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Abstract

Two growth media containing arsenobetaine [ (CH3) 3 As' CH2000 " ] were mixed with coastal marine
sediments, the latter providing a source of microorganisms . The mixtures were kept at 25 ° C in the dark
and shaken for several weeks under an atmosphere of air . The disappearance of arsenobetaine and the
appearance of two metabolites were followed by HPLC . The HPLC-retention time of the first metab-
olite agreed with that of trimethylarsine oxide [(CH 3 ) 3AsO] . The second metabolite was identified as
arsenate (As(V)) using hydride generation/cold trap/GC MS analysis and thin layer chromatography .
This is the first scientific evidence showing that arsenobetaine is degraded by microorganisms to inor-
ganic arsenic via trimethylarsine oxide . The degradation of arsenobetaine to inorganic arsenic completes
the marine arsenic cycle that begins with the methylation of inorganic arsenic on the way to arsenobe-
taine .

Introduction

Various arsenic compounds occur in marine eco-
systems, a fact that has been proved by the iso-
lation and identification of each arsenic com-
pounds from many organisms during the past
decade (Edmonds & Francesconi, 1988 ; Maher
& Butler, 1988). A report by Edmonds et al.
(1977) on the occurrence of arsenobetaine in the
tail muscle of lobster, stimulated a number of
subsequent studies in this field . Resulting from
these studies, a widely accepted hypothesis has
been advanced to explain the conversion of ar-
senic in marine food chains . This involves the
uptake from seawater, concentration and conver-
sion of inorganic arsenic to organoarsenic com-
pounds by phytoplankton or algae . The orga-
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noarsenicals produced, such as arsenosugars, are
further metabolized via the food chain and bio-
accumulated as arsenobetaine in marine animals .

We have also confirmed the ubiquity of arse-
nobetaine in marine organisms (Hanaoka &
Tagawa, 1985a, b ; Hanaoka et al., 1986,
1987a, b) . In recent years, we have been more
interested in the circulation of arsenic in marine
ecosystems (Hanaoka et al., 1987c, 1988, 1989,
1991; Kaise et al ., 1987) rather than the biocon-
version of inorganic arsenic to arsenobetaine . In
particular, we have been most interested in the
fate of arsenobetaine after the death of marine
animals .

In the present study, we show that arsenobe-
taine is degraded to inorganic arsenic via tri-
methylarsine oxide by sedimentary microorgan-
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isms under aerobic conditions . A tentative arsenic
cycle is proposed of marine ecosystems on the
basis of the results .

Experimental details

The sediments were collected from the coastal
waters of Yoshimi facing the Shimonoseki Uni-
versity of Fisheries in August and November,
1989. Two media were used for the degradation
experiments. These were (a) ZoBell medium
(5 ZoBell 2216E (g dm -3 filtered sea water) :
peptone 1.0 ; yeast extract 0 .2), and (b) inor-
ganic salt medium (aqueous solution of inorganic
salts at pH7 .5 (g dm -3) : sodium chloride
(NaCI) 30 .0; calcium chloride (CaC12 . 2H20)
0.2 ; potassium chloride (KC1) 0.3 ; iron
(II) chloride (FeC12 . nH2O) 0.01 ; phosphates
(KH2PO4) 0.5 and (K2HPO4) 1.0; magnesium
sulphate (MgSO 4 . 7H20) 0.5; and ammonium
chloride (NH4C1) 1.0). Synthetic arsenobetaine
[(CH3 )3As+CH2000 - , 50 mg] and sediment
(1.0 g) were added to each medium (25 cm 3 ) in a
50-cm3 Erlenmeyer flask .

The flasks containing the mixtures were kept at
25 ° C in the dark and shaken for 9 or 12 weeks
under an atmosphere of air . Mixtures autoclaved
at 120 ° C for 20 min served as controls . Filtered
aliquots from the mixtures in the flasks were with-
drawn at intervals of several days and diluted
with distilled water to 20 times their volume. The
diluted aliquots were then analyzed for arsenic
compounds by high performance liquid chroma-
tography (HPLC) .

The arsenic compounds in the diluted media
samples were separated using HPLC (Toyo Soda
Co., CCP 8000 series, TSK Gel ODS-120T col-
umn, 4.6 mm x 250 mm) with a 11 .2 mmol dm -3
solution of sodium heptanesulphonate in water/
acetonitrile/acetic acid (95:5 :6 by volume) (Stock-
ton & Irgolic, 1979) as the mobile phase at a flow
rate of 0 .8 cm3 min -1. Fractions were collected
and an aliquot (20 mm3 ) of each fraction was
injected into the graphite furnace atomic absorp-
tion spectrometer as described previously (Ha-
naoka et al., 1988). Arsenite, arsenate and meth-

anearsonic acid did not separate under these
conditions .

Each mixture shaken for 9 weeks (ZoBell me-
dium) or 12 weeks (inorganic salt medium) was
centrifuged and the supernatant was placed on a
Dowex 50W-X2 column (1 x 50 cm) equilibrated
with 0.1 mol dm - 3 pyridine-formic acid buffer
(pH 3.1) and eluted with the same buffer and
0.1 mol dm -3 pyridine successively .

Each purified metabolite was analysed using a
combination of gas chromatographic separation
with hydride generation followed by a cold trap
technique and selected ion monitor mass spec-
trometry (Kaise et al., 1988). Each metabolite
was also chromatographed on a cellulose thin
layer plate (Funakoshi Yakuhin Co . Ltd ., Avicel
SF, 0.1 mm). Five solvent systems were used
for development: ethyl acetate/acetic acid/water
(3:2:1), chloroform/methanol/25% aqueous am-
monia (2:2:1), 1-butanol/acetone/formic acid/
water (10 :10:2:5), 1-butanol/acetone/25% aque-
ous ammonia/water (10 :10:2:5), and 1-butanol/
acetic acid/water (4 :2 :1). Detection of the spot
occurred during SnC12-KI reagent (Tagawa,
1980) .

Results

Microbial conversion of arsenobetaine

Figure 1 shows the reduction of arsenobetaine
and subsequent production of the two metabo-
lites in each media with time . In both media, the
disappearance of arsenobetaine and the appear-
ance of two metabolites were followed by HPLC .
The recovery of these arsenic compounds is ex-
pressed as the percentage of the graphite furnace
AAS signal obtained for a metabolite to the sig-
nal for arsenobetaine in the control . The com-
pound with an HPLC-retention time of 20-22 min
was labelled metabolite-1, and that with a reten-
tion time of 2 .5-4 min as metabolite-2 . The re-
tention time of metabolite-1 was the same as that
of trimethylarsine oxide and that of metabolite-2
the same as arsenite, arsenate and methanear-
sonic acid . In both media, the arsenobetaine was



Fig. 1 . The conversion of arsenobetaine to two metabolites
(metabolite-1 and metabolite-2) by sedimentary microorgan-
isms in ZoBell medium and an inorganic medium .

eventually completely converted to metabolite-1
within 10-20 days of incubation . Production of
metabolite-2 commenced between 10-20 days
after incubation . In the ZoBell medium, metabo-
lite-2 was the only arsenic compound present, all
arsenobetaine and metabolite-1 having been used
up (Fig . 1) .

Isolation and identification of metabolite-2

The supernatant from each medium was ana-
lysed using cation exchange chromatography
(Dowex 50W-X2). Metabolite-2 was eluted with
0 .1 mol dm - 3 pyridine-formic acid buffer and the
metabolite-1 which was retained on the column
was eluted with 0 .1 mol dm - 3 pyridine. Metab-
olite-2 was isolated from the salts added to the
media and four trace amounts of other arsenicals
compounds by repeated chromatography .

Each purified sample of metabolite-2 was ana-
lysed using hydride generation/cold trap/GC
MS/SIM and thin layer chromatography . The re-
sults of the analysis of metabolite-2 from the Zo-
Bell medium are shown in Fig . 2. The metabolite-
2 from the inorganic salt medium showed a sim-
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ilar chromatogram . Since only arsine (AsH 3 ) was
detected in this analysis, it was confirmed that
metabolite-2 was inorganic arsenic . Further, the
thin layer chromatography of each sample of
metabolite-2 produced only a single spot positive
to SnC12-KI reagent, and each R f value was the
same as that of arsenate in five solvent systems
tested (Table 1).

These results suggest that metabolite-2 was ar-
senate and provide the first evidence that arse-
nobetaine is degraded to inorganic arsenic by sed-
imentary microorganisms .

Discussion

In similar experiments previously reported by us
(Kaise et al., 1987 ; Hanaoka et al., 1988), metab-
olite-1 was identified as trimethylarsine oxide
using thin layer chromatography, 1H and 13C
NMR spectrometry and FAB mass spectrome-
try. It was demonstrated that arsenobetaine is
degraded to inorganic arsenic via trimethylarsine
oxide by sedimentary microorganisms . This result
is slightly different to that obtained using micro-
organisms associated with marine macroalgae

Table 1 . Rf values in TLC of Metabolite-2 and reference ar-
senic compounds

Sample

	

Rf value

Solvent systems ; 1, ethyl acetate/acetic acid/water (3 :2 :1) ; 2,
chloroform/methanol/aq . ammonia (28%) (2:2 :1); 3,
1-butanol/acetone/formic acid (85%)/water (10 :10:2 :5); 4,
1-butanol/acetone/aq . ammonia (28 %)/water (10 :10 :2 :5) ; 5,
1-butanol/acetic acid/water (4 :2 :1).

Solvent system
1 2 3 4 5

Metabolite-2
(Inorganic medium)

0.51 0.00 0 .59 0.00 0.30

Metabolite-2
(Zobell medium)

0.51 0.00 0 .59 0.00 0.30

Arsenate 0.51 0.00 0 .58 0.00 0.31
Arsenite 0.27 0.32 0 .36 0.13 0.20
Methanearsonic acid 0.65 0 .11 0 .60 0.00 0.62
Trimethylarsine oxide 0.88 0.83 0 .57 0.50 0.72
Arsenobetaine 0.78 0.73 0 .61 0.44 0.73
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Fig. 2 . The SIM chromatograms of metabolite-2 (the upper figure) and those of arsine (AsH3), methylarsine (MA), dimethylarsine
(DMA) and trimethylarsine (TMA) volatalized from each standard arsenicals (the lower figure) .

(Hanaoka et al., 1989), where arsenobetaine was These results suggest that sedimentary microor-
converted to trimethylarsine oxide and/or dime- ganisms may play a major role in the degradation
thylarsinic acid, but not to inorganic arsenic .
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Fig. 3 . A tentative cycle of arsenic in marine ecosystems .

although arsenobetaine-decomposing microor-
ganisms are probably ubiquitous in marine sys-
tems .

The conversion of arsenic compounds depends
upon whether the conditions are aerobic or anaer-
obic. The in vitro experiments performed with me-
thylarsenicals (arsenobetaine, trimethylarsine
oxide, dimethylarsinic acid and methanearsonic
acid) and sedimentary microorganisms under
anaerobic conditions, showed that little or no ar-
senobetaine was converted to its metabolites,
though the methylarsenicals other than arsenobe-
taine were converted to less methylated arsenic
compounds (Hanaoka et al., 1990). This suggests
that the degradation of arsenobetaine to trimeth-
yarsine oxide probably takes place mainly in aer-
obic environments such as the water column or at
the surface of the bottom sediments. The further
degradation of trimethylarsine oxide to less meth-
ylated arsenicals may occur by the microorgan-
isms in both aerobic and anaerobic environments .

A complete arsenic cycle can now be formed by
linking the results of this study with the generally
accepted hypothesis on the biosynthesis of arse-
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nobetaine (Fig. 3). Arsenobetaine, which is de-
rived via the food chain and accumulated in ma-
rine animals, is degraded step by step to inorganic
arsenic by microorganisms after the death of those
animals. Dimethylarsinic acid and methanear-
sonic acid are possible intermediate degradation
products. Arsenocholine, considered to be the
precursor of arsenobetaine, may also occur as an
intermediate degradation product .

Conclusions

Arsenobetaine was degraded to inorganic arsenic
via trimethylarsine oxide by sedimentary micro-
organisms. From this and other evidence, it is
postulated that there is a marine arsenic cycle
which begins with the methylation of inorganic
arsenic on the way to arsenobetaine and termi-
nates with the complete degradation of arseno-
betaine to inorganic arsenic .
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