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Abstract. The problems of a crack inside, outside, penetrating or lying along the interface of an anisotropic 
elliptical inclusion are considered in this paper. Because the crack may be represented by a distribution of 
dislocation, integrating the analytical solutions of dislocation problems along the crack and applying the technique 
of numerical solution on the singular integral equation, we can obtain the general solutions to the problems of 
interactions between cracks and anisotropic elliptical inclusions. Since there are no analytical solutions existing 
for the general cases of interactions between cracks and inclusions, the comparison is made with the numerical 
results obtained by other methods or with the analytical results for the special cases which can be reduced from 
the present problems. These results show that our solutions are correct and universal. 

1. Introduction 

The interaction between cracks and inclusions is a typical and important problem in fracture 
mechanics. In the literature, discussion about the problems of the interactions between cracks 
and inclusions is usually restricted to isotropic materials, such as Atkinson [1] and Erdogan 
et al. [2], who obtained the general solutions for a crack outside an isotropic circular inclusion, 
and Erdogan and Gupta [3] who solved the problems of a crack inside or penetrating an 
isotropic circular inclusion. Also, Patton and Santare [4] studied the interaction between a 
crack and a rigid elliptical inclusion. As to the curvilinear interface crack problems, England 
[5] and Toya [6] studied a circular arc interface crack problem. Toya [7] and Herrmann [8] 
have dealt with the problems of a crack lying along the interface of a rigid circular inclusion. 
Moreover, Sih et al. [9] and Cotterell and Rice [10] have obtained the analytical solutions for 
a circular arc crack in homogeneous materials. However, these results can only be applied 
to the isotropic materials. Recently, Hwu and Liao [11] studied the problems of multi-holes, 
cracks and inclusions by a special boundary element, in which the materials are considered 
to be general anisotropic. Although their methods can be applied to study the interactions 
between inclusions and an outside crack, they cannot be used to study the cases of cracks 
located inside the inclusions, or a penetrating crack, or a curvilinear interface crack. 

In this paper, we consider the interactions between inclusions and various types of cracks 
such as a crack located inside or outside the inclusions, a crack penetrating the inclusions, 
and a curvilinear crack lying along the interface between the inclusion and the matrix. With 
the advantage of finding the analytical solutions for a dislocation located inside, outside or 
on the interface of an anisotropic elliptical inclusion [12], the present problems are solved by 
representing the cracks as a distribution of dislocation. With this representation, the traction 
boundary conditions along the crack surface may be written as a singular integral equation of  
the Cauchy type. This singular integral equation may be solved by a special numerical tech- 
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nique introduced by Gerasoulis [ 13] with the consideration of the single-valued displacement 
requirement. 

2. Inclusions and dislocations 

Consider an anisotropic elastic elliptical inclusion embedded in an infinite matrix, and the 
dislocation with Burgers vector b located at the point (&l, k2) which is outside, inside or on 
the interface of the inclusion. If the inclusion and the matrix are assumed to be perfectly 
bonded along the interface, the displacements and surface tractions across the interface should 
be continuous. An elasticity solution satisfying the dislocation singularity and the interface 
continuity condition has been found in [12]. For ease of reference, the solution is listed 
below. 

Ul = Al[fo(ff) +fl(ff)]  +Al[fo(~') +f l (~) ]  

q~l = BI[]'o(~) +fl(¢)]  -{- Bl[fo(~) +fl(~)] f ' 
E 5'1 (la) 

and 

u2 = A2~o(() +A(() ]  +A2[f~(() +A(() ]  / ,  ~ E 5'2, 

: + A ( ¢ ) ]  + J 
(lb) 

where the subscripts 1 and 2 denote, respectively, the matrix and inclusion. The over-bar rep- 
resents the conjugate of a complex number, u and ~ represent, respectively, the displacements 
and stress functions. A and B are the material eigenvector matrices. The variable ~ is related 
to the complex variable z~(= xl + p~x2) by 

'{ {) zc, = ~ (a - ibp~)~ + (a + ibpc~) , (2) 

where 2a and 2b are the major and minor axes of the ellipse. (xl, x2) is a fixed rectangular 
coordinate system, pa ,a  = 1,2, 3, are the material eigenvalues, f0 and ~ represent the 
function associated with the singularity behavior caused by the dislocation, fl  (orf2) is the 
function corresponding to the field of matrix (or inclusion) and is holomorphic in region $1 
(or $2). S1 and 5'2 denote, respectively, the regions occupied by the matrix and inclusion. The 
solutions provided in [12] forf0 , f  0,fl andf2 are obtained by combining the Stroh's formalism 
and the method of analytical continuation. For convenience of presentation their solutions are 
written with all the subscripts of the variable ~ dropped, which may not be applied directly 
to the full domain. To have an explicit solution valid for the entire domain, we employ the 
translating technique introduced by Hwu [14]. The results are 



(i) A dislocation outside an elliptical inclusion 

f0(¢) = z-~  (( ~og(¢o - ~o)))nlr/ ' ,  

~(~)  = o, 
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2~i~. ~ 
3 

1 oo k k -k  ^ 
- - - ~ ( (  

(ii) A dislocation inside an elliptical inclusion 

1 log ~c,))BTb ' fo(ff) = ~ r / ( (  

1 log(z~ ~)))BT2 b, y;0(¢) = 2-~i(( - 
o o  

1 ~ ( ( ~ 2 k ) ) e k  b 

o O  

1 ~ { { ~  + 7 ; k )  )Ckb. 
k ( O -  2~.ik=1 

(3) 

(4) 

(iii) A dislocation on the interface of an eliptical inclusion 

1 log((,~ ~)))BTb fo (~'1 = ~ r / { (  - 

+ ~ / ( { 1  log((g q - ~T)))Qlb,  

oO 

1 oo 

1 ~ k k - k  
f2(~') -- 2gik~((~'~= -it- 7c~G ))Ckb. 

(5) 
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Ek 
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= - B l l n 2 - c k  -Jr" Bl lB2((") 'k))Ck,  

G = (Go - GG~ 6k) - ~ ( r k  + G G ~ k ) ,  

e l  = (A ' ;1A1 - ~ I B 1 ) - I ( A - ; 1 A ' I  - ~ I B 1 ) B T ,  

Q2 = ( A T  1A2 - -BTIB2)- l (A71AI  - B T 1 B 1 ) B T ,  

k A 1 T ( ( ( : k ) ) B ~ ,  outside, 

. . . .  ; / - 7 - -  

. . . .  1 74 k _ 

inside, (6a) 

and 

Go = (M1 + M2)A2, 

Gk = (M1 - M2)A2((@)), 
(6b) 

a + ibp~ 
74 - (6c) 

a - ibp~ 

[,0!] [00i] [00!] 
I i  = 0 0 , 12 = 0 1 , 13 = 0 0 . 

0 0  0 0  0 0  
(6d) 

Mk, k = 1,2, are the impedance matrices defined as Mk = - - i B k A k  1 • Note that the solutions 
associated with the co are ignored because the constant stress function does not produce stress, 
which represents the rigid body motion. 

With the solution given for the displacement vector u, the strain components eij can be 
obtained through the use of the strain-displacement relation. As for the stress components aij ,  
they are related to the stress function vector ¢ by 

O'il = --•i ,2,  O'i2 --  t~i,1 , (7)  

where a comma stands for differentiation. More generally, i f t  is the surface traction at a point 
on a curved boundary, 

t = 0¢/0s ,  (8) 

where s is the arclength measured along the curved boundary. 
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Fig. 1. The geometry of a crack outside an elliptical inclusion. 

3. Inclusions and various types of cracks 

In this section, we consider the interactions between inclusions and various types of cracks 
such as a crack located inside or outside the inclusions, a crack penetrating the inclusions, 
and a curvilinear crack lying along the interface between the inclusion and the matrix. By 
representing the cracks as a distribution of dislocation, a singular integral equation of the 
Cauchy type is formed, which can be solved by a special numerical technique introduced in 
[131. 

(i) A crack outside the inclusions 
Consider a crack located outside an elliptical anisotropic elastic inclusion subject to uniform 

loading at infinity, see Fig. 1. Due to the linear property, the principle of superposition can 
be used and the problem is represented as the sum of the following two problems: (a) an 
elliptical anisotropic elastic inclusion embedded in an unbounded anisotropic matrix subject 
to uniform loading at infinity; (b) same as the original problem except that no loading is 
applied at infinity and the crack surface is subject to the loading which has an opposite sense 
and equal magnitude as that obtained from problem (a) at the crack location. 

As to problem (a), the solution has been found in [15,16], of which the stress function ~b]' 
and ~ can be expressed as 

c~ = 2Re{Bl((za))gl  + Bl((~- ' ) )g2},  

~b~ 2Re {B2 ( (  2z~ 
(9a) 
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where 

gl = ATlt~ ° + BTe~, 

g2 = -BII (Beel + BI ( ( a + ibpa -- a - ibpc , ) )  e' - B2E1 - B 2 ( ( % ) ) C l }  
(9b) 

and 

¢1 = -i{Go -- -G1-Gol G1}-I {A1T el + GIGoAITel }, 

el = l ( ( a -  ibpc~))gl, 

t~ {-,} {,} 
= ~ , ~? '=  ~ • 

o'~ 2e~ 

(9c) 

ai~ and ei~ are the uniform stresses and strains at infinity. The superscript u denotes that the 
solution is related to the uncracked problem. 

For problem (b), we represent the crack as a distribution of dislocation. By integrating the 
solution shown in (la)2 and (3) for the dislocation located outside the inclusion, we have 

¢~(s) = _ 1  f_! Re{iBl((log(za - ~a)))BT}13(t)dt 
7r l 

- 1 / j l R e { i B l ( ( - l ° g ( 1  ( : ~ ) ) ) B T }  ~(t)dt  

O 0  

1 f_' y]Re{iBl(((gk))Ek}~(t)dt  
71" l k=l 

1 L j~l Re{iBI (( log((~'l ~ j ) ) ) B l l B l l j B T 1 ) t ~ ( t ) d  t. 71" = 

(10) 

where the superscript d denotes that the solution is obtained by integrating the dislocation 
solutions./3(t) stands for the dislocation density at point t, which is an unknown function 
to be determined by the boundary conditions. The variables s and t are related to za and ~ 
by 

z .  = (x ° + p~x °) + s(cos a + p .  sina), 

~,~ = (x ° + p .x  °) + t(cos a + p~ sin a) 
(11) 

where (Xl °, x2 °) is the coordinate of the crack center and s (or t) denotes the distance from the 
crack center to point z~ (or ~,~). The integration limits +g are the ends of the crack whose 
length is 2g. 

Through the use of superposition principle, we now obtain the stress function ¢1 of the 
original problem as 

¢1 = gb]' + ~b~. (12) 
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If the traction tn along the crack surface is considered to be zero, we have 

Os = -t,~, along the crack surface, (13) 

where t~ denotes the traction along the crack location induced by problem (a) and is related 
to q~]~ by t~ = Ock~/Os. Substituting (10) into (13), and reconstructing the results into a form 
of singular integral equation, we have 

where 

27rl f~tLl~(t)t_l 8 d r+  t Kl(t,s)13(t)dt = -t~(8) (14a) 

17rk~=lRe(iB1 ( ( k ( g ( k + l ) O ( ; ) )  Ek } (14b) 

_ E R e  1 3 {  44  -1  O(~))Bl l~l t j -~l ,  } iB' \ \ (.(1 ~ ( . ~ ) O s  
~r j =  1 

0(4 2(2(cos a + p~ sin a) 
Os' = (a - ibp~)( 2 - (a + ibp~)" (14c) 

I~ 1 is a kernel function of the singular integral equation and is Holder-continuous along 
-g  ~< s <~ g. L1 is a real matrix defined as 

L1 = -2iB1BT. (15) 

If we nondimensionalize the variables s and t by letting ( = s/£ and 7/= t/g, then (14a) may 
be rewritten as 

f /J 1 t L1/3(r/) dr/+ i~l(r/, ()/3(r/) dr/= -t~(().  (16) 
27r -t t 

The requirement of crack tip continuity will lead to the following single-valued displacement 
condition, 

f f  /3(r/)dr/= (17) O. 
1 

Since the order of the singularity at the crack tip is -1/2, it is convenient to let 

,3(r/) , (18) 
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where fl(7?) is Holder-continuous along -g  ~< s ~< g. Up to now, the entire problem has been 
reduced to finding the unknown function/3(r/) from the singular integral equations (16)- 
(18). Through the use of the numerical technique introduced in [13], which is also shown 
in the Appendix for completeness, the unknown dislocation density/3(0 can be determined. 
With fl(t) found by the traction-free boundary condition shown in (16), the sin$1e-valued 
displacement requirement shown in (17), and the numerical technique shown in the Appendix, 
the whole field solution for the stresses at point z~ can be calculated by substituting/3(t) into 
(9), (10) and (12). Note that the solution for t~2 is not shown here for the sake of succinctness, 
which may easily be calculated by ¢2 = 4~ + cd. 

With the usual definition, the stress intensity factors may now be calculated by 

{KI} 
K = KII = l_il~ 1 KIII ~ ~/27r(-1-{- 1)eTtn({)  

2 TL1/3(+1) sgn (+1). 

(19a) 

where T is the transformation matrix defined as 

- s i n a  cosa  0 ]  
T =  cos a sin a 0 (19b) 

0 0 1 

and the sign function sgn(~) is defined as sgn(~) = 1 if ~ > 0 and sgn(() = -1  if ~ < O. It 
should be noted that during the derivation of (19), the following relation has been used, 

f f  f(r/) dr/ 7rf(~) 1 x/1 - - - ~ - ~ -  ~) - ~ sgn(() + regular terms, whenl~l > 1. (20) 

Moreover, the stresses t(() near the crack tip (~ --+ + 1) can be obtained by substituting (9), 
(10), (12) and (18) into (8), and using the relation shown in (20). The result is 

tn(~) = -½L1 B(() sgn(~) + regular terms. (21) 

(ii) A crack inside the inclusions 
Consider a crack located inside an elliptical anisotropic elastic inclusion subject to uniform 

loading at infinity, see Fig. 2. By a way similar to that described in the above subsection, one 
may set a singular integral equation as (14a) for the unknown dislocation density 13(t), except 
that now L1 should be replaced by L2 = - 2 i B 2 B ~  and K1 should be replaced by K2 as 

OG 
Os 

= -~Re iB2((k - 1  ..[_,), (k-I-l) Ck 

2(2(cos a + p~, sin a) 

zbpc~)(c ~ - (a + " ( a - " * 2 ibp~ ) 

(22) 



Inclusions and various types o f  cracks 309 

X 2 

b 
n 

S 

~ .  "x2* ) 

I a 

Fig. 2. The geometry of a crack inside an elliptical inclusion. 
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Fig. 3. The geometry of two cracks located simultaneously outside and inside an elliptical inclusion. 

The formula for the stress intensity factors will also be the same as (19a) except  that Lt  is 
replaced by L2. 

(iii) A crack penetrating the inclusions 



310 Chyanbin Hwu et al. 

To consider the penetrating cracks, we first deal with the case that two cracks locate 
simultaneously inside and outside the inclusions, Fig. 3. By a way similar to that described in 
subsection (i), we now obtain the singular integral equation as 

1 /_ ' -1  1 Ix K l l ( t l ,  - - -  LlCtl(tl)t 1 dtl + [ Sl)/31(tl) dtl 27r Ii - -  81 d - l l  

+ ftt~K12(t2, _ Sl)~2(t2) dt2 -- - t~, ,  

- -£ ,2_1-- 1 L2/~2(t2 ) dt2 q- 82)/32(t2)clt2 271" 82 a-/2 K22( 

+ 1(tl ,  S2)/31(tl) dtl  = - - t E n ,  
l 

(23a) 

where 

lf~11(t1,81) = 

g12(t2,  81) "- 

and 

/~22(t2,82) 

&l(tl,~2) 

,oo { 
- -  ~ Re iB1 

71" k=l 

1 3 ~  { 
.'~-" Re iB1 

( (_<_=(k+,, O¢~o~, } } Ek } 

_1 Re 
7l" 

1 oo 
- - -~-~  

71" k=l 

1 - - ~  
7i" k=l 

Re{iBl((-k[~(k+1)O(aOsl)) Ek} 

o¢~ \ ~ n?ln2 

= - Re iB2 k -~+.~ 

1~  ReliB2((k((~-I 7~(~ -(k+l, 

(23b) 

(23c) 
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Fig. 4. The geometry of a curvilinear crack lying along the interface of an elliptical inclusion and the relation 
between z-plane and (s-plane. 

/~1 (t) and/32(t ) denote, respectively, the dislocation density along the cracks outside and 
inside the inclusions. They will be determined by the set of singular integral equations shown 
in (23) and the single-valuedness requirement for both of the cracks. The stress intensity 
factors for both of the cracks can be calculated by 

Ki = ~2~iTLi~i(4-1)sgn(4-1), i =  1,2, (24) 

where the subscripts 1 and 2 denote the values outside and inside the inclusions. 
With the above results, by letting the distance between these two cracks approach to zero, 

we may approximate the condition of penetrating cracks. The detailed discussion of this 
approximation is shown in the next section. 

(iv) A curvilinear crack lying along the interface 
Consider a curvilinear crack lying along the interface between the inclusions and the 

matrices, see Fig. 4. In the same manner as the problem discussed in subsection (i) for a 
crack outside the inclusions, we represent the problem as the sum of two problems. One is a 
uncracked problem of which the solution is given in (9), the other is a loaded crack problem 
of which the crack is represented as a distribution of dislocation. The difference is that the 
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dislocation is lying on the curvilinear interface. By integrating the solutions given in (5) along 
the elliptical interface, we have 

1 F = - -  

~ 4 

Re{iB2<< log(~4 - ~a)>>Qz}fl(t)dt 

~--~ Re{iB2((~ + 7~;k>)Ck}fl(t)dt. 
k=l 

(25) 

In the above, only the stress function ~b 2 for the inclusions are shown, since in the following 
discussion about the boundary conditions of the traction-free interface crack either of 4, l or 
q~2 can be used. We choose 4, z for its relative simplicity. After determining the dislocation 
density from the boundary conditions and the single-valued requirement, the calculation of the 
whole field solutions should include both ~b 1 and q~2 depending upon the point considered. 

In (25), s (or t) denote the angle from the crack center to point z4 (or 2~) in ff4-domain. 
The integration limits +~  are the ends of the cracks whose angle is 2a (in Ca-domain). It 
should be noted that use of the values in ff4-domain is just for the convenience of mathematical 
manipulation. For engineering applications, one should know the geometric relations between 
z-domain and ~'4-domain, which are (also see Fig. 4) 

Zc~ = Xl  "~ p*~x2 = a cos(a0 + s) q- bp*~ sin(a0 + 8), (26) 

where c~0 is the angle of the crack center from the x 1-axis in (4-domain. 
By following the steps stated in (12)-(14), and carefully differentiating q~ along the 

curvilinear crack boundary (one may refer to [17] for detailed derivation about differentiation), 
we obtain 

1 f_~ 2Re(iB2Q2) l sf l( t)d t f ~  - 2---~ 4 p ( s )  t - -  q- 4 K f ( t ,  s ) f l ( t )  d t  = - t  u (27a) 

where 

ks(t, ) = -ia  - 

_IRe {iB2 <<-i 74 >>Q2} (27b) 
~r p - ~ )  e i ( '~°+ ' )  e ~(4°+' )  - 7 4  

- 1 R e { i B 2 < <  - i k  " ~ (~  (e ' ° '-7ae-ik(4°+~))>> Ck} '  

and 

p2(s) = a 2 sin2(ot0 + s) q- b 2 cos2(o~o q- s). 

Nondimensionalization by ~ = s /a  and r? = t /a  for (27a) leads to 

----271" 1 L]~(T]) ~--~--~- d~] + 1 t~](~], ~)~(~)  d~ = - t ~ ,  

(27c) 

(28a) 
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where 

2 
Ly - p(~) Re(iB2Q2). (28b) 

The single-valued displacement requirement can also be written in the same form as (17). 
At first glance, the kernel function given in (27b) seems to be singular for the presence of 

the term t--~" However, by expanding the cot ~ into the series expression as 

t - s  2 t - s  ( t - s )  3 
cot 2 = t - s  6 360 ' <Tr. (29) 

we see that Kj will still be Holder-continuous along the curvilinear crack. 
Till now, we have set the traction-free boundary conditions by the singular integral equation 

shown in (27), and the single-valued displacement requirement shown in (17). Like those stated 
in subsection (i), the next thing should be finding a numerical technique to solve the unknown 
dislocation density fl(t). The technique shown in the Appendix is valid for f l(t)  to be singular 
in the order of - 1 / 2 .  It is well known that the singularity order of the interface crack is 
- 1 / 2  + iE where E is the oscillation index depending on the materials of the matrices and 
the inclusions. To overcome this problem, it looks like a new numerical technique should 
be developed. However, unlike singularity, oscillation will not cause numerical overflow. 
Moreover, by the experimental study of Hwu et al. [18], we see that the oscillation index 
is usually very small which means that the range of its influence is limited. The values of 
the bimaterial stress intensity factors considering the oscillation effects are also very close to 
those of the conventional stress intensity factors considering only the - 1 / 2  singularity. With 
the above reasons, the numerical technique shown in the Appendix is still employed, and the 
stress intensity factors calculated by (19) are still used except now L1 is replaced by Ly and 
is replaced by c~. 

4. Results and discussion 

Since there are no analytical solutions existing for the general cases of interactions between 
cracks and inclusions, in the following the comparison is made with the numerical results 
obtained by the other methods or with the analytical results for the special cases which can 
be reduced from the present problems. Following is the discussion of the comparison of each 
type of crack considered in this paper. 

(i) A crack outside the inclusions 
To verify our results, we first consider the degenerate cases where both of the inclusions 

and the matrices are isotropic. Table 1 shows that our results for the stress intensity factors 
are almost the same as those presented by Erdogan et al. [2], in which the material properties 
are chosen to be G2/G1 = 23, ul = 0.35, u2 = 0.3; the geometry is represented by b/a = 
1, ~/a = 0.5, ~ = 0 ° and the uniform loading cr~ is applied at infinity. The difference is that 
our solutions are suitable for general anisotropic media and the shape of the inclusions is an 
ellipse which includes circle and line, however, those presented by [2] are valid only for the 
isotropic media and circular inclusions 

Another comparison is made with Patton and Santare [4] for rigid elliptical inclusions, 
in which the Poisson's ratio u of both inclusions and matrices is chosen to be 0.25, and 
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Table 1. The stress intensity factor for a crack outside an isotropic circular inclusion (K* = K / ~ / - ~ )  

~;*(-z) K,1(-t) K;(t) K,;(t) 
(z°/a, z°/a) present Erdogan* present Erdogan* present Erdogan* present Erdogan* 

(1.4,0.5) 0.496 0.483 0.164 0.167 0.783 0.781 -0.064 0.002 
(1.5,0.5) 0.613 0.613 0.061 0.057 0.817 0.817 -0.067 -0.005 
(1.75,0.5) 0.750 0.752 -0.041 -0.047 0.878 0.878 -0.062 -0.012 
(2.0,0.5) 0.834 0.833 -0.062 -0.068 0.915 0.914 -0.052 -0.012 
(3.0,0.5) 0.956 0.952 -0.035 -0.041 0.973 0.970 -0.024 -0.006 
(4.0,0.5) 0.982 0.980 -0.016 -0.021 0.987 0.985 -0.012 -0.002 

(, Erdogan et al. [2]) 

1.00 

0.75 

0.50 

bla= 317 

bla=l.  

bla=713 

0 

present (k=lO ~) 

Patton and Santare (1990) 

0.25 
0.00 0.25 0.50 0.75 1.00 

d/R 
Fig. 5. The stress intensity factor for a crack outside an anisotropic circular inclusion 
(g/R = 0.5, ~, = 0 °, R = (a + b)/2). 

the hardness index k ( =  E 2 / E 1 )  is chosen to be 105 to represent rigid inclusions. Figure 5 
shows that our results are exactly the same as those presented in [4] for the cases of  rigid 
inclusions. 

The next example is for the general anisotropic elliptical inclusions. Consider a unidirec- 
tional composi te  laminate with the matrix material properties given by 

E t  = 1 .2GPa,  E2 = 0 .6GPa,  G12 = 0 .07GPa,  ulz = 0.071, 
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0.0 , , , , I i i , , I , , ~ ~ I , , , 

0.0( 2.00 4.00 6.00 8.00 

d/ l  

Fig. 6. The stress intensity factor for a crack outside an anisotropic circular inclusion (K~* = K i / v / - ~ r ~ ,  [0°]~ 
laminates). 

and the inclusion is chosen to be 

(Ei)2 _ (Gij)______22 = k, i , j  = 1,2, 

where k is the hardness index whose value is given in the figure. The geometry properties 
used in our example are b/a = 1,e/a = 0.5,~ = 0 °, and d denotes the distance from the 
crack tip to the inclusion boundary. From Fig. 6, we see that a little discrepancy occurs when 
the distance d/g <~ 5. The inaccuracy should come from [11] since they said that their solution 
will not be good enough when the crack comes closer to the inclusions. The reason that 
their approximation fails is due to the subregion technique used in their boundary element 
formulation, which may cause boundary effects when the distance between the cracks and the 
inclusions is too short. However, in our formulation, we do not have this problem since the 
convergency when the dislocation is near the interface has been proved by Yen et al. [12]. 

(ii) A crack inside the inclusion 
In this case, we use the same material, geometry and loading conditions as in Table 1 

except G2/G1 = 3, vl = 0.3 and now the crack is located inside the inclusions. After actual 
numerical calculation, the results for the stress intensity factors can be shown to be identical 
to those presented in [3]. 

(iii) A crack penetrating the inclusions 
We first check the case when two cracks locate simultaneously outside and inside the 

inclusions. By using the same material, geometry and loading conditions as in Table 1 except 
G2/G1 = 23.077, gl/a = 0.5, ~.2/a = 0.25 and now we have two cracks instead of one, the 
results for the stress intensity factors in Fig. 7 can be shown to be identical to those presented 
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Fig. 9. The stress intensity factor for two cracks located simultaneously outside and inside the inclusion 
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in [3]. To approximate the condition of penetrating cracks, we let the distance between these 
two cracks approach zero. Figures 8 and 9 show the study of the stress intensity factors when 
the distance between two cracks is approaching zero. The same material properties of the 
matrices and the inclusions have been used in Fig. 8 to simulate the case of homogeneous 
anisotropic media containing two collinear cracks, whose analytical solutions have been 
shown in [19]. The important thing in the discussion of penetrating cracks is the correctness 
when the distance d is made to be zero. From Fig. 8 we see that although our results for two 
collinear cracks are almost identical to the analytical results given in [19], when d ~ 0 it 
is still difficult to get the exact result for a merged (penetrating) crack. The error is about 
(1.414 - 1.206)/1.414 x 100% = 14.7% when we use d/~ = 0.01. A similar situation is 
shown in Fig. 9 (the material, geometry and loading conditions are the same as in Fig. 7 except 
gl/a = g2/a = 0.25), in which the error is about 1.77 percent for K~(-g2)  and 29.4 percent 
for K{'(ei ). The reason for this inaccuracy may come from the following facts. Two single 
cracks with infinitesimal spacing will let the inner tip stress intensity factor approach infinity 
which is the thrust for emerging two cracks into one larger crack. The closer the distance, the 
larger the inner tip stress intensity factors, which is very different from the penetrating crack 
because the stress intensity factor for the penetrating crack at this portion (the inner tips of two 
single cracks) is zero since no crack tip exists at the inner portion of the penetrating cracks. 

(iv) A curvilinear crack lying along the interface 
To verify our results, we consider the simplest case where the matrices and inclusions are 

composed of the same materials. That is, we consider a curved crack with radius a located in 
a homogeneous medium subject to uniform loading cr~ at infinity. Figure 10 shows that our 
solutions for the stress intensity factors of curved cracks in homogeneous isotropic materials 
are exactly the same as the analytical solutions presented in [20]. As expected these factors are 
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independent of the material properties for the isotropic media. However, it is quite surprising 
that they do depend upon the material properties for general anisotropic media. 

Another comparison is made with Perlman and Sih [21] for the curvilinear interface cracks 
between two dissimilar isotropic med!a subject to uniform loading ¢r~ at infinity, in which the 
Poisson's ratio of both inclusions and matrices is chosen to be 0.25, and the hardness index 
k is given in the figure. From Fig. 11, we see that our solutions are almost the same as those 
presented in [21] for this simplified case 

5. Conclusions 

The general solutions of the interactions between various cracks and anisotropic elliptical 
inclusions are provided in this paper by applying the analytical solutions of the dislocation 
problems and the technique of numerical solution on the singular integral equation. Because 
the general solutions of the interactions between various cracks and anisotropic elliptical 
inclusions cannot be found in the literature, we compare the numerical results of some special 
cases to prove our results are correct and universal. Due to the series terms given in the 
analytical solutions for the dislocation problems (of which the convergency has been studied 
in [12]), the efficiency of the present method will be reduced when the crack tip is near 
the interface. Moreover, owing to the inherited difference between two single cracks with 
infinitesimal spacing and one penetrating crack, our results for penetrating cracks are just 
approximate. 

Appendix 

Using the analytical solutions of the interactions between dislocations and inclusions to treat 
the problems of the interactions between cracks and inclusions, we will always obtain a 
singular integral equation as 

_L f_" k(,, d, 27r , =f(¢) ,  < 1 

and another equation from the single-valued condition 

(A.1) 

where fl(~) is the unknown function, K(r], ~) is the kernel function which is bounded in 
[-1,1], f(~) is a known input function which is also bounded in [-1,1], and L and A are 
constants. A is usually equal to zero for single-valued condition. Because the singular order 
of fl(r/) in this paper is ~, /3(r /)  can be expressed as 

= 

1 
w ( , )  - 

(A.3) 

where/30/) is a continuous function in [-1,1]. 
From the paper of Gerasoulis [ 13], we can divide the interval [-1,1 ] into 2n parts (usually 

in 2n equal parts). Define ~70 = -1 ,  rli = rli_l + hi, / = 1 , 2 , . . . ,  2n where hi is the length of 

l /3(r/) dr/= A, (A.2) 
1 
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t he / th  interval.^Applying the La~range interpolation formula for three points to approximate 
/3(r/) in (A.3), K(r/, ~)/3(r/) and/~(r/) can be expressed as 

2k 

i = 2 k - 2  (A.4a) 
2k 

i = 2 k - 2  
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and 

I ; ( r / )  = 
~ I  ~i -- ~]j ' 

j=2k--2 
d#i 

for each k = 1 ,2 , . . . ,  n and ~]2k-2 N < /] <~ r/2k- 
From (A.4a) and (A.4b), we find that (A.1) and (A.2) are approximated by 

= I, i=2k-2  L '02k-2 

+ ~  ~ ~2(rli,() w(r/)li(r/)drl , 
k= 1 i=2k-2  k" ~/2k-2 

A : ~ 2 ~  k 2f)(r/i) wQl)li(,)dr/ • 
k = l  i =  -- L ~2k--2 

After integration, we can obtain 

7Z 

J(~) = -- L-2L--Z{Ek(()~(rl2k_2) q- Fk(()fl(r/2k-1) + Gk(()~(Tl2k)} 
ZTF k= I 

I2 

+ ~ { ~kk( ,~k-2, ~ )B(r/~k-~) 
k=l 

+ bkl(,(,2k-l,~)~(rl2k-1) q- Cki~(r/2k, ~)~](r/2k)}, 

A = 
n 

~ {ak~(f]2k-2) q- bk~(r/2k-1 ) q- Ck~(fl2k)}, 
k=l 

where 

G ( ~ )  = 

F k ( ¢ )  = 

~/2k W 

J ~ ] 2 k -  2 1] - -  

j f , ~  w ( r / )  , , , ,.~2k-lUI) d~ = 
2a-2 r l  - 

ak(~)  = 

~]2k 
ak(~) = w(r/)12k-2(r/)dr/= 

~2k--2 

~.= / 712k 
bk(~) w(r/)/2k_ l(r/) dr/= 

d ~2k--2 

M(r/2k, r/2k-1) 

( ~ ] 2 k - 2  - -  ~ 2 k - 1 ) ( r / 2 k - 2  - -  ~ 2 k ) '  

M(r/2k, ~/2k-1) 
(~2k-1 -- T12k-2)(~2k-1 -- /]2k)'  

f n2k w(~),  , , M ( r / 2 k - 1 ,  f]2k-2) 
2k-2 ~-'--C"--q '2kl'l])dr/ -- (T l2k-  ' 2 k - 2 ) ( O 2 k -  " 2 k - l ) '  

/ /(rnk, r/2~-1) 
( 0 2 k - 2  - 0 2 k - l ) ( , 2 k - 2  - . 2 k ) '  

H ( rl2k, /']2k- 2 ) 
( ~ 2 k - 1  - ~ 2 k - 2 ) ( r / E k - I  - ~ 2 k ) '  

Ji 2k w(r/)12k0]) dr/ HQI2k-1, ~12k-2) ) '  
~2k-2 (/']2k ~]2k-E)(~Ek -- /]2k-1 

(A.4b) 

(A.5) 

(A.6a) 

(A.6b) 
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and 

Y(')-(, M ( x , y )  = - x ) ( r / -  y) dr/ 

= ~/1 - r/2k_2 -- ~/1 -- n 2 2k 

+ ( c  _ x - y)(Ozk - 02k-2) + (~ -- z)(~ -- y)ak(~), 

~' ?'}2k --2 

= (1 + xy)(Ozk - 02k-2) + ( x  + y ) ( c O S O Z k  -- COS 02k-2) 

+¼ (sin 202k -- sin 202k-2), 

/ ~2k 1 
A k ( ~ )  = ~ ,7~_:  s in 0 - 

dO 

1 (-1+ V1- 52 +   -k)rk_l + (1+ V1-  2)rk I 
- 1 x , / f ~ - ~  l°g ( - 1 - - ¢ 1  ~ 2 + ~ r k ) r k _ l + ~  (1- -  X/1-- ~2)rk " 

0 = sin -1 r/, vk = t a n ( - ~ )  for all k. Equation (A.6a) can be reduced to 

(A.6c) 

2 n  

L~- '~{Wi(~)/3(r l i )  - 2r r~L-1K(r / i ,  ~)/3(r/i)} = f(~)  
i=0 

2n 
~ / 3 ( r / i )  = A,  
i=O 

(A.7a) 

where 

VO = a l ,  V2n = Cn~ 

l.~ = [c~ + a~_-~2]60,mod(i,2) + b~__~i~l,mod(i,2), i = 1 , 2 , . . . ,  2n  -- 1, 
2 

Wo(~) = EI(~),  W2n(~) = Gn(~), 

Wi(~) = [G~(~) + Ei2_~(~)]~0,mod(i,2) + Fi2_~(~)~l,mod(i,2) , i = 1 , 2 , . . . , 2 n  -- 1. 

(A.7b) 

t~i, j is Kronecker  delta. Let us choose 2n collocation point ~k for which r/k ~< ~k ~< Yk+l, k = 
0, 1 , . . . ,  2n  - 1. Then we obtain (2n + 1) linear equations from (A.7a) as 

2n 

L Y~ { Wi( ~k )~( rli ) - 2~r~L- lk ( r / , ,  ~k)/3(rll)} = ]( ~k ) 
i=O 

2 n  

E ~ / 3 ( r / i )  = A. 
i=0 

k = 0 , 1 , . . . , 2 n - 1 ,  

(A.8) 

Solving the (2n + 1) equations and applying (A.3), we can obtain the value of  the unknown 
dislocation density function riO?) at r / = % i = 0 , . . . ,  2n. 
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