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Abstract 

The use of roots transformed by Agrobacterium rhizogenes in models for the rhizosphere is discussed. A 
list of species for which transformed root cultures have been obtained is provided and the example of 
studies of cadmium assimilation from sewage sludges is given to illustrate how transformed root cultures 
can be used in physiological tests under non-sterile conditions. 

Introduction 

Our objective in this paper is to comment on the 
usefulness of roots transformed by Agrobacterium 
rhizogenes in rhizosphere research, with the aid of 
an example: the study of cadmium availability in 
sewage sludges. 

The principal difficulty that has impeded under- 
standing of the plant root and its relationships 
with the soil and the organisms living in the soil 
is that of access. The rhizosphere is hidden from 
view and once disturbed no longer functions in a 
normal fashion. Underground plant organs are 
fragile and chemical interactions with the soil are 
complex. The rhizosphere organisms are for the 
most part microscopic, numerous and varied. 
Study of the rhizosphere would ideally take place 
in situ, using the full resources of microbiology, 
plant biology, ecology, and soil chemistry. How- 
ever, a system as complex as the rhizosphere is 
difficult to approach experimentally without sim- 
plification. 

Attempts to model, and thus simplify, certain 
functions of the plant root and its interactions 
with the exterior have been limited by several 
obstacles: e.g., roots cannot be obtained in large 
quantities under axenic conditions and many of 
the parasites of importance to the root are obli- 
gates - they cannot be cultured in vitro away from 
the root. Attempts to study roots produced 
through hydroponics have been limited by the fact 
that the conditions are not sterile and aerial plant 
organs are a source of complexity. Attempts at 
using root cultures to produce model rhizospheres 
[40, 54] have been limited by the generally slow 
growth and fragile nature of these cultures. 

Roots induced by the soil bacterium Agrobacte- 
rium rhizogenes are amenable to culture [ 55 ]. The 
physiological basis for this phenomenon is not 
known, but it is certainly due to the presence in 
the plant genome of T-DNA (transferred DNA) 
of bacterial origin. A large plasmid (termed Ri, for 
root-inducing) is the source of the foreign genes 
responsible for the transformed phenotype, one 
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Table 1. Species t r ans formed  by A, rhizogenes. 

Species Roots  1 Plants  Reference 

Abrus precatorius 
Ambriosia artemisiifolia ( ragweed)  
Anagallis arvensis (pimprenel)  
Anchusa officinalis 
Antirrhinum majus ( snapdragon)  

Arabidopsis thaliana 
Arachis hypogaea (peanut )  
dristolelia australisica 
Artemisia annua 
Armoracia rusticana (horse  radish)  
Atropa belladonna (be l ladonna)  

Atropa caucasica 
Beta vulgaris (sugar beet  and  red beet  

Bidens sutphureus 
Brassica chinensis 
Brassica hirta (mus ta rd )  
Brassica napus var. oleifera (oilseed rape)  

yes 2 n o  

yes no  
yes yes 
yes no  
yes 2 no 

yes yes 
yes yes 
yes no  
yes 2 no  
yes 2 no 
yes 2 yes 2 

yes yes 
yes 2 yes 2 

yes no 
yes 2 yes 2 

yes no 
yes no 
yes no  
yes 2 no 

yes no 
yes 2 yes 2 
yes ~ yes 2 

K. Soo Ko (unpub.)  
[26] 
[26] 
[261 
[18] 
[26] 
[34] 
[26] 
E. Dav ioud  (unpub.)  
E. Dav ioud  (unpub.)  

[281 
[23] 
[22] 
E. Knopp  and  A. Strauss  (unpub.)  
A. Yacoub and  D. Tepfer (unpub.)  
[19] 
[26] 
[16] 
G . - L  Chi (unpub.)  
[26] 
[31] 
[17] 

Brassica oteracea (cauliflower) 

Brassica oleracea (cabbage)  
Brassica pekinensis 
Brassica rapa ( turnip)  
Calystegia sepium (morning  glory) 
Cassia torosa 
Cassia obtusfotia 
Cassia occidentalis 
Catharanthus roseus 

Catharanthus trichophyllus 
Centaurea cyanus (cornflower) 
Ciehorium endivia 
Cichorium intybus (endive)  

Cinchona ledgeriana (Peruvian  bark)  
Convolvulus arvensis (morn ing  glory) 
Coriandrum sativum 
Crepis capillaris 
Cucumis sativus (cucumber)  

Datura chlorantha 
Datura ferox 
Datara innoxia 

Datura metel 
Datara meteloides 
Datura rosei 

yes 2 n o  

yes 2 yes 2 
yes 2 yes 2 
yes 2 no 
yes 2 no 
yes 2 no  
yes 2 no 
yes 2 no  
yes 2 no  
yes 2 no 
yes 2 no 

yes no 
yes 2 no 

yes no  
yes no 
yes no 
yes 2 yes 2 

yes no 
yes z yes 2 

yes no 
yes 2 no  
yes 2 yes 2 

yes no  
yes no  
yes no 
yes no 
yes 2 no 
yes no 
yes no  
yes no 

[36] 
[11] 
J. Tourneur  (unpub.)  
G . - L  Chi (unpub.)  
[47] 
[49,221 
K. Soo Ko et al. (unpub.)  
K. Soo Ko et al. (unpub.)  
K. Soo Ko et al. (unpub.)  
[7] 
E. Aird  et aL (unpub.)  
[18] 
E. Dav ioud  (unpub.)  
[26] 
[261 
[26] 
G. Touraud  (unpub.)  
[181 
[49, 52] 
[26] 
[3] 
[56] 
[26] 
E. Knopp  and A. St rauss  (unpub.)  
E. Knopp  and  A. Strauss  (unpub.)  
E. Knopp  and  A. Strauss  (unpub.)  
[7] 
E. Knopp  and  A. Strauss  (unpub.)  
E. Knopp  and  A. St rauss  (unpub.)  
E. Knopp  and  A. Strauss  (unpub.)  



Table 1. (Cont inued)  

Species Roots  i Plants  Reference 

Datura sanguinea 
Datura stramonium ( j imsonweed)  

Daucus carota 

Dianthus caryophyllus (carna t ion)  
Digitalis lanata 
Duboisia myoporoides 
Ervammia obtusfolia 
Eucalyptus qunnii (eucalyptus)  
Foeniculum vulgare (fennel) 

Galinsoga parviflora (quickweed)  
Gentiana lutea (yellow gent ian)  
Glycine max (soya bean )  
Gypsophila muralis (babybrea th )  
Helianthus annuus (sunflower) 

Helianthus tuberosus (Jerusa lem ar t ichoke)  
Hyoscyamus albus 
Hyoscyamus aureus 
Hyoscyamus bohemicus 
Hyoscyamus muticus 

Hyoscyamus niger 
Ipomoea batatas (sweet  po ta to)  

Ipomoea aristolochiaefolia 
Ipomoea purpurea 
Kalanchoe daigremontiana 
Linum grandiflorum (flax) 
Lithospermum erythrorhizon 
Lotus corniculatus (bird 's  foot trefoil) 
Lupinus albus (white lupin) 
Lupinus polyphyllus (lupin) 
Lycopersicon esculentum ( tomato)  

L ycopersicon peruvianurn 
Macroptillium atropurpureum (siratro)  
Malus domestiea (apple)  
Medicago sativa ( lucerne)  

Medicago tornata 
Nicotiana africana 
Nicotiana cavicola 
Nicotiana glauca 
Nicotiana hesperis 

yes no 
yes 2 no 

yes no 
yes 2 no 
yes 2 no 
yes 2 yes 2 
yes 2 yes 2 

yes no 
yes a no 
yes 2 no 
yes 2 n o  

yes 2 no 
yes 2 no 

yes yes 
yes 2 yes a 

yes no 
yes 2 no 

yes a no 
yes no 
yes no 
yes 2 no 
yes 2 no 

yes no  
yes no 
yes no  
yes no  
yes 2 yes 2 

yes no 
yes no 
yes no 
yes no 
yes no 
yes no 
yes no 
yes no 
yes 2 yes 2 

yes no 
yes no  
yes no  
yes 2 yes 2 
yes 2 yes 2 

yes no 
yes no 
yes 2 yes 2 

yes no 
yes 2 yes 2 
yes 2 yes 2 
yes 2 no 
yes 2 no 
yes 2 no 
no yes 2 
yes 2 no 

yes yes 

E. Knopp  and  A. Strauss  (unpub.)  
[35] 
[261 
[551 
[451 
[49, 50, 52] 
[101 
[26] 
[7] 
[12] 
[7] 

[21 
[7] 
[26] 
A. At ta l  and  D. Tepfer  (unpub.)  
[26] 
E. Dav ioud  (unpub.)  
A. Yacoub and  D. Tepfer  (unpub.)  
[26] 
[26] 
C. At ta l  and  D. Tepfer  (unpub.)  
C. At ta l  and  D. Tepfer  (unpub.)  
E. Knopp  and  A. Strauss  (unpub.)  
E. Knopp  and  A. Strauss  (unpub.)  
E. Knopp  and  A. Strauss  (unpub.)  
[14] 
C. At ta l  and  D. Tepfer  (unpub.)  
[14] 
[131 
[26] 
[26] 
[26] 
[26] 
[26] 
[43] 
[37] 
[26] 
[26] 

[41 
[421 
[251 
[41 
[5] 
c .  Lambe r t  and  D. Tepfer  (unpub.)  
[5] 
[46] 
[44] 
C. At ta l  and  D. Tepfer  (unpub.)  
[33] 
[33] 
[48] 
[33] 
[57] 

2 9 7  
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Table 1. (Cont inued)  

Species Roots  i P lants  Reference 

Nicotiana plumbaginifolia 
Nicotiana rustiea 

Nicotiana tabacum ( tobacco)  

Nicotiana umbratica 
Nicotiana velutina 
Panax ginseng 

Petunia hybrida (petunia)  
Phaseolus vulgaris (bean)  

Pimpinella anisum (anis)  
Pisum sativum (pea) 
Polygonum aviculare (knotweed)  
Polygonum convolulus (corn b indweed)  
Polygonum hydropiper 
Populus tremula x Populus alba (poplar)  
Populus triehocarpa x Populus deltoides 
Psophocarpus tetragonolobus (winged bean)  
Raphanus sativus ( radish)  
Rheum palmatum ( rhubarb )  
Rumex erispus (yellow dock) 
Scopolia carniolica 
Scopolia japonica 

Scopolia straminifolia 
Sesbania rostrata 
Silene armeria (catchfly) 
Sinapis alba (white mus ta rd )  
Solanum laciniatum 
Solanum launatum 
Solanum nigrum (n ightshade)  

Solanum sysembrifolium 
Solanum tuberosum (pota to)  

Spergula arvensis (spurry) 
Tagetes erecta (marigold)  
Tagetes patula (marigold)  
Trifolium pratense (red clover) 
Valerianella locusta 
Vicia sativa ( common  vetch)  
Vigna aeonitifolia (moth  bean)  
Vigna unguieulata (cowpea)  

yes 2 yes 2 

yes no 
yes no 
no yes 
yes 2 yes 2 

yes = yes 2 
yes = yes 2 
yes 2 no 
yes 2 no  

yes no  
yes 2 no 

yes yes 
yes e no  
yes 2 no 

yes no 
yes 2 no 

yes no 
yes no 
yes no 
yes no 
no yes 2 

yes yes 
yes no 
yes no  
yes no 
yes no 
yes no  
yes no 
yes no 
yes no 
yes no 
yes no 
yes no 
yes no 
yes 2 no 
yes 2 yes 2 

yes no  
yes 2 no  
yes 2 no 
hes 2 yes 2 

yes no 
yes 2 no 
yes 2 yes 2 

yes no 
yes no 
yes no 
yes no 
yes no  
yes no  
yes yes 
yes no 

[21] 
[19] 
[41] 
[1] 
[49, 50, 51, 52] 
[9] 
[8] 
[33] 
[33] 
K. Soo Ko et aL (unpub.)  
[591 
[301 
C. At ta l  and  D. Tepfer  (unpub.)  
[18] 
[261 
[6] 
[26] 
[261 
[18] 
J. Carr  and  F. Le Tacon  (unpub.)  
[38] 
C. At ta l  and  D. Tepfer  (unpub.)  
[47] 
[26] 
[26] 
E. Knopp  and  A. Strauss  (unpub.)  
[15] 
[24] 
[27] 
E. Knopp  and  A. Strauss  (unpub.)  
[261 
[26] 
[26] 
[181 
[7] 
[58] 
[26] 
[7] 
[36] 
[31, 32] 
[29] 
[39] 
[20] 
[26] 
[26] 
[15] 
[5] 
[26] 
[26] 
K. Sukhap inda  and  E. Shah in  (unpub.)  
[26] 

1 Stable,  axenic root  cultures 
z Biochemical  conf i rmat ion of  t r ans format ion  obtained.  



attribute of which is facility of culture (see [53] for 
further discussion). The roots of well over 
100 dicot species have been transformed and cul- 
tured. Table 1 gives a list that is representative of 
the diversity of the species transformed, but is not 
complete, the true number being difficult to de- 
termine because such results often remain un- 
published. Transformed root cultures have been 
used in a number of rhizosphere applications, 
including the culture of obligate parasites and the 
study of root secondary metabolites and exudates. 
These aspects are reviewed in [ 53]. In the present 
article a novel use for such cultures is described 
with the intent of illustrating the diversity of the 
applications possible with transformed roots. 

The assimilation of substances from the soil by 
the root is conditioned by the physical and chemi- 
cal nature of the soil, the presence of microorga- 
nisms, and the release of substances by the plant. 
The availability, or the potential for assimilation, 
of a given substance in a given soil is thus difficult 
to predict. We have used transformed root cul- 
tures to model cadmium uptake from polluted 
sewage sludges with the objective of developing a 
simple test for cadmium availability and establish- 
ing an experimental system with which to study 
the chemistry and physiology of cadmium as- 
similation. 

The problem of heavy metal contamination re- 
quires urgent attention. Cadmium is liberated as 
a by-product of metal mining and refining; is a 
frequent contaminant in the phosphates incor- 
porated into fertilizers; is used in many manufac- 
turing processes and appears as a major contami- 
nant of household waste (e.g., button batteries). 
Cadmium is highly toxic and, unlike organic pol- 
lutants, is not degraded or converted to a non- 
toxic form. Cadmium thus accumulates in soils 
and leaches into water supplies. It is also taken up 
by plants and is thus consumed either directly or 
indirectly by man. One of the important sources 
of cadmium and other heavy metals is the sewage 
sludges produced in the decontamination of liquid 
wastes of both domestic and industrial origin. The 
use of sludges as fertilizers is limited by their 
cadmium content. 

Since cadmium is highly reactive, its inter- 
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actions with constituents of the soil are key deter- 
minants of its availability to the plant. Similar 
levels of contamination can have different conse- 
quences depending on their availability: either 
remaining attached to soil constituents or entering 
the plant, as a function of the nature of the soil 
and the biological activity in the rhizosphere. The 
plant is a major biological determinant in the as- 
similation of cadmium, since the root acidifies the 
soil in its quest for minerals, iron in particular, and 
thus solubilizes heavy metals such as cadmium. 
The nature of this process is difficult and costly 
to study in the soil using whole plants. We have 
therefore explored the use of transformed roots as 
a substitute experimental model. 

Transformed roots in axenic culture tend to 
grow well, and (like roots in nature) they con- 
dition the medium through selective uptake and 
excretion, and thus are generally resistant to un- 
favourable culture conditions. We have used 
transformed morning glory roots (Calystegia se- 
plum) as models for studying cadmium uptake 
because these roots survive for long periods in 
non-axenic conditions after their removal from 
organ culture. They can be placed directly into the 
soil, where they cease to grow but remain metabo- 
lically active, living on energy reserves ac- 
cumulated during in vitro culture. This property is 
important in studies of interactions between the 
root and its chemical environment, since steriliz- 
ing the soil is difficult and introduces chemical 
alterations that are likely to alter the availability 
of heavy metals. 

Results 

In order to assay cadmium availability, dry 
sewage sludge was diluted with highly purified 
water and added to transformed C. sepium root 
cultures that had been rinsed in the same water. 
The control consisted of roots treated in the same 
manner, but the sewage sludge was replaced by 
sufficient cadmium nitrate to reproduce the total 
cadmium concentration in the sewage sludge. The 
roots were cultured for five days, rinsed 
thoroughly and cadmium assimilated by the root 
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was determined by atomic absorption. Represen- 
tative results (Fig. 1) show that the cadmium was 
less available in the sewage sludge than in the salt. 
The difference represents the affinity of the sludge 
for the contaminating cadmium when plant roots 
are present. Sludges of different origin respond 
differently in this bioassay for cadmium availabili- 
ty (data not shown), indicating that transformed 
roots can be used to distinguish between the avai- 
lability of cadmium in different sludges. We are 
considering the potential of this model in a general 
test for heavy metal availability and the possibility 
that it could be used to study the biophysics of 
cadmium assimilation. 

Discussion 

Molecular and biochemical approaches to 
physiological problems often require large 
amounts of homogeneous material. Transformed 
roots not only provide sufficient material, but they 
are resistant to stress, providing the flexibility ne- 
cessary in experiments that pose physiological 
questions. In the example giving above, trans- 
formed roots placed in conditions where they 
depend on accumulated energy reserves, yet con- 
tinue to absorb cadmium from a sewage sludge. 
Similar uses might include studies of drought, 
anoxia, starvation for minerals, etc. Transformed 
roots can be produced in a large variety of dicot 
species (Table 1). It should be noted that micro- 
organisms can be introduced into such a model. 
Results from this experimental system must, how- 
ever, be verified under natural conditions using 
whole plants growing in complex soils. Model 
systems may improve our understanding of the 
rhizosphere and, in the present example, allow us 
to establish limits in the recycling of sewage 
sludges. 
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