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Abstract

We present a multivariate approach for the analysis of contingency tables involved in the study of species-
environment relationships . The first table (species x sample) contains the abundance of p species collected in
n samples. The second table (environmental variables x sample) contains values for q environmental variables
measured in the n samples . The third table contains the indication of `where' and `when' samples were taken .

In this paper we demonstrate : (1) how to match an environmental table and a faunistic table using co-inertia
analysis; (2) how to take into account a spatial effect using between-class analyses; and (3) how to combine point
(1) and (2) to determine the spatial structure shared by fauna and habitat .

We illustrate such an approach by using a set of hydrobiological data concerning 13 Ephemeroptera species and
ten physical and chemical variables which were collected in the same site at the same dates in a small river of the
Prealps .

425

Introduction

Most studies in community ecology infer the rela-
tionships between species and their environment from
community composition data and associated habitat
measurements (ter Braak, 1986) . Space and time infor-
mation is often associated to the two resulting data
tables. This information corresponds to `where' (site)
and `when' (date) the samples were taken . Demon-
strating the relationships between a set of faunistic
data and a set of environmental data has several pur-
poses: (1) to explain a spatial typology based on fau-
nistic data using several environmental variables (e .g .,
Townsend et al., 1984; Wright et al., 1989; John-
son & Wiederholm, 1989 ; Storey et al., 1990); (2) to
estimate the values of environmental variables from
species abundance (indicator species, e.g., Rutt et al.,
1990) ; and (3) to demonstrate the agreement between
the typologies resulting from faunistic data and from
environmental data (Chessel & Mercier, 1993 ; Merci-
er et al., 1992; Dol6dec & Chessel, 1994 ; Bornette

et al., 1994). Methods such as canonical correspon-
dence analysis (CCA of ter Braak, 1986, 1987) and
partial canonical correspondence analysis (ter Braak,
1988) have addressed points (1) and (2) . The study
of the co-structure between faunistic data and habi-
tat measurements using co-inertia analysis has been
shown as an alternative to CCA (Dol6dec & Chessel,
1994) .

As the co-structure between fauna and environ-
ment may vary according to space, we present in this
paper an approach that makes it possible to incorpo-
rate spatial effect within species-environmentrelation-
ships .

Material and methods

Data and site description

Data come from a study made on a stream in the Prealps
(Pegaz-Maucet, 1980) . Six sites (Fig . la) were sam-
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pled along the course of the river on four occasions
(Fig. lb) . Sites 1 to 5 are situated on the Meaudret riv-
er; site 6 is situated on the Bourne tributary. Organic
effluents cause local pollution at station 2 . Ten physi-
cal and chemical variables were measured (Fig . Ic) . At
the same site and at the same date, 13 Ephemeroptera
taxa (Fig. ld) were collected .

Data processing

Each table appears as a multidimensional space with ,
e.g ., p dimensions for the environmental table (noted
as X in Fig . 2a), and q dimensions for the faunis-
tic table (noted as Y in Fig . 2a) . Each environmental
variable and each taxa defines, respectively, a vector
direction in each multidimensional space . Multivariate
analyses such as principal component analysis (PCA)
can be processed on each table separately . The anal-
yses result in the finding of one or several axes, so
that the projected inertia onto these axes is maximal .
As a consequence, the reduction in dimensions of each
data set leads to one structure within the environmen-
tal data set and another within the faunistic set . The
question then arises as to whether there is an aggree-
ment between these two independant structures . Such
a question can be answered by using co-inertia anal-
ysis (Chessel & Mercier, 1993 ; Mercier et al., 1992 ;
Dolddec & Chessel, 1994) . This method calculates
axes maximizing the covariance between the facto-
rial scores of samples. Tucker (1958) gave a solu-
tion called interbattery analysis, where each table X
and Y are comprized of quantitative measurements . If
each table X and Y is composed of categorical vari-
ables, then the co-structure between the two data sets
results from a canonical analysis on categorical vari-
ables (Cazes, 1980) . Finally, if X contains variables
by category and Y contains the presence or absence
of species, then the co-structure between the two data
sets results from a correspondence analysis of ecolog-
ical profiles (Romane, 1972) .

A further step, which is addressed in the paper, may
be incorporated into the above approaches by consid-
ering the spatio-temporal information (the `where' and
`when') associated with the samples . Data concerning
space and time may be considered as categories . Spa-
tial (or temporal) structures of a faunistic or an envi-
ronmental table may be discovered using between-site
analysis (Fig. 2b). Such an operation consists of cen-
tering the analysis on the spatial (or temporal) effect by
dispersing the centers of classes (Doledec & Chessel,
1987, 1989, 1991 ; Yoccoz & Chessel, 1988 ; Lebre-

ton et al., 1991). As a result, between-site analysis
and co-inertia analysis may be combined to study the
spatial co-structure between species and their habitats .
The principle for matching two between-site analyses
consists in discovering combinations of variables in
each tables of average values (i .e., mean abundance
of species and mean values for environmental vari-
ables, at each site) (Fig. 2c). As a consequence, co-
inertia axes are an expression of the spatial co-structure
between species and environmental variables .

Results

Co-inertia analysis

Co-inertia analysis was processed using the above data
sets. The environmental variables were normalized by
variables, whereas abundance of species were cen-
tered . There is a significant co-structure (permutation
test significant, p<0.001) between species and phys-
ical and chemical variables. Furthermore, the arrows
linking the co-inertia scores resulting from the envi-
ronmental data set and that resulting from the faunistic
data set are rather short (Fig . 3a). Co-inertia axis Fl
separates polluted sites from non-polluted ones . A sig-
nificant reduction in Ephemeroptera abundance (F 1 >0
in Fig. 3b) is associated with high values of 5-day
BOD, oxidation potential, conductivity, and phosphate
and ammonia concentrations (F1>0 in Fig . 3c) . Less
polluted sites are characterized by higher pH, and high-
er oxygen concentrations (F1<0 in Fig . 3c), and are
associated with a greater diversity of Ephemeroptera
species relative to polluted sites (all species except
Caenis sp. are situated on the negative side of co-
inertia axis F1 in Fig . 3b). Co-inertia axis F2 distin-
guishes winter samples, (F2<0 in Fig. 3a) with low
water temperature and nitrate concentrations (F2<0 in
Fig. 3c), from summer samples with high water tem-
perature and nitrate concentrations (F2>0 in Fig . 3c) .
Ephemeroptera taxa are positioned along co-inertia
axis F2 according to season .

This analysis demonstrates an important overlap
between the spatial effect characterized by the organic
pollution and the temporal effect characterized mainly
by water temperature variations (Fig . 3d) .

Between-site co-inertia analysis

To separate such an overlap, we decided to focus on
the spatial effect, since seasonal variations were relat-
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Fig. 1 . Data and site description . (a) Sampling sites . (b) Sampling dates . (c) Physical and chemical measurements (abbreviated
as follows: Temp =Temperature ; Flow=Flow; pH=pH; Cond =Conductivity ; 02=Oxygen ; BOD=5-day Biological Oxygen Demand ;
Oxyd = Oxidation potential ; NH4 = Ammonia; N03 = Nitrate ; and P04 = Phosphate) . (d) Distribution of Ephemeroptera taxa (abbreviated
as follows : Eda = Ephemera danica ; Bsp=Baetis sp. ; Brh = Baetis rhodani; Bni=Baetis niger ; Bpu=Baetis pumilus ; Cen = Centroptilum sp. ;
Ecd = Ecdyonurus sp . ; Rhi = Rhithrogena sp . ; HIa=Habrophlebia lauta ; Hab = Habroleptoides sp. ; Par = Paraleptophlebia sp. ; Cae=Caenis
sp. ; and Eig = Ephemerella ignita . The values represent abundance classes (from 0 to D with A = 10, B = 11, C = 12, and D = 13) .

ed to water tempearture as expected . By isolating this mental data set (as white circles in Fig. 4a) and the
effect, we found an agreement between the between- centers of gravity of the faunistic data set (as grey cir-
site structures resulting from species and those result- cles in Fig . 4a) are rather short, there is a significant
ing from physical and chemical variables . Since the co-structure (permutation test significant, p<0.001)
distance between the centers of gravity of the environ-
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Fig. 2 . Data processing . (a) The two tables analyzed (let X be the environmental table and Y be the faunistic table) appear in a `p' and a `q'
multidimensional space respectively . (b) A between-site principal component analysis (PCA) can be processed on each data set separately . This
results in finding one or several axes (grey arrows), so that the projected inertia of the centers of gravity of site-classes onto these axes is maximal
(in white for the environmental data set, and in light grey for the faunistic data set) . In this example, the measurements of environmental data
and faunistic data were made in three sites on four occasions . The centers of gravity of site-classes are identified by a circle number (from 1 to
3), and the sampling dates are identified by a letter (from a to d) . Each sampling date is linked to the corresponding centre of gravity (site) by
a line . As often encountered in aquatic ecology, and for various reasons (flood, vandalism, etc .), a sample may be removed (2d, i .e., site 2 was
not sampled at date d). However, the method works even if the sampling design is not complete . (c) Between-site co-inertia analysis consists in
matching two between-site analyses . For example, the analysis consists in finding out a combination in each table of average values maximizing
the covariance among the between-site environmental axes and the between-site faunistic axes . In this example, only the first axes (FI) are
presented . The standardization of the two resulting sets of between-site co-inertia scores makes it possible to compare the ordination of sites
(centers of gravity) at the same scale .
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Fig. 3. Results of the co-inertia analysis processed on the tables of Fig . I c and d . (a) Standardized co-inertia scores of the environmental and
faunistic data sets projected onto the Fl x F2 factorial map . Arrows link environmental scores to faunistic ones . Numbers are situated at the
environmental end of the arrows and they identify the positions in space (from I to 6 sampling sites) and in time (from I to 4 sampling dates) of
the samples . (b) Co-inertia scores of the Ephemeroptera taxa on the Fl x F2 factorial map (see legend for taxa in Fig . Id) . (c) Co-inertia scores
of the physical and chemical variables on the Fl x F2 factorial map (see legend for physical and chemical variables in Fig . I c). (d) Interpretation
of the Fl x F2 factorial map of samples shown in (a) demonstrating the overlap between temporal and spatial typologies .
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between Ephemeroptera and physical and chemical
variables .

As a result, we were able to separate non-polluted
stations (1 and 6) characterized by high values of pH
and oxygen (Fig . 4a and Fig . 4c) from polluted ones
(2 and 3) showing high values of conductivity, Oxi-
dation potential, BOD, and ammonia concentration .
Restoration of the river, demonstrated by the varia-
tion of nitrate concentrations, occurs from station 3
to station 5 . Flow discharge increases from upstream
(station 1) to downstream as expected . A low abun-
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Fig. 4. Between-site co-inertia analysis . (a) Standardized co-inertia of the environmental and faunistic data sets are projected onto the F I X F2
factorial map . Circles identify the positions of the centers of classes (from site 1 to 6) of the between-site environmental (white circles) and
the between-site faunistic (grey circles) ordinations . The small black squares indicate the position of the sampling dates for the environmental
(white) and faunistic (grey) data sets . (b) Co-inertia scores of the Ephemeroptera taxa on the Fl x F2 factorial map (see legend for taxa in
Fig. ld) . (c) Co-inertia scores of the physical and chemical variables on the FI x F2 factorial map (see legend for physical and chemical
variables in Fig. Ic) .

dance of all the taxa is found in sites 2 and 3 (Fig . 4b) .
High abundances of Habrophlebia lauta (Hla), Baetis
pumilus (Bpu), and Ephemera danica (Eda) character-
ize the upstream, whereas high abundances of Baetis
sp., Baetis rhodani (Brh), Ephemerella ignita (Eig),
and Ecdyonurus sp . (Ecd) are found commonly down-
stream (Fig . 4b). Family, one should note the distance
between the two typologies (Fig . 4a), indicating that
the link between the environmental typology and the
faunistic typology may be more or less pronounced
according to site . In particular, in site 2, the co-



structure between fauna and environmental variables
is significantly affected .

Conclusion

The approach presented in this paper demonstrates that
the physical and chemical variables and the faunistic
composition are significantly related considering the
spatial co-structure . As a result, between-site co-inertia
analysis make it possible to ignore the temporal effect,
which interferes with the spatial effect in the simple co-
inertia analysis . The incorporation of space (or time)
in the analysis enables the study of a hidden spatial (or
temporal) structure, as it has already been demonstrat-
ed in simple multivariate methods (Beffy & Doledec,
1991). Moreover, the study of the spatial variation of
the co-structure demonstrates that the impact of a par-
ticular event such as a pollution discharge can reduce
the intensity of such a co-structure .

Co-inertia analysis shows a great plasticity since it
is now possible to make between-class co-inertia anal-
yses. Within-class co-inertia analyses are also avail-
able, and even a combination of between- and within
class co-inertia analyses may be processed . The use
of such an alternative depends on the objectives of the
researcher.

Software to perform co-inertia analysis and
between-classes co-inertia analysis is incorporated in
ADE version 3.6 (Chessel & Doledec, 1993) . ADE is
available free for research and teaching on request to
the last author of this paper.
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