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Abstract. The problems of a crack inside, outside, penetrating or lying along the interface of an anisotropic
elliptical inclusion are considered in this paper. Because the crack may be represented by a distribution of
dislocation, integrating the analytical solutions of dislocation problems along the crack and applying the technique
of numerical solution on the singular integral equation, we can obtain the general solutions to the problems of
interactions between cracks and anisotropic elliptical inclusions. Since there are no analytical solutions existing
for the general cases of interactions between cracks and inclusions, the comparison is made with the numerical
results obtained by other methods or with the analytical results for the special cases which can be reduced from
the present problems. These results show that our solutions are correct and universal.

1. Introduction

The interaction between cracks and inclusions is a typical and important problem in fracture
mechanics. In the literature, discussion about the problems of the interactions between cracks
and inclusions is usually restricted to isotropic materials, such as Atkinson [1] and Erdogan
et al. [2], who obtained the general solutions for a crack outside an isotropic circular inclusion,
and Erdogan and Gupta [3] who solved the problems of a crack inside or penetrating an
isotropic circular inclusion. Also, Patton and Santare {4] studied the interaction between a
crack and a rigid elliptical inclusion. As to the curvilinear interface crack problems, England
[5] and Toya [6] studied a circular arc interface crack problem. Toya [7] and Herrmann [8]
have dealt with the problems of a crack lying along the interface of a rigid circular inclusion.
Moreover, Sih et al. [9] and Cotterell and Rice [10] have obtained the analytical solutions for
a circular arc crack in homogeneous materials. However, these results can only be applied
to the isotropic materials. Recently, Hwu and Liao [11] studied the problems of multi-holes,
cracks and inclusions by a special boundary element, in which the materials are considered
to be general anisotropic. Although their methods can be applied to study the interactions
between inclusions and an outside crack, they cannot be used to study the cases of cracks
located inside the inclusions, or a penetrating crack, or a curvilinear interface crack.

In this paper, we consider the interactions between inclusions and various types of cracks
such as a crack located inside or outside the inclusions, a crack penetrating the inclusions,
and a curvilinear crack lying along the interface between the inclusion and the matrix. With
the advantage of finding the analytical solutions for a dislocation located inside, outside or
on the interface of an anisotropic elliptical inclusion [12], the present problems are solved by
representing the cracks as a distribution of dislocation. With this representation, the traction
boundary conditions along the crack surface may be written as a singular integral equation of
the Cauchy type. This singular integral equation may be solved by a special numerical tech-
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nique introduced by Gerasoulis [13] with the consideration of the single-valued displacement
requirement.

2. Inclusions and dislocations

Consider an anisotropic elastic elliptical inclusion embedded in an infinite matrix, and the
dislocation with Burgers vector b located at the point (£, &;) which is outside, inside or on
the interface of the inclusion. If the inclusion and the matrix are assumed to be perfectly
bonded along the interface, the displacements and surface tractions across the interface should
be continuous. An elasticity solution satisfying the dislocation singularity and the interface
continuity condition has been found in [12]. For ease of reference, the solution is listed
below.

w = Ailfy(Q) + (O] + A0 +1T(<‘)]} ¢ s, 12
¢ = Bilfy(Q) +AOI+ Bl + A1 |

and
w = A0 +£(0] + A0 +£C) } ces, (1b)
¢ = Baf3(C) + (O] + Balfi(O) + /(0]

where the subscripts 1 and 2 denote, respectively, the matrix and inclusion. The over-bar rep-
resents the conjugate of a complex number. u and ¢ represent, respectively, the displacements
and stress functions. A and B are the material eigenvector matrices. The variable ( is related
to the complex variable 2,(= z1 + paz2) by

2o =

; {(a — ibpa)Ca + (a ¥ ibpa)g;} , @

where 2a and 2b are the major and minor axes of the ellipse. (z1, z2) is a fixed rectangular
coordinate system. p,,a = 1,2,3, are the material eigenvalues. f and fj represent the
function associated with the singularity behavior caused by the dislocation. f; (or f3) is the
function corresponding to the field of matrix (or inclusion) and is holomorphic in region 5
(or S,). S1 and S, denote, respectively, the regions occupied by the matrix and inclusion. The
solutions provided in [12] for f,, f3, /1 and f, are obtained by combining the Stroh’s formalism
and the method of analytical continuation. For convenience of presentation their solutions are
written with all the subscripts of the variable { dropped, which may not be applied directly
to the full domain. To have an explicit solution valid for the entire domain, we employ the
translating technique introduced by Hwu [14]. The results are
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(1) A dislocation outside an elliptical inclusion
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(i1) A dislocation inside an elliptical inclusion
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(11i) A dislocation on the interface of an eliptical inclusion
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where
Ey = —By'BiCi + By 'Ba((74))Cx,
Ci = (Go - GGy 'Gp)~ (T + GxGy 'Tw),
0, = (&;'a| - B; B)"'(&; '4, - B; 'B))B;,
0, = (A7 'A2 - By 'B)"'(A] 'As - By BB,

[ ZATT (S4BT, outside,

(M1 - 1‘—42);{2 << (Cg ( ) ) >>§g, inside, (6a)

T, = J é
(M, — M)A, << ( ) >> interface,
and
= (M) + M>)A,,
(1, + Mode, .
= (M) — M2)A2((73))s
-
L= “_"’z.ﬂf_ (6¢)
a — tbp},
100 000 000
IL1=|1000|, ILL={010]|, IL=|000]. (6d)
000 000 001
M., k = 1,2, are the impedance matrices defined as My = —-inA;I. Note that the solutions

associated with the ¢g are ignored because the constant stress function does not produce stress,
which represents the rigid body motion.

With the solution given for the displacement vector u, the strain components ¢;; can be
obtained through the use of the strain-displacement relation. As for the stress components a;;,
they are related to the stress function vector ¢ by

oi1 = — 02, o2 = $i1, )

where a comma stands for differentiation. More generally, if ¢ is the surface traction at a point
on a curved boundary,

t=0¢/0s, (8

where s is the arclength measured along the curved boundary.
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Fig. 1. The geometry of a crack outside an elliptical inclusion.

3. Inclusions and various types of cracks

In this section, we consider the interactions between inclusions and various types of cracks
such as a crack located inside or outside the inclusions, a crack penetrating the inclusions,
and a curvilinear crack lying along the interface between the inclusion and the matrix. By
representing the cracks as a distribution of dislocation, a singular integral equation of the
Cauchy type is formed, which can be solved by a special numerical technique introduced in
[13].

(i) A crack outside the inclusions

Consider a crack located outside an elliptical anisotropic elastic inclusion subject to uniform
loading at infinity, see Fig. 1. Due to the linear property, the principle of superposition can
be used and the problem is represented as the sum of the following two problems: (a) an
elliptical anisotropic elastic inclusion embedded in an unbounded anisotropic matrix subject
to uniform loading at infinity; (b) same as the original problem except that no loading is
applied at infinity and the crack surface is subject to the loading which has an opposite sense
and equal magnitude as that obtained from problem (a) at the crack location.

As to problem (a), the solution has been found in [15,16], of which the stress function ¢7
and ¢ can be expressed as

¢t = 2Re{B1((z))8) + B1{((3))82}

s = 2Re{82<<&—_2—z;;)-£>>cl}, (%)

fl
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where
g = A{t5 + Bl ¢y,

1 5= + ibp — (9b)
g, = -B;’ {Beel + B <<Z — :bﬁ >>6’1 — Byt -Bz((’Ya))Cl}

and

¢ = —i{Go - E]G-EIG]}‘I{AI_Tel + EIEOZI‘TEI},

_ 1 .
er = 3{(a—1bpa))8;,
9¢
a'i’; e‘lxl’ ( )
=108, =]
035 2633

o;7 and €7 are the uniform stresses and strains at infinity. The superscript u denotes that the
solution is related to the uncracked problem.

For problem (b), we represent the crack as a distribution of dislocation. By integrating the
solution shown in (1a); and (3) for the dislocation located outside the inclusion, we have

!
#i(s) = —— [ Re{iB((log(za - 22)))BT}B(t) dt

s

_%/_ll Re{iBl <<—log (1 - nga>>>Bf}ﬁ(t)dt

1 &
1 / > Re{iBi((C2*))Ex}B(t) dt
T/

(10)

IR .
2 [ S Re(iBi((log(¢z" - G))BT BB B0 .
py

where the superscript d denotes that the solution is obtained by integrating the dislocation
solutions. B3(t) stands for the dislocation density at point ¢, which is an unknown function
to be determined by the boundary conditions. The variables s and ¢ are related to z, and 2,
by

2o = (20 + pazl) + s(cos a + p, sina), (11)

24 = (29 + pazd) + t(cos @ + p, sin a)

where (z(l’, mg) is the coordinate of the crack center and s (or t) denotes the distance from the
crack center to point z, (or Z,). The integration limits £ are the ends of the crack whose
length is 27.

Through the use of superposition principle, we now obtain the stress function ¢, of the
original problem as

¢, = oY + & (12)
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If the traction ¢, along the crack surface is considered to be zero, we have

991

= ~£*,  along the crack surface, (13)
S

where ¢ denotes the traction along the crack location induced by problem (a) and is related
to ¢} by t = 9¢} /0s. Substituting (10) into (13), and reconstructing the results into a form
of singular integral equation, we have

17! 1 L.
~5 /_ B di+ /_ Ki(t,$)8(t) dt = ~t3(s) (14a)
where
N » 1 . —Ya aca T
b= e (2 )1}

L))

1 2 . -1 ach ~1%5 r -1
_;;Re {lB] <<—"‘——‘—‘<a(1 - Caé_j)_és_>>Bl BB, } ,

0o 2¢%(cos a + p, sin @)

ds ~ (a— ibpa)C2 — (a+ ibpa) (14¢c)

K, is a kernel function of the singular integral equation and is Holder-continuous along
—? < s < £. Ly is areal matrix defined as

L, = —2iBBY. (15)

If we nondimensionalize the variables s and ¢ by letting £ = s/{ and np = t/¢, then (14a) may
be rewritten as

! 1
5= [ LB —gan+ [ Kitn,8(n)dn = ~t3(c). a6)

21 J_i

The requirement of crack tip continuity will lead to the following single-valued displacement
condition,

1
/ Bn)dn=0. (17
Since the order of the singularity at the crack tip is —1/2, it is convenient to let

B
Bl = =, (18)
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where 3(n) is Holder-continuous along —£ < s < £. Up to now, the entire problem has been
reduced to finding the unknown function [3(17) from the singular integral equations (16)—
(18). Through the use of the numerical technique introduced in [13], which is also shown
in the Appendix for completeness, the unknown dislocation density 3(¢) can be determined.
With 3(t) found by the traction-free boundary condition shown in (16), the single-valued
displacement requirement shown in (17), and the numerical technique shown in the Appendix,
the whole field solution for the stresses at point 2, can be calculated by substituting 3(t) into
(9), (10) and (12). Note that the solution for ¢, is not shown here for the sake of succinctness,
which may easily be calculated by ¢, = ¢% + ¢%.
With the usual definition, the stress intensity factors may now be calculated by

K
K= { Kn } = lim \/27(£€ - 1)eTt(€)

K (19a)
¢
= _‘/Zir__TLlﬂ(il) sgn(£1).
where T is the transformation matrix defined as
—sina cosa O
T= cosa sina O (19b)
0 0 1

and the sign function sgn(¢) is defined as sgn(§) = 1 if £ > O and sgn(¢) = —1if £ < 0. It
should be noted that during the derivation of (19), the following relation has been used,

Y fmdn 7 f(§)
-1V/1=-n}(n-§) -1

Moreover, the stresses ¢(£) near the crack tip (¢ — £1) can be obtained by substituting (9),
(10), (12) and (18) into (8), and using the relation shown in (20). The result is

sgn(£) + regular terms, when [£| > 1. (20)

l;(f) sgn (€) + regular terms. (21

t(€) = _%Ll\/—z—;_l

(11) A crack inside the inclusions

Consider a crack located inside an elliptical anisotropic elastic inclusion subject to uniform
loading at infinity, see Fig. 2. By a way similar to that described in the above subsection, one
may set a singular integral equation as (14a) for the unknown dislocation density 3(?), except
that now L; should be replaced by L, = —2iBng and K; should be replaced by K> as

Kaltys) = -3 Re{iBal(h(c™ +ak ) o),
"kl ’ (22)
o _ 2(3(cos a4 py sin @)

ds T (a—ibpg)(3 - (a+ ibpy)’
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a

Fig. 2. The geometry of a crack inside an elliptical inclusion.

Fig. 3. The geometry of two cracks located simultaneously outside and inside an elliptical inclusion.

The formula for the stress intensity factors will also be the same as (19a) except that L, is
replaced by L;.

(1i1) A crack penetrating the inclusions
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To consider the penetrating cracks, we first deal with the case that two cracks locate
simultaneously inside and outside the inclusions, Fig. 3. By a way similar to that described in
subsection (i), we now obtain the singular integral equation as

1 -1
5 | Ll,@l(tl)

L
dtl +/1 Ku1(t1,1)8:(t1) dty
=

+ Klz(tz,sl)ﬂz(tz)dtz— —tins
(23a)

b .
o t dt Kn(t, t)dt
. /_lszﬂz( 2)t2—32 2+/_12 2(t2, 2)B,(t2)dts

I .
+/ 1 Ka1(t1, $2)B: (1) dt; = —15,,,
—i]

where

A oot

e fo{{ i) |
bt = Lo ( ) )

1wl

——ZRe{zB << ko k+1)3Ca>>Bl-132

(3 (e ()]

Ky (t2,8) = —%iRe{iBz<<k(§§ L k+1))6Ca>>Ck},

k=1

Ky (t1,80) = ——ZRC{ <<k(Ck g ykes (k+1))3Ca>>Ck}

k=1

(23¢)
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z-plane C, - plane

Fig. 4. The geometry of a curvilinear crack lying along the interface of an elliptical inclusion and the relation
between z-plane and («-plane.

B,(t) and B,(t) denote, respectively, the dislocation density along the cracks outside and
inside the inclusions. They will be determined by the set of singular integral equations shown
in (23) and the single-valuedness requirement for both of the cracks. The stress intensity
factors for both of the cracks can be calculated by

V4 7Té1;

K; = 3 TL:3;(x1)sgn (1), i=1,2, (24)

where the subscripts 1 and 2 denote the values outside and inside the inclusions.

With the above results, by letting the distance between these two cracks approach to zero,
we may approximate the condition of penetrating cracks. The detailed discussion of this
approximation is shown in the next section.

(iv) A curvilinear crack lying along the interface

Consider a curvilinear crack lying along the interface between the inclusions and the
matrices, see Fig. 4. In the same manner as the problem discussed in subsection (i) for a
crack outside the inclusions, we represent the problem as the sum of two problems. One is a
uncracked problem of which the solution is given in (9), the other is a loaded crack problem
of which the crack is represented as a distribution of dislocation. The difference is that the
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dislocation is lying on the curvilinear interface. By integrating the solutions given in (5) along
the elliptical interface, we have

#5)= —1 [ Re(iBa(loglca - Ga))@:8(0)

_%/_‘: Re{iBz <<10g (1 - nga)>>Q2},8(t)dt 25)

—% /_a i Re{iBa(((5 + 75(2 ")) Ck}A(t) dt.

@ k=1

In the above, only the stress function ¢, for the inclusions are shown, since in the following
discussion about the boundary conditions of the traction-free interface crack either of ¢; or
¢, can be used. We choose ¢, for its relative simplicity. After determining the dislocation
density from the boundary conditions and the single-valued requirement, the calculation of the
whole field solutions should include both ¢; and ¢, depending upon the point considered.

In (25), s (or t) denote the angle from the crack center to point z,, (or 2,) in {,-domain.
The integration limits +o are the ends of the cracks whose angle is 2« (in (,-domain). It
should be noted that use of the values in {,-domain is just for the convenience of mathematical
manipulation. For engineering applications, one should know the geometric relations between
z-domain and {,-domain, which are (also see Fig. 4)

2o = 21 + PLaxs = a cos(ap + s) + bp}, sin(ep + s), (26)

where ay is the angle of the crack center from the z-axis in {,-domain.

By following the steps stated in (12)—(14), and carefully differentiating ¢S along the
curvilinear crack boundary (one may refer to [17] for detailed derivation about differentiation),
we obtain

1 /“ 2Re(iB2Q;) 1 ﬁ(t)dt+/a Ky(t,5)8(t) dt = ~¢; @79

Tor o p(s) t—s
where
~ _ __1_ . Q2 < 2 _ i — S)}
Kf(t,S) = ﬂ_Re{ 2B22p(8) PR cot )
1 . =1 Yo
—yRe {’BZ <<p(s) cilarts) gilaotD) — 7 >> QZ} (270)
1 . =tk ik(aots) _ . —ik(cots) >> }
71'Rf:{zB2<<p(S)(e Yol )} )Cr o,
and
p2(s) = a® sin*(ag + s) + b* cos?(ag + ). (27c)

Nondimensionalization by £ = s/« and 1 = t/o for (27a) leads to

1 ! 1 1,
--—/ Lfﬂ(’?)mdﬂ+/_1Kf(’7a§).3(71)d’7: ~t, (28a)

27 J1
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where

2 .
Lf = —pERe(’LBzQZ). (28b)

The single-valued displacement requirement can also be written in the same form as (17).
At first glance, the kernel function given in (27b) seems to be singular for the presence of
the term ;2. However, by expanding the cot 152 into the series expression as

<. (29)

t—s 2 t—s (t—s)® [t—s
cot —_ — p— — ey, —
2 t—s 6 360 2

we see that K; will still be Holder-continuous along the curvilinear crack.

Till now, we have set the traction-free boundary conditions by the singular integral equation
shown in (27), and the single-valued displacement requirement shown in (17). Like those stated
in subsection (i), the next thing should be finding a numerical technique to solve the unknown
dislocation density 3(t). The technique shown in the Appendix is valid for 3(¢) to be singular
in the order of —1/2. It is well known that the singularity order of the interface crack is
—1/2 + e where ¢ is the oscillation index depending on the materials of the matrices and
the inclusions. To overcome this problem, it looks like a new numerical technique should
be developed. However, unlike singularity, oscillation will not cause numerical overflow.
Moreover, by the experimental study of Hwu et al. [18], we see that the oscillation index ¢
is usually very small which means that the range of its influence is limited. The values of
the bimaterial stress intensity factors considering the oscillation effects are also very close to
those of the conventional stress intensity factors considering only the —1/2 singularity. With
the above reasons, the numerical technique shown in the Appendix is still employed, and the
stress intensity factors calculated by (19) are still used except now L; is replaced by Ly and ¢
is replaced by .

4. Results and discussion

Since there are no analytical solutions existing for the general cases of interactions between
cracks and inclusions, in the following the comparison is made with the numerical results
obtained by the other methods or with the analytical results for the special cases which can
be reduced from the present problems. Following is the discussion of the comparison of each
type of crack considered in this paper.

(i) A crack outside the inclusions

To verify our results, we first consider the degenerate cases where both of the inclusions
and the matrices are isotropic. Table 1 shows that our results for the stress intensity factors
are almost the same as those presented by Erdogan et al. [2], in which the material properties
are chosen to be G3/G = 23, = 0.35,v, = 0.3; the geometry is represented by b/a =
1,£/a = 0.5, a = 0° and the uniform loading 055 is applied at infinity. The difference is that
our solutions are suitable for general anisotropic media and the shape of the inclusions is an
ellipse which includes circle and line, however, those presented by [2] are valid only for the
isotropic media and circular inclusions

Another comparison is made with Patton and Santare [4] for rigid elliptical inclusions,
in which the Poisson’s ratio v of both inclusions and matrices is chosen to be 0.25, and
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Table 1. The stress intensity factor for a crack outside an isotropic circular inclusion (K™ = K/v/xlo5)

K7 (=) Ki(-0) K7 (1) Ki (1)
(z9/a,z3/a) present Erdogan* present Erdogan® present Erdogan* present Erdogan*
(1.4,0.5) 0.496 0.483 0.164 0.167 0.783 0.781 —-0.064 0.002
(1.5,0.5) 0.613  0.613 0.061 0.057 0.817 0.817 —0.067 —0.005
(1.75,0.5) 0.750 0.752 -0.041 -0.047 0.878 0.878 -0.062 -0.012
(2.0,0.5) 0.834 0.833 ~0.062 —0.068 0915 0914 ~0.052 -0.012
(3.0,0.5) 0.956 0.952 —-0.035 -0.041 0.973 0.970 -0.024 -0.006
(4.0,0.5) 0.982 0.980 —-0.016 -0.021 0.987 0.985 -0.012 -0.002

(* Erdogan et al. [2])

1.00
0.75 |-
-
o~
—
N
i bla=713
050 |- present (k=10°) 1
[ 0  Patton and Santare (1990)
0.25 N " M N | I " " N [ " N N " i " " N N
0.00 0.25 0.50 0.75 1.00

d/R

Fig. 5. The stress intensity factor for a crack outside an anisotropic circular inclusion
(/R =0.5,a0 =0° R =(a+b)/2).

the hardness index k(= E,/E;) is chosen to be 10° to represent rigid inclusions. Figure 5
shows that our results are exactly the same as those presented in [4] for the cases of rigid

inclusions.
The next example is for the general anisotropic elliptical inclusions. Consider a unidirec-
tional composite laminate with the matrix material properties given by

E; =12GPa, E,=06GPa, Gi;=0.07GPa, v = 0.071,
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2.0 [y ettt et e e
present
Hwu and 1
Liao (1994) ]
.
< —
*N
X
1
00 i
0.00 2.00 4.00 6.00 8.00
d/l

Fig. 6. The stress intensity factor for a crack outside an anisotropic circular inclusion (K7 = Ki/vVxlo55,[0°]s
laminates).

and the inclusion is chosen to be

(Ei)2 _ (Gijh _
(En (Ggh 7

where k is the hardness index whose value is given in the figure. The geometry properties
used in our example are b/a = 1,£/a = 0.5, = 0°, and d denotes the distance from the
crack tip to the inclusion boundary. From Fig. 6, we see that a little discrepancy occurs when
the distance d/£ < 5. The inaccuracy should come from [11] since they said that their solution
will not be good enough when the crack comes closer to the inclusions. The reason that
their approximation fails is due to the subregion technique used in their boundary element
formulation, which may cause boundary effects when the distance between the cracks and the
inclusions is too short. However, in our formulation, we do not have this problem since the
convergency when the dislocation is near the interface has been proved by Yen et al. [12].

=12,

(ii) A crack inside the inclusion

In this case, we use the same material, geometry and loading conditions as in Table 1
except Go/G1 = 3,1 = 0.3 and now the crack is located inside the inclusions. After actual
numerical calculation, the results for the stress intensity factors can be shown to be identical
to those presented in [3].

(iii) A crack penetrating the inclusions

We first check the case when two cracks locate simultaneously outside and inside the
inclusions. By using the same material, geometry and loading conditions as in Table 1 except
G,/Gy = 23.077,41/a = 0.5,4,/a = 0.25 and now we have two cracks instead of one, the
results for the stress intensity factors in Fig. 7 can be shown to be identical to those presented
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e U —

15F _— present 7

4] Erdogan and Gupta (1975)

stress intensity factors

1.0 K; () 4
05t
i 1
I 1
| .
0.0 [ " L i i I i A . . H - 5 n " 1 i " " i
0.0 0.5 1.0 1.5 2.0

d,/l,

Fig. 7. The stress intensity factor for two cracks located simultaneously outside and inside an isotropic circular
inclusion (K (=) = Ki(—=l)/v7lio5s, K{'(h) = Ki(L)/VTl05).

LR e e e o T U —

14F ——— present solution for two single cracks .
o Hwu (1991) for two single cracks
13F X analytical solution for one merged crack 1

dil

Fig. 8 The stress intensity factor for two collinear cracks in homogeneous anisotropic materials

(K',' = Kl/\/ 7!'1165?).
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LR T S ST

present solution for two single cracks

30k X Erdogan and Gupta (1975) for a penetrating crack ﬂ

1.0+

stress intensity factors

Kl,)

“0.0 0.2 0.4 0.6 0.8 1.0

dil

Fig. 9. The stress intensity factor for two cracks located simultaneously outside and inside the inclusion

(K (L) = Ki(l)/vVrlhoss, K (—b) = Ki(—bk)/Vrhe$).

in [3]. To approximate the condition of penetrating cracks, we let the distance between these
two cracks approach zero. Figures 8 and 9 show the study of the stress intensity factors when
the distance between two cracks is approaching zero. The same material properties of the
matrices and the inclusions have been used in Fig. 8 to simulate the case of homogeneous
anisotropic media containing two collinear cracks, whose analytical solutions have been
shown in [19]. The important thing in the discussion of penetrating cracks is the correctness
when the distance d is made to be zero. From Fig. 8 we see that although our results for two
collinear cracks are almost identical to the analytical results given in [19], when d — 0 it
is still difficult to get the exact result for a merged (penetrating) crack. The error is about
(1.414 — 1.206)/1.414 x 100% = 14.7% when we use d/¢ = 0.01. A similar situation is
shown in Fig. 9 (the material, geometry and loading conditions are the same as in Fig. 7 except
{1/a = £3/a = 0.25), in which the error is about 1.77 percent for K;(~{;) and 29.4 percent
for K7 (). The reason for this inaccuracy may come from the following facts. Two single
cracks with infinitesimal spacing will let the inner tip stress intensity factor approach infinity
which is the thrust for emerging two cracks into one larger crack. The closer the distance, the
larger the inner tip stress intensity factors, which is very different from the penetrating crack
because the stress intensity factor for the penetrating crack at this portion (the inner tips of two
single cracks) is zero since no crack tip exists at the inner portion of the penetrating cracks.

(iv) A curvilinear crack lying along the interface

To verify our results, we consider the simplest case where the matrices and inclusions are
composed of the same materials. That is, we consider a curved crack with radius « located in
a homogeneous medium subject to uniform loading o{} at infinity. Figure 10 shows that our
solutions for the stress intensity factors of curved cracks in homogeneous isotropic materials
are exactly the same as the analytical solutions presented in [20]. As expected these factors are
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independent of the material properties for the isotropic media. However, it is quite surprising
that they do depend upon the material properties for general anisotropic media.

Another comparison is made with Perlman and Sih [21] for the curvilinear interface cracks
between two dissimilar isotropic media subject to uniform loading o} at infinity, in which the
Poisson’s ratio of both inclusions and matrices is chosen to be 0.25, and the hardness index
k is given in the figure. From Fig. 11, we see that our solutions are almost the same as those
presented in [21] for this simplified case

5. Conclusions

The general solutions of the interactions between various cracks and anisotropic elliptical
inclusions are provided in this paper by applying the analytical solutions of the dislocation
problems and the technique of numerical solution on the singular integral equation. Because
the general solutions of the interactions between various cracks and anisotropic elliptical
inclusions cannot be found in the literature, we compare the numerical results of some special
cases to prove our results are correct and universal. Due to the series terms given in the
analytical solutions for the dislocation problems (of which the convergency has been studied
in [12]), the efficiency of the present method will be reduced when the crack tip is near
the interface. Moreover, owing to the inherited difference between two single cracks with
infinitesimal spacing and one penetrating crack, our results for penetrating cracks are just
approximate.

Appendix
Using the analytical solutions of the interactions between dislocations and inclusions to treat

the problems of the interactions between cracks and inclusions, we will always obtain a
singular integral equation as

=L [ B(n)
= [ 2B+ [ ke oBman=sie), Iel<1 A1

and another equation from the single-valued condition

/ 11 B(n)dn = 4, (A2)

where B(n) is the unknown function, K(n, £) is the kernel function which is bounded in
[—1,11, f(€) is a known input function which is also bounded in [-1,1], and L and A are
constants. A is usually equal to zero for single-valued condition. Because the singular order
of B3(n) in this paper is 5, ﬁ(n) can be expressed as

B(n) = w(n)B(n),
1 (A3)

w(n) = T

where ﬁ(n) is a continuous function in [—1,1].
From the paper of Gerasoulis [13), we can divide the interval [—1,1] into 27 parts (usually
in 2n equal parts). Define 7o = —1,7; = 7i-1 + hi,i = 1,2,...,2n where h; is the length of
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Fig. 10. The stress intensity factor for a curvilinear crack in homogeneous media (K} = Ki/o{®\/7a,

Ki = Ku/oit+/7a; material 1: By = 133.8GPa, E; = E; = 9.58GPa, Gy, = Gi3 = Gy = 4.8GPa,
Vi = Vi3 = V33 = 0.28; material 2: E1 = 48.27GP3., Ez = E3 = 17.24GPa, G]z = Gl3 = G23 = 6.9GPa,
vi2 = vi3 = vo3 = 0.28; material 3: isotropic materials).
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Fig. 11. The stresses along the curvilinear interface between the inclusion and matrices (@ = 0°, 0 = 7i;/07°).

the 7th interval. Applying the Lagrange interpolation formula for three points to approximate
B(n) in (A.3), K(n, £)B(n) and 3(n) can be expressed as

2k
> L(mK(ni, )B(m:),

K(n,€)B(n)

B(n)

1=2k-2

2% A
> L(n)B(m),

1=2k-2

(A.4a)
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and
2%k .
Lm= ]I (-—7_%.), (A.4b)
Jj=2k—2 i — 1
J#i

foreach k£ = 1,2,...,nand pk—2 < N < M2k-
From (A.4a) and (A.4b), we find that (A.1) and (A.2) are approximated by

n 2k Tk
&)= 1 { > Am) [/ ———n(_gzi(n)dn}}
k=1 Mk-2

= 1=2k-2
n 2k ) Tk
+Z{ Y K(n;,8) [/ w(n)li(n)dn}}, (A.5)
k=1 |i=2k-2 k=2

n 2k R Nk
A= Z{ S Bn) [/ w(n)zi(n)dn”.

k=1 | i=2k-2 2k=2

After integration, we can obtain

RE) = =2 S ABOB(mk2) + FulOB(maenr) + Gr(OB(m)
k=1
+> {arK(mr-2,€)B(121-2)
k=1 (A.6a)
+ beK(mok—1,€)B(m2k-1) + cxK(mr, )B(m2k)}

A = Z{akﬁ(nzk_z) + biB(mk—1) + cxB(ms)},

k=1

where

e w(p) _ M (2%, T2k—1)

l8) = sz—z n- Elzk-z(n) an = (k-2 — Mmk—1)(M2k—2 — k)’

M(mk, Mk-1)
Mk—-1 — Mk—2)(M2k-1 — M2k)’
M(mak—1, Mm2k~2)
Tk — ak—2)(Mk ~ Tk-1)’
H(mk, me-1)
(mk—2 — mk—1)(M2k—2 — M2x)’

2k H(mk, mr-2)
b = / w { - dn = ,
k(f) 2k -2 (77) 2 1(77) 1 ("72k——1 - 772k—2)(772k—1 - 772k)

2k H(mk—1,Mk-2)
= w l dn = - 3
ek(£) /m_z (miz(r) dn (mr — mr—2)(Mk — Mk-1)

A = [ 2 man=

mx—2—&

Tk w(n)
) = ™ U0y )y =
/772k—2 n—¢§ ( (A.6b)

an(€) = / "::w(nﬂzk_z(n) dy =
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and

M(z,y) = /ﬂ:z,‘;’("g(n—w)(n y)dn

= \/l_n%k—2"\/1_77%k

+(€§ — = — y)(02r — O2k—2) + (€ — z)(€ — y) Ar(£),

M2k
H(z,y) = / w(n)(n—=z)(n—-y)dn
N2k—2
= (3 + 2y)(02k — 62k—2) + (z + y)(cos Bak — cOs Oap_s)
+% (sin 26,;, — sin 292k—2),
A M2k 1 4o
(&) = —/mk—z sin 6 — f
5 5 (A.60)
_ 1 log (=1+V1-+ém)r1+E-(1+V1- )y
V1-¢ (-1=-V1-+bm)n1+&-(1-V1-)r|
9 = sin~! p, 7, = tan( %’i) for all k. Equation (A.6a) can be reduced to
-—Z{W(E)ﬂ(nz) 2rViL™'K(n;, €)B(m)} = A(€)
" i=0 (A.79)
ZVz.B(Uz) =A,
=0
where
% =al, V'Zn = Cn,
Vi = [es + @it2]00 mod(i2) + bis181 moa(i)y ¢=1,2,...,2n -1,
2 2 2 (A.7b)

Wo(€) = E1(€),  Waa(€) = Gn(§),
Wi(€) = [G§(§) + EL-ZLZ(E)]ﬁo,mod(i,z) + szu(ﬁ)51,mod(i,2), i=1,2,...,2n—1.

6;,; is Kronecker delta. Let us choose 2n collocation point & for which 7 < €k < 41,k =
0,1,...,2n — 1. Then we obtain (2n + 1) linear equations from (A.7a) as

__Z{W (Ek)ﬂ(’rh) - 27I'VL—1K('I]“£]€),B(T]1)} f(fk) k= 0’ 1’ ’2 17

1=0

ZViB(Ui) =A
i=0

(A.8)

Solving the (2n + 1) equations and applying (A.3), we can obtain the value of the unknown
dislocation density function B(n)atp = n;, ¢ = 0,...,2n.
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