 

The objective of this investigation is to give a theoretical explanation for (1) as a development 
of ideas based on [7]. An attempt is made, using simple model-based considerations, to arrive 
at an interpretation of the power law of subcritical crack growth. The interpretation starts from 
the idea that thermal transients both break and re-establish bonds. 
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2. Fracture-mechanical model 

2.1. Displacements and stresses during a bond break 

Before describing the fracture mechanical model two simple limit cases are considered. An 
isolated bond is mechanically loaded by springs, which simulate the elastic surrounding in a 
solid. In the first case (Fig. 1), the force Fappl is applied in a load-controlled manner symbolized 
by a dead weight. The bond reaction force Fbond has to be in equilibrium with the external load 
and it holds that Fbond = Fappl. This condition is fulfilled for an elongation 6 (1). In the case of a 
thermal transient with sufficiently high energy, which exceeds the potential barrier AU, the 
displacement between the bond partners exceeds the value c] (2), shown in Fig. 1. Since now the 
constant applied force is higher than the bond forces, the model bond is completely cracked. 

The second case of Fig. 1 is a displacement-controlled external load characterised by stretched 
springs fixed at their ends. In the case of a thermal transient splitting the bond, the external 
load becomes reduced with increasing distance of the two bond partners. If C is the spring 
stiffness, the external load is displacement dependent and it holds that 
Fappl  = Fapp l (~  (1)) - C ( 6  - ~(1)). This linearly decreasing external load is illustrated in Fig. 1. It 
is obvious that in this case a second state of equilibrium is established at point ~i TM. Complete 
bond break is not possible. 

In a real component containing a crack the load-displacement behaviour at the crack tip is 
much more complex than the two limit cases. In Fig. 2 the situation during a bond break at 
the tip of a crack with the crack depth a loaded by a constant stress ao is illustrated. To allow 

a) b) 

6U AU 
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Fig. 1. Limit cases for bond breaking. 
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Fi#. 2, Crack tip model. 

a simple treatment only a linear model of the crack is chosen, i.e. the 'width' of the model 
specimen is equal to the distance d of bonds. 

The load-displacement characteristic of a single bond is given by the F-6-diagram in Fig. 2. 
The 'crack tip' of the model crack is assumed to be located in the center d/2 between the mostly 
stressed bond (1) and the next moderately stressed bond (2), as shown in Fig. 2. To allow 
application of continuum mechanics the single forces F(6) are replaced by stresses Aa assumed 
to be constant over the range b. Therefore, the effective stresses are reduced by 

F(6) 
A a -  b d '  (3) 

where the factor d in the area bd is standing for the distance of the next collinear row of bonds. 
The stress distribution governing the crack-opening displacement field is then given as 

{ a o - A ~  for ao~<x~<al  
,~ = , ( 4 )  

ao else 

where 

a o = a  . . . .  

d b d b 
2 2 and a l = a - ~ + ~ .  

The weight function method provides a possibility to calculate the crack opening displace- 
ment field. The fracture mechanical weight function h [8] relates the stress intensity factor K~ 
to the stresses ~ by 

KI = h(x, a)cr(x) dx (5a) 
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and can be derived from the crack opening displacement field of any reference loading case by 
[9] 

E £6 
h(x, a ) -  K, ~a (5b) 

with Young's modulus E. Integration of (5b) gives a formula to calculate the crack-opening 
displacement field 

fo;m l " a(c)h(x, a')h(c, a') da' dc. (6} 
6(x, a) = ~ axl~,~t 

In this equat ion c denotes the location where the stress a is applied and x is the location where 
the displacement/~ is observed. 

The crack-opening displacement field near the crack tip is related to the stress intensity factor 
by the well-known relation (see for example [10]) 

6(x--* a ) :  N/7 ~ x / a -  x (7) 

leading to the weight function 

h(x, a) = (a - x)" (8) 

Introducing (2, 4, 8) into (6) yields 

c 3 = 6 o _ _ ~ E _  g , - g  x ,  (9) 

with 

(x 
"q a '  = 2~//1 - (x/a)2 arccos - -  -- - 

~/1 -- (x/a) 2 
Z = -1 (ai/a) 

and 

~ - -  ao y a ~ l  x 
,5o = ~//8/7z E a 

ao X l n X - a o z  ao 1 - z  
- -  + - -  I n  - -  ( 9 a )  

a a x + a o z  a 1 + z '  

(9bj 

(9c) 
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The crack-tip displacement field given by (9) is illustrated in Fig. 2 for b/d = 0.2. Especially for 
x = a - d/2 and d, b << a it results 

6(a-d2)- -*6o 2~a d(2.296 - In ~) ( io )  

2 2 
- E l lOa)  

2.2 Effective forces during bond breaking 

The Morse potential describes the energies of intermolecular bonds and has the form 

U(~) = Uo[exp(-2sg) - 2 exp(-s6)], (11) 

where U(~) is the potential for a displacement & Uo the dissociation energy and s is a measure 
of the range of bond forces. By differentiating (11), the force law becomes 

F(6) = 2 Uo s[exp( - sg) - exp( - 2s~i)]. (12) 

Figure 3 shows how the force varies as a function of the displacement from the equili- 
brium position. The maximum force Fo is reached when s~ = In 2, so that (12) can be written 
a s  

F(6) = 4Fo[exp(- s6) - exp( - 2s6)]. (13) 

If a body has the temperature T, the bonds can be broken by thermal transients of sufficiently 
high energy. A characterisation of the energy relationships involved in the thermal breakage of 
the near crack-tip bond is given in Fig. 3. 

From (3), (10) and (13) it follows 

4Fo (e_S6 _ e _ 2 S a )  ' 
6 = go - ~ -  (14) 

where the constant factor B is given by 

7fEb 
B =  

Equation (14) shows a different number of solutions dependent on the applied stress ao, which 
governs the value of 6o. For small stresses (Fig. 3a) only one solution (called 6(11) exists, which 
represents the state of equilibrium. Even when thermal transients with high energies occur, no 
additional state of equilibrium will be possible, and the bond will be re-established without a 
new thermal transient. In this case, the bond cannot be broken permanently. 
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Fiq. 3. Load displacement behaviour of a bond at the crack tip. 

At an increased stress, (Fig. 3b), (14) has a second solution 6 (2~, and at higher stresses (Fig. 
3c) a third solution is found ~i~3( If in this case a thermal transient with an energy of at least 

AU occurs, the bond will find a new position of equilibrium at 6 TM and the crack will increase 

by the increment Aa = d. This new situation is not necessarily a permanent one. If further 

thermal transients with energies of at least AW act at the considered location the bond can be 

re-established. 
Figure 3d describes a critical load situation. The solutions 6 I1) and •(2) are identical and the 

straight line is the tangent to the bond force curve. 
Figure 3b describes a limit situation leading to a threshold in bond breaking. 
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2.3. Determination of the critical and threshold values for crack opening and stress intensity factor 

The two limit cases leading to a critical and a threshold value are described by those situations 
in which the straight lines in Fig. 3e are tangent to the bond force. In those cases it holds 

dF B 
4Fo [ e -  s~ _ 2 e -  2 ~  ] = _ _ .  ( 1 6 )  

d(s6) - s 

The two solutions are 

($6)1/2  = - I n  1 _ - S~o 

with the related forces 

- sr~o + ( l S a )  

F2 = 1 - - s-F~o + " (lSb) 

If the crack opening 6o corresponding to the threshold situation is denoted by 60,th and in the 
critical case by 6o,c it holds that 

F2 
6o,th = ~ -  + 62, (19a) 

F1 
6o,c = ~ -  + 61. (19b) 

By taking into account (10a) one can express 60 by KI 

6o _ K1 6o,,h _ Kith (20 )  

3o.~ Kl~' 6O,c Klc" 

2.4. Calculation of the potential barriers 

The probability of occurrence of thermal transients with energies high enough for bond 
breaking is described by the Boltzmann distribution, namely 

N/No = exp(-- A U/k T). (21) 

In the expression N/N o is the fraction of the transients with energies greater than AU, k is 
Boltzmann's constant and AU is the potential barrier which must be overcome. 
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Uo 

For describing the frequency of bond-breaking events the knowledge of the potential barriers 
AU and AW is necessary. In case of B ---, 0 the barrier AU can be evaluated analytically. This was 

shown in [7] and is outlined in the Appendix. The general case B ¢ 0 has to be treated numerically. 

The interdependency of the values Fib, Fc and the constant B is given by (18, 19). In Fig. 4 the 
resulting relative energies AU/Uo and AW/Uo are plotted versus the relative stress intensity 
factors Ki/Kh. for KHh/K k. = 0.25. 

Figure 5 shows the potential barrier AU as a function of InlK~/K~,,) at different values of 
Klth/f(k. From this representation a nearly linear behaviour can be concluded. Over a wide 
range of K~/K~,., it is consequently possible to adopt the representation 

AU _ Ao + A~ ln--.K~ (22) 
Uo Kk, 

075 [ ] ] 
AW/U o 

\ / 
o 050-- ~ / Kith/Kit= 025 - -  

2 
3 I / \,'U/Uo 

<3 

o 25 o.5o 075 1.o 
KI /KIc 

Fig. 4. Potential barriers AU"Uo. AW L"m 
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Fi~t. 5. Potential barrier AU/Uo. 

0.7 08 09 



A JFacture-mechanical theory of subcritical crack growth in ceramics 125 

Table 1. Parameters of fitted straight lines 

Khh/Ki, Ao A1 

0.2 0.0386 -0.4722 

0.25 0.0432 -0.4948 

0.30 0.0460 -0.5152 

0.35 -0.0473 0.5337 

The straight lines fitted to the curves indicate the coefficients of Table I. 
For interpolation these results are approximately expressed by 

Kith 
Ao -~ -0.00396 - 0.2393 

and 

A1 ~- -0.36155 - 0.6353 K,~ 
l~, |,, 

0 33(KIth~ 2 (23) 
+ " \ K i t /  

+ 0  40(Klt~h) 2 (24) 
" \ K u , /  " 

3. Crack propagation rates 

Due to the thermal transients occurring at a frequency of No shocks per unit of time, this bond 

will break after a time span on the order of 

1 
t ~ :=-exp(AU/kT) (25) 

No 

after a shock with a sufficiently high energy. However, this breaking is not necessarily a definite 
one. Only after a time to on the order of the time span required by the elastic waves to advance 
by one bond distance the next bond undergoes mechanical stress and the crack tip will 
advance by one bond length. 

As a result of the intensified retreat of the crack borders at the point of the previously broken 
bond, the two bonding partners are definitely separated (AW rises steeply). Thus, only during 
the time to temporarily broken bonds can be closed again by new thermal transients. 

The probability AN T that during the interval At the bond at the crack tip opens, can be 
expressed by 

ANT = No exp(-AU/kT) At. (26a) 

On the other hand, the probability that the previously opened bond is restored during the 
characteristic time span to becomes 

AN+ = No e x p ( -  A W/k T) to. (26b) 
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Consequently, the probability that during At the bond is opened permanently becomes 

[ ( AN=Noexp(-AU/kT)  1 - N o t o e x p  - ~ -  At, 

m No e x p ( -  AU~[,  e x p ( -  AW)]At  
~ / L  - k T  ] J  " 

127j 

As Noto takes the order of magnitude Noto ~ l and, moreover, for the limit case A W ~  0 the 
'threshold condition' dN/dt = 0 should be satisfied, in (27) to was chosen to be to = l/No. 

In case of relative small load the crack growth rate is proportional to the rate AN/At [7] 

da AN 
v = ~ 3 :  At (28) 

Directly at K~c the energy AU vanishes, all bonds are immediately broken and the crack growth 
rate must increase dramatically. This behaviour is modelled by (29) where at K,c the denomina- 
tor becomes zero. 

exp( - AU'~[I~-J[_ - e x p ( - ~ T ) ]  

v = Vo • (29) 
AW 

1-exp(-~-/LAU'~[1- e x p ( - ~ - ) ]  

From (29) it can be seen that as the stress on a crack decreases, the expression in brackets 
becomes zero, and the crack-growth rate becomes zero too. The stress intensity factor value 
associated with this condition is Kth. In Fig. 6 the result of (29) is plotted as In V/Vo versus 
Kl/Kjth for various values of K~th/Kic. 

Since the terms containing AW vanish very rapidly when K~ exceeds K,h it holds in a wide 
range between K~thand K~,.: 

I Vo ~ Ao + A1 In . (30) 

This can be written as 

~, = A K ~ ' ,  (31) 

where 

A = v--°.exp[ UoAo] 
K,~ k FTA 

(32) 

and 

n - -  
A1Uo (33) 

kT 
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Fiq. 6. Crack-growth rates computed with (29). 

4. Comparison with experimental results 

Crack growth results on soda-lime glass obtained by Wiederhorn and Bolz [ l l ]  have been 
plotted in Fig. 7. These data were determined in water of 25°C. The curve resulting from (29) for 

K, th/Ki< -- 0.29 and n = -A ,Uo/kT  = 16.5 is additionally shown in Fig. 7. There is a good 
agreement with theory. 

Figure 8 represents the results of three measurements made by Evans [12] on the same 

system, together with the curve computed for K,th/Kt< = 0.23 and n = -A~Uo/kT = 14. A very 

>1~ 
c~ 

I I I I I 

0 - -  
A:Uo 
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Fi,q. 7. Comparison of the crack growth rate r calculated according to (291 with experimental values for glass - 
measured by Wiederhorn and Bolz [11]. 
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Fig. 8. Comparison of the crack growth rate t, calculated according to (29) with experimental values for glass 
measured by Evans [12] (different symbols indicate different specimensl. 

good agreement between measurements and theory is evident. It should be noted here that the 
normalisation v(K)/v(K~c) of the crack velocities on the slightly differing v(Kk)-values charac- 
teristic of the three measuring series causes the measurement points to occur more closely to 
each other than in the original work. 

Furthermore, it is interesting to note that both the theory and the experiment exhibit a slight 
hump-shaped deviation from linearity. 

5. Influence of an environment 

If medium is present at the crack tip this can change the potential barrier. Especially water with 
its high dielectric coefficient and high dipol moment will reduce the energy which is necessary 
for bond breaking. If the coefficient of reduction is denoted by ~,- and the potential barrier in the 
presence of the environment by AU~n,,  it holds 

AUcn, = ~,AU, i¢ < 1. (34) 

This value has to replace AU in (30), leading to an increased value of the factor A and a lower 
value of the crack growth exponent n: 

A = ~expL-~U°A°~'~-j  

and 

A1Uo 
n~,,, = - t, k T 

(35) 

(36) 
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Fig. 9. Crack growth curves with different thresholds. 

For this influence of the environment to be exerted a minimum value of K~ is necessary. If the 
molecule of the environment is replaced by a sphere with an effective radius R, the crack- 
opening displacement at distance R ahead of the crack tip must be at least 6(x = a - R) >>. R. 

From (7) it follows that the minimum stress intensity factor for an influence of the 
environment Klenv getting effective is 

Klenv ~> E (37) 

This stress intensity factor value constitutes a second threshold value for subcritical crack 

growth which is independent of the value Kith. In Fig. 9 the influence of Klenv and Kith on the 
da/dt  vs. K~ curve is illustrated. If Kle.v < Kith only Kle.v governs the start of subcritical crack 
growth (Fig. 9a). In case of Klc.v > Kith an additional step in the crack growth curve has to be 
expected (Fig. 9b). 

Appendix 

The case B = 0 is illustrated by the left hand F-6-diagram of Fig. 1. Substituting z = ex p ( -  s6) in 
(13) yields the quadratic equation 

F 
z 2 - Z + ~ o = 0  

from which the two solutions 

Z I ,  2 : ½(1 _+ x//1 F/Fo) 
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o r  

s6 ~1)'~21 = In 2 - In(1 + x/1 - F/Fo) 

result. The barr ier  AU (shaded area  in Fig. 1) is given by 

AU = F(6) d6 - -  F(6{1)) ' (6 ¢2) - 6 ~l)) 
6(1) 

and consequent ly  by 

A U _ x / l _ f l _ f i a r t a n h x / l _ f l  with fl=F(f'l')/Fo. 
Uo 
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