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Summary 

A method is described by which the contribution of individual components to the variation of a complex 
character is quantified. The method is adapted for use in plant breeding from the sequential component 
analysis, developed for agronomic experiments by Eaton & Kyte (1978). It applies to a situation in which the 
complex character y is the product of n components (x I,. . .x,). The components are ratios of observed primary 
characters, introduced in a logical sequence. The proposed method differs from that of Eaton & Kyte in that: 
(1) the data are not log-transformed, and (2) the complementary determinations of y by its components are 
obtained directly from differences between the coefficients of determination of y by the successive primary 
characters rather than from a stepwise multiple regression of In y on its log-transformed components. 

A comparison of the two methods suggests that the differences in results are caused mainly by the log- 
transformation which Eaton & Kyte apply to transform the relationship between y and its components into a 
linear one. The proposed alternative procedure avoids the transformation of the data; the multiplicative rela- 
tionship between y and its components is retained and so is the assumed additive inheritance of the compo- 
nents. These two features of component analysis allow an active exploitation of specific combining ability 
based on recombinative heterosis. 

Introduction 

Many of the characters plant breeders seek to im- 
prove, are physiologically and genetically complex. 
Commercial breeders in particular are continuous- 
ly engaged in the improvement by selection of com- 
plex characters as yield, growth rate, rate of propa- 
gation, vase life, time of flowering, suitability for 
forcing (e.g. of flower bulbs), partial resistance to 
diseases and pests, etc. In contrast, present day 

plant breeding research, in particular molecular ge- 
netics, is more concerned with monogenic qualita- 
tive characters, as these present fewer problems in 
the development and application of modern tech- 
niques. However, complex characters are too im- 
portant to remain on the sideline for long. To make 
them more amenable to improvement by conven- 
tional and perhaps also modern biotechnological 
breeding methods, a detailed analysis of their com- 
ponents is required. Identification of the major 
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components and determination of their relative 
contribution to the variation of the complex charac- 
ter is the first objective of such an analysis. This is, in 
fact, the main topic of this paper. 

Component  analyses have already been done for 
different characters (mainly yield characters) in a 
wide range of crops. In the majority of cases the ob- 
jective was modest, i.e. to simplify selection on a 
complex character by replacing it by selection on 
one of its major components. Provided the correla- 
tion with the complex character is high and the se- 
lection can be done more efficiently, i.e. earlier and/ 
or at less cost, this is a very sound procedure. It is of 
practical value for the selection of potential new 
cultivars in crops with a long juvenile phase. 

In the present paper a form of component  analy- 
sis is presented with more ambitious objectives. A 
careful choice of components, placed in a logical or- 
der, allows the estimation of their mutually inde- 
pendent,  relative contributions to the variance of 
the complex character. The most important compo- 
nents serve as criteria for the selection of breeding 
parents and parent combinations. 

C o n c e p t s  a n d  d e f i n i t i o n s  

Complex characters. They are characters for which 
variation is determined by variation of a number of 
component  traits. We use the term 'component  
traits' to refer to a group of two or more traits 
which, together, completely determine the complex 
character: their product equals the complex charac- 
ter, whatever the number of components (x~ . . . .  xn) 
and whatever the value of y: 

X 1 " X 2 ,  X 3 ' ,  . . .  X n = y .  

However, the mean of y (e.g. over a number of culti- 
vars) is not equal to the product of the means of the 
components. Thus, when crossing two cultivars, the 
product of the mid-parent values of the compo- 
nents is not equal to the mid-parent value of y. 

In this paper additive inheritance is taken as the 
basic model for the genetic control of the compo- 
nent traits. This implies that we assume compo- 

nents to be simple quantitative traits, i.e. traits that 
are not a product of subcomponents. Components 
often do not inherit additively. This may be due to: 
- a complex nature of the component  trait. Sub- 

division into two or more sub-components may 
yield additively inheriting components. 

- interdependence of components. Correction for 
the commonly observed influence of preceding 
components is an essential feature of our proce- 
dure. 

- dominance, in particular when the number of lo- 
ci of the component  trait is low or when the com- 
ponent is a qualitative trait. Discontinuous vari- 
ation in the progeny would draw attention to 
this. 

If our model applies, the F~ values of the compo- 
nents will approximate their mid-parent value. 
Those of y will deviate from it. This will be the case 
in particular when the components are complemen- 
tary, i.e. when a relatively high value of one compo- 
nent in parent Pi is complemented by a high value 
for another component  in parent Pj. This situation 
is, in our view, a major cause of the non-additive in- 
heritance of complex characters, known as specific 
combining ability (= SCA). It implies that there is 
scope for active exploitation of SCA by crossing 
parents with complementary component  traits. The 
more contrasting the parents are for these traits, the 
more the complex character in the progeny deviates 
from its mid-parent value. This deviation is named 
'recombinative heterosis', see Part II. 

In our opinion, a quantitative character must be 
treated as a complex one when there is a high de- 
gree of independent variation of two or more com- 
ponents. The complex nature of a character can 
only be brought to light and exploited via a compo- 
nent analysis of a range of genotypes. 

When components are used as criteria for the se- 
lection of parents and parent combinations, the da- 
ta collected should not be log-transformed. This is 
best explained by a simple example. 

Let us consider an actual situation of a cross be- 
tween parents P~ and P2 in which the components x~ 
and x 2 of complex character y are complementary 
and inherit additively and independently: 



x~ x z y 

P~: 6 -  9 = 54 

Pz: 1 0 . 5  = 50; m i d - p a r e n t  va lue  o f y  is 52 

Ft: 8 . 7  = 56 (pos i t i ve  h e t e r o s i s )  

Log-transformation changes this to: 
xt x2 Y 

P~: In 6 + In 9 = l n 5 4  

Pz: l n l 0  + In 5 = l n 5 0  

A c t u a l F ~  v a l u e s  ( log  sca le )  : In 8 + In 7 = In 56 

m i d - p a r e n t  v a l u e s  : ~/21n 60 + ~/zln 45 = ~/21n 2700 

or  : In 7.75 + In 6.71 = In 51.96 

The observed heterotic effects in the components 
are artefacts. They remain unexplained and unpre- 
dictable. 

We conclude that log-transformation obscures 
additive inheritance of the components. It is to be 
avoided in genetic analyses in which the hypothesis 
of additive inheritance of quantitative traits is test- 
ed. This is the case, for example, in the analysis of 
variance of a diallel crossing scheme. 

Variation within a cultivar - between individual 
plants and/or between plots - also leads to devia- 
tions between the mean of y and the product of the 
component  means. When the cultivar is a clone or a 
pure line such deviation is caused by non-genetical 
variation (environment, plant quality, plant age, 
plant health). It can be minimized by controlled en- 
vironmental conditions and by adequate replica- 
tion and randomization. 

We treat the complex character as the end point 
of a process of which the successive stages are rep- 
resented by the observed primary characters. As an 
example, let us consider the process leading to the 
production of a certain seed yield (y). 

The first stage observed is the number of stems 
(a). The number of stems per plant is the first com- 
ponent x 1. When the data for the primary characters 
are averages over the number of plants observed, x~ 
equals a. 

The second stage is the stage of flowering, result- 
ing in a number of flowers (b). The step to the sec- 
ond stage is controlled by genes determining the 
number of flowers per stem: b/a = x 2. 

The third stage is that of seed production, leading 
to a number of seeds (c). It is the result of the activ- 
ity of genes controlling the fertility of the flowers as 
expressed by the number of seeds per flower: c/b = 
X - ~ .  
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The final stage, the seed yield in grams (y), in- 
volves the action of genes controlling the growth of 
the seeds, expressed by the average number of 
grams per seed: y/c = x 4. In summary: 

X I " X 2 " X 3 " X 4 = y ,  o r ~  

a • b / a .  c / b  • y / c  = y, o r :  

no.  s t ems  no.  f l o w e r s  no.  seeds  s eed  y ie ld  . . . .  
• • ~ ~ = seea  y t e ta  

no.  s t e m s  no.  f l o w e r s  . 

Component analysis. In our definition, this is the 
analysis of the variation (in plant breeding: varia- 
tion across a number of genotypes) of the complex 
character via the variation of its components. To 
achieve this, the components should be arranged in 
the correct ontogenetical order. This allows deter- 
mination of the mutually independent contribu- 
tions of the components to the variation of the com- 
plex character. In the next section a method to ar- 
rive at such determination is proposed. 

All components,  excepting the first one, are ra- 
tios of observed primary characters. It depends on 
the complex character to be analysed whether the 
analysis starts with an observed quantity or a ratio 
of two observed quantities: 
- When the complex character is an observed quan- 
tity, e.g. number of seeds per plant or per m 2, the 
first component  is also an observed quantity, e.g. 
number  of stems per plant or per m 2. In such a case 
the number of plants or the plot area is not a pri- 
mary character and thus not part of a component.  
The above seed yield analysis is an example of this 
situation. 
- When the complex character is a ratio, e.g. relative 
growth rate (= growth rate per unit plant weight), 
the first component is also a ratio of two primary 
characters, e.g. leaf area per unit plant weight (-- 
LA/W): 

L A  d W / d t  d W / d t  
R G R .  

W L A  - W - 

Any quantity observed in the course of the process 
under consideration can be used as the start of the 
component  analysis. The later in the process the 
start is made, the more complex the first component  
will be and the more likely its mode of inheritance 
will be non-additive. 
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In a component analysis applied to a set of varie- 
ties, we assume the components to be individual ge- 
netic traits. They have their own variation and their 
own genetic control. In this respect the components 
differ from the primary characters. The latter are 
under indirect genetic control; they are not consid- 
ered as individual genetic traits but rather as the 
product of the components, i.e. the resultant of the 
action of several genetic traits. 

The number of components is at least two. In the 
above example: 

no.  s e e d s  s e e d  y i e l d  
no .  s e e d s  = s e e d  y i e l d  

The number of components of seed yield can be in- 
creased in several ways: 

(1) by choosing an earlier observable trait as first 
component,  e.g. no. flowers, giving three compo- 
nents, or no. stems giving four components (see 
above example); 

(2) by inserting additional primary characters, e.g. 
the number of inflorescences, extending the ratio 

no.  f l o w e r s  to the product no.  intl. no .  f l o w e r s  

no.  s t e m s  no .  s t e m s  no .  intl. 

(3) by introducing a parallel analysis of the same 
complex character using different parameters. In 
the seed yield example two parallel processes are 
involved: 

(a) a morphological process, expressed in numbers, 
e.g. of stems, inflorescences, flowers, seeds: 

no.  intl. no .  f l o w e r s  no .  s e e d s  
no .  s t e m s  • - - .  = no.  s e e d s  

no .  s t e m s  no.  intl. no .  f l o w e r s  

(b) a physiological process expressed in weights, 
e.g. seed yield, which can be related to plant weight 
at planting W0, and to plant weight at harvest Wt: 

Wo W t s e e d  y l d  s e e d  y l d  
Wo w, 

Both the component  analysis of seed number and 
that of seed yield are complete. They may, however, 
be combined by adding a further component,  'aver- 
age seed weight': 

no. intl. no. f lowers no. seeds seed y ld  
no. stems - -  = seed y ld  

no. stems no. intl. no. f lowers no. seeds 

Proposed method for quantifying the mutually 
independent contributions of the components to 
the variance of the complex character 

Coefficients of correlation (r) or determination (r 2) 
do not quantify the contribution of individual com- 
ponents to the variance of the complex character 
because y does not have a linear relation with its 
components. It is, however, possible to calculate the 
coefficients of determination of y by the successive 
primary characters. These primary characters rep- 
resent the successive ontogenetical or chronologi- 
cal stages in the process leading to y. Therefore,  a 
linear relation with y is a good approximation of the 
actual relation, at least within the normal range of 
values. The coefficients of determination (r 2) of y by 
the successive primary characters thus measures 
the proportion of the variance of y determined at 
the successive stages. 

The essence of our approach is the argument that 
an increase in the r 2 value from one stage to the next 
represents the influence of the intervening compo- 
nent. This increase we have named the 'comple- 
mentary determination'  of y by component  xi, des- 
ignated as cd(x~,y). For example, the increase from 
r2(b,y) to r2(c,y) is caused by the contribution of 
component  c/b = x3, so that cd(x3,y ) = r2(c,y)-  
r2(b,y). 

It is advisable to verify for the actual range of val- 
ues for y and some primary character whether re- 
gression through the origin (Snedecor & Cochran, 
1967; p. 166) gives rise to a smaller residual sum of 
squares. If this is the case the part of the variance of 
y due to the primary character is not equal to r 2, but 
to the sum of squares due to regression divided by 
the total sum of squares. In the following it is as- 
sumed that in the normal range of values, the re- 
gression does not go through the origin. 

The basic equation in a component  analysis is one 
with two components: y -- x 1 • x2, or: y = a- y/a. Com- 
ponent  x 1 coincides with the first primary character 
a. There are no data on earlier stages affecting a, so 
a is assumed to vary independently. In our approach 
this means that cd(xl,y ) = r2(a,y). The two compo- 
nents xl and x 2 together fully determine y and we 
assume that the sum of their complementary deter- 
minations is equal to 1. Thus, the contribution of x 2 



to the variation in y is the fraction of the variation in 
y not due to x 1. It is equal to 1-r2(a,y) and designated 
as cd(x2,y ). 

The analysis may be extended, e.g. to four com- 
ponents, i.e. 

X 1 ' X  2 ' X  3 " X  4 = y ,  o r  

a • b / a  • c / b .  y / c  = y. 

In this case the calculation of complimentary deter- 
minations is not really different. The expression is 
partitioned into three basic equations: 

a -  y / a  = x 1 • ( x 2 " x 3 " x 4 )  = y 

b "  y / b  = ( x l " x z )  • ( x 3 " x 4 )  = y 

c • y / c  = ( x l ' x 2 - x 3 )  • x4 = y 

In each successive line a different, more advanced 
primary character is used as the starting point. The 
contribution of a more advanced primary character 
to the variation in y, measured by r 2, is larger than 
that of the previous one. The difference between 
the r 2 values of two consecutive primary characters 
is taken to be the complementary determination of 
variation in y by variation in the intervening compo- 
nent: 

c d ( x , , y )  = r2(x, ,y)  = r2(a ,y)  

cd(x2,y  ) = r2(x, .xa,y) - rZ(xt ,y)  = r2(b,y)  - r2(a ,y)  

cd(x3,y  ) = r2(xl.x?.x3,y ) - r2(x I.x2,y) = rZ(c,y) - r2(b,y)  

cd(x4,y  ) = (r2(xfxz.x3.x4,y)  - r2(x,.x2.x3,y ) = 1 - r2(c,y)  

In this way, one can establish which components 
contribute most to the variation in y and deserve 
most attention when choosing and combining 
breeding parents. 

The procedure we propose has been developed 
from a method of analysis presented by Eaton & 
Kyte (1978). Their method involves a stepwise mul- 
tiple regression analysis of the log-transformed da- 
ta for yield and its components: In x I + In x 2 + In x 3 + 
In x 4 -- In y. Though both methods start from the 
same premisses, there are important differences in 
the processing of the data. 

We purposely avoid multiple regression and so 
also the need for log-transformation. Instead, inde- 
pendent contributions of components to the varia- 
tion of the complex character y are directly calculat- 
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ed from differences between coefficients of deter- 
mination (r 2) of y by the primary characters. Eaton 
& Kyte, on the other hand, apply a stepwise mul- 
tiple regression analysis to calculate, for each log- 
transformed component, residuals that are inde- 
pendent of all preceding components. These resid- 
uals are entered in a final multiple regression analy- 
sis with In y as the dependent trait. This results in a 
complete partitioning of the determination of In y 
over the mutually independent residuals of the log- 
transformed components. 

Numerical example 

In the following numerical example, dealing with 
leaf miner susceptibility of chrysanthemums, Eat- 
on's method and ours are compared. The data in 
this example are used primarily to illustrate, explain 
and compare the two methods of component analy- 
sis. They do not serve to provide additional infor- 
mation on the genetic variation in leaf miner sus- 
ceptibility. Therefore, in order not to distract the 
reader from the main subject, we have not consid- 
ered the possible need for tests of linearity or 
weighted least square regression analyses. These 
procedures may improve the reliability of the calcu- 
lated regression function. It is, of course, advisable 
to apply such procedures, where appropriate. 

De Jong & Rademaker (1991) compared 12 geno- 
types of chrysanthemum (Dendranthema grandiflo- 
ra) for the complex character 'susceptibility to the 
leaf miner Liriomyza trifolii' (y). Per genotype ten 
plants were raised in 15 cm pots on top of which a 
14 cm cage was fitted. In each cage two male and 
two female adult leaf miners were placed. The fol- 
lowing primary characters were observed per plant: 
a: number of feeding punctures (fp) 
b: number of visible eggs (observed microscopically 
in boiled leaves) 
c: number of larvae (= number of mines) 
y: number of pupae emerging from the leaves. 
Characters a and b were observed on three of the 
ten plants (observation of character b is destruc- 
tive) and characters c and y on the remaining seven 
plants. This has caused some aberrant results (more 
larvae than eggs) which were corrected for the pur- 
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poses of this example. In the most severely affected 
cultivars the number  of mines could not be counted 
accurately. This resulted in some cases in a lower 
average value for number  of larvae than for number  

of pupae. This too was corrected. The number  of 
pupae emerging f rom the leaves (y) was taken as a 
measure of susceptibility to the leaf miner. 

For a component  analysis of ' number  of pupae '  
the components  are: 

fp. ,  x2 = no.  eggs  no .  l a rvae  no .  p u p a e  
X 1 = n O .  n o ,  f p .  ~ X3 - - - ~  x 4  no.  eggs  no .  larvae  

so that 

no.  fp .  no .  eggs  no.  larvae  no .  p u p a e  
no.  fp .  no .  eggs  no .  larvae  = no .  p u p a e .  

The mean values per  genotype of the pr imary char- 
acters and the calculated ratios are shown in Table 1. 
The correlations between number  of pupae  and the 
pr imary characters are shown in the fifth line of the 
correlation matrix in Table 2. The correlations be- 
tween each component  and its preceding pr imary 
character (in bold figures) illustrate how the com- 
ponents  and (the product)  of the preceding compo- 
nents are related. 

Applying the method of calculation described 
before, the complementary  determinations (bot- 
tom line of Table 2) indicate that the two most im- 

portant  components  are x 2 and x3, explaining 32% 
and 37%, respectively, of the variation of y. The 

components  X 1 and x 4 have less influence, explaining 
15% and 16%, respectively. 

In the analysis according to Eaton & Kyte (1978) 

the multiplicative function x I • x 2 • x 3 • x 4 = y is log- 
t ransformed into the linear function In x 1 + In x 2 + In 

x 3 + In x 4 -- In y. 
- First In x: is regressed on In x 1. This yields the con- 
stant and regression coefficient in the first line of 
Table 3(a). The resulting residual (per genotype) 
represents the (log-transformed) number  of eggs 
per  feeding puncture as far as independent from 
number  of feeding punctures. These residuals are 
indicated as rjnx2. 
- Next In x 3 is regressed on In xl and rr.x2, yielding 

residuals rlnx3. 
- Regression of In x4 on In xl, rlnx2 and rlnx3 yields re- 

siduals rlnx4. 
- Finally, see Table 3(b), In y is regressed on the in- 

dependent  components  In x~, r~ax2, r~nx3 and rlnx4. The 
successive increases in R 2 represent  the coefficients 
of determination of In y by individual components.  
This partitioning shows a major  share of 0.56 for 

rlnx2. This means that the variation ofln x2, in as far as 
independent  f rom In x~, explains most of the varia- 
tion ofln y. The influence ofln x~ on In y is negligible. 

The coefficients of determination of the last two 
components  are 0.23 and 0.21. 

These results deviate considerably from those 
obtained by the method we propose (Table 2): they 
indicate a different component  as the most  influen- 

Table  1. O b s e r v a t i o n s  ( ave r a ge s  pe r  p lant )  on  the p r i m a r y  characters :  a = n u m b e r  of  feed ing  punctures ;  b = n u m b e r  of  eggs; c = n u m b e r  of  

l a rvae  and  y = n u m b e r  of  p u p a e  of  the leaf  m i n e r  L i r i o m y z a  tr i fol i i  on twelve  cul t ivars  of  c h r y s a n t h e m u m .  

Componen t s :  x~ = a; x 2 = b/a; x 3 = c/b; x 4 = y/c. R a n k i n g  o r d e r s i n  small  figures.  

Cul t ivar  x~ = a x2 b x 3 c x 4 y 

4131 2207 u 0.0281 2 62 0.468 2 29 0.0207 1 0.6 

Penny  L a n e  1756 8 0.0165 t 29 0.759 8 22 0.0727 2 1.6 2 

Reye l low 1436 4 0.0327 5 47 0.936 to 44 0.0795 3 3.5 

S t a t e sm an  1311 ~ 0.0351 6 46 0.674 6 31 0.1258 4 3.9 4 

R e d e m i n e  1333 2 0.0300 3 40 0.825 9 33 0.3121 5 10.3 5 

De l t a  1791 9 0.0396 7 71 0.746 7 53 0.3604 6 19.1 7 

Ref ine  1744 7 0.0614 ~2 107 0.402 i 43 0.4233 7 18.2 

Whi te  Spider  1620 6 0.0451 9 73 0.548 3 40 0.5400 9 21.6 9 

Circus 1369 3 0.0321 4 44 0.977 12 43 0.4581 ~ 19.7 8 

Ren ine  1845 ,o 0.0515 tl 95 0.653 5 62 0.9806 J2 60.8 ,o 

Pink P o m p o n  2414 12 0.0489 ~o 118 0.602 4 71 0.9296 to 66.0 ~2 

Ref la  1567 5 0.04408 69 0.942 tf 65 0.9523 u 61.9 it 
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Table 2. Coefficients of correlation (r) between the components 
(x~ . . . . .  x4) of the complex character y and the primary characters 
( a  . . . . .  y) .  Complementary determination (cd), derived from the 
r 2 (y, a . . . . .  y )  values as described in the text. 

a b c y 

x l = a  

x 2 = b / a  

x 3 = c /b  

x 4 = y/c  

Y 

r2(y,a . . . . .  y )  

cd (y ,x  1 . . . . .  X4) 

1 . 0 0 " *  0 .65 0 .36 0 .39 

0 .23  0 .89**  0 .67*  0 .62 

- 0.58  - 0 .58  0 .12  0 .04 

0 .28 0 .68* 0 .88**  0 .98**  

0 .39 0 .69* 0 .92**  1 . 0 0 " *  

0 .15 0 .47 0 .84 1 .00 

0 .15 0 .32  0 .37 0 .16 

r2-values indicate fractions of determination of y b y  s t a g e s  a ,  b, c 

and y. cd-values indicate increases in determination of y from 
stage to stage, attributable to intervening components x~ . . . .  ,x 4. 

tial one. The two methods are thus not interchange- 
able and a choice must be made. This choice can 
only be based on an understanding of the causes of 
the difference in results. 

There are two major differences between our ap- 
proach and Eaton & Kyte's: 
(1) Eaton applies log-transformation to enable him 
to carry out multiple linear regression. We do not 
transform and do not apply multiple linear regres- 
sion. 

(2) Eaton uses all preceding components succes- 
sively as independent predictors on which the com- 
ponents are regressed. The residuals are entered in 
the stepwise multiple regression from which the 
coefficients of determination are obtained. Our ap- 
proach is different: we consider the successive pri- 
mary characters as the products of an increasing 
number of components. The contributions of suc- 
cessive primary characters to the variation of y (r 2- 
values) thus represent the combined contribution 
of the components involved. We calculate comple- 
mentary determinations of y by individual compo- 
nents as differences between the r2-values of the 
successive primary characters with respect to y. 

Application of the Eaton & Kyte procedure with- 
out log-transformation, yields results (Table 4) 
much closer to ours (Table 2). This shows that the 
results from Eaton's method are not fundamentally 
different from ours when log-transformation is 
omitted. Thus the large differences between the 
two methods must be attributed mainly to the log- 
transformation. The fact that the coefficients of de- 
termination do not explain 100% of the variation of 
y confirms that multiple linear regression is not ca- 
pable of achieving complete explanation of y when 
y is a multiplicative function of the components. 

Table 3. ( a )  Coefficients of regression obtained when regressing the log-transformed components In x 2, In  x 3 a n d  In x 4 o n  In x~ and on the 
residuals obtained after regression on preceding components (according to Eaton & Kyte, 1978) .  ( b )  Coefficients of regression obtained 
when regressing In y on the residuals obtained from the regression functions in Table 3(a). Differences between the coefficients of 
determination (R 2) in the last column yield the partitioning of R 2 in the last line 

(a) 
Dependent 
variable 

Constant Regression coefficient for 

In x 1 rln x2 rln x3 

In x 2 - 5 .739  0 .329  

In x 3 - 5.791 - 0 .831 - 0 .231 

In x 4 - 0 .799  - 0 .069  2 .527**  

(b )  

Dependent 
variable 

Constant 

2.332 

Regression coefficient for 

I n  x I rtn x2 rln x3 rln x4 

R 2 

In y - 0 .747 0 .429  0 .003  

In y - 0 .747  0 .429  3 .295**  0 .558  

In y - 0 .747 0 .429  3 .295**  3 .332*  0 .792  

In y - 0 .747  0 .429  3 .295**  3 .332*  1 .000 1.000 

Partitioning of R 2 0 .00  0 .56  0 .23 0.21 1 .000 
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Differences in the results of the two versions of 
Eaton's method, with and without transformation, 
are disturbingly large (Tables 3 and 4). As the com- 
ponents are to be used as criteria for parent selec- 
tion, it is questionable whether the relative impor- 
tance of the components, as indicated by the analy- 
sis of the log-transformed data, is relevant. 

We prefer our method as it processes the data in 
the scale in which they are to be used and as it fully 
explains the variation of y without log-transforma- 
tion. The multiplicative relationship between y and 
its components and the assumed additive inher- 
itance of the components (or their residuals) are re- 
tained. These are essential features of a component 
analysis that should not be transformed away. Plant 
breeders can make active use of these two features 
to predict progeny performance and to achieve 
maximum recombinative heterosis; see Part II (Bos 
& Sparnaaij, 1993). 

for breeding purposes, selection criteria must be 
chosen among the components on the basis of their 
mutually independent effects on yield, i.e. on the 
basis of their cd-values. These cd-values are ob- 
tained from a sample of genotypes representative 
for the available germplasm. A set of potential par- 
ents for a yield improvement programme would 
consist of genotypes of above average yield level 
with a high value for at least one of the influential 
components. This enables the breeder to produce 
hybrids in such a way that maximum recombinative 
heterosis is obtained. This is treated in Part II. 

By including different agronomic treatments it is 
possible to obtain information about environmen- 
tal effects on the relative contribution of individual 
components. Eaton et al. (1986) have extended 
their method in this direction. 

Discussion 

Uses of component analysis 

In plant breeding, component analysis is mostly 
used to find selection criteria for yield that can be 
measured earlier and/or at less cost than yield itself. 
When this is the only objective, there is no need to 
pay attention to the nature and the sequence of the 
components. Any plant trait that can be measured 
accurately may be used as a selection criterion, pro- 
vided it is sufficiently correlated with yield. The fact 
that a trait is correlated with yield does not imply 
that it is a component of yield. 

When the objective is to select parent genotypes 

In our approach to the analysis of complex charac- 
ters, the terms 'component '  and 'component analy- 
sis' are used in a stricter sense than is customary in 
plant breeding literature. We consider a component 
to be a constituent part of a complex character, not 
just any character or factor affecting it. It will be 
generally accepted that the use of the word compo- 
nent for plant age, or for external factors affecting 
the complex character, is incorrect and confusing. It 
may be less obvious that, in our definition, the sus- 
ceptibility to a certain disease or the sensitivity to 
drought is not a component of yield. Strictly speak- 
ing, number of flowers per plant is not a yield corn- 

Table 4. Coefficients of regression obtained when regressing y on x I and on the residuals obtained as illustrated in Table 3(a). Partitioning 

of R 2, comparable to the data in Table 3(b), but in this case without prior log-transformation. 

Dependent Constant Regression coefficients for R 2 
variable 

Xl rx2 rx3 rx4 

y - 23.92 0.0282 

y - 23.92 0.0282 1131.6 

y - 23.92 0.0282 1131.6" 

y - 23.92 0.0282 1131.6"** 

Partitioning of R 2 0.15 0.29 

0.153 

0.446 
100.9"* 0.783 
100.9"** 61.19"** 0.983 

0.34 0.20 0.98 



ponent either. It represents an earlier stage in the 
process of seed production and is the product of the 
same components as for number of seeds, apart 
from the final one (no. seeds/no, flowers). 

A definition of a component corresponding with 
ours was already given by Thomas & Grafius 
(1976): 'strictly those characters which when mul- 
tiplied together give yield exactly'. They also note 
that 'the term is often used loosely to include both 
"components" and "contributors to yield"' and 
that the main components 'may be further and log- 
ically subdivided, retaining the multiplicative prin- 
ciple'. 

Similarly, in our view, component analysis is not 
the bringing together of a number of more or less 
relevant plant characters, in the hope of finding one 
that is closely correlated with the complex charac- 
ter. It is, instead, the subdivision of the complex 
character into two or more components, represent- 
ing chronological or ontogenetical steps in the pro- 
cess of which the complex character is the final 
stage. Our aim is to find the component(s) that have 
the strongest influence on the genetic variation of 
the complex character. 

The genetic control of components is bound to be 
simpler than that of complex characters. In our 
opinion, a component trait is more likely to be in- 
herited additively. Components should therefore 
provide a better basis for parent selection and par- 
ent combination. In particular the pursuit of recom- 
binative heterosis is more likely to be successful 
when we know the most important components and 
their mutual relationships. It was, in fact, the heter- 
osis observed in diallel crosses showing specific 
combining ability, which led us to look for more ad- 
equate statistical procedures to determine the ef- 
fects of individual components. The sequential 
yield component analysis, presented by Eaton & 
Kyte (1978), appeared the most suitable for our pur- 
pose. They used their method mainly in agronomic 
research in various crops. We have considered its 
application in plant breeding programmes but have 
eventually given preference to a simpler, more di- 
rect method for reasons given earlier. 

The component analysis described in this paper 
requires that the components are introduced in the 
correct order. It is not always self-evident what is 
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the correct order. In the case of relative growth rate, 
for example, crop physiologists tend to treat the net 
assimilation rate (= NAR) as the first component 
and the leaf area ratio (= LAR) as the second: 

d W / d t  L A  
R G R  = N A R .  L A R  - - -  

L A  W 

For a component analysis, however, LAR should be 
the first, independent variable and NAR the sec- 
ond, dependent one, because dW/dt depends on LA 
and should come after LA in the sequence of pri- 
mary characters. 

Another possible source of error in the calculat- 
ed contributions is an inadequate sample underly- 
ing the analysis. The sample should involve an ade- 
quate number of representative genotypes. Per ge- 
notype a 'sufficient' number of plants should be ob- 
served. 

The proposed method of analysis may show lack 
of correspondence between the coefficients of cor- 
relation (between individual components and the 
complex trait) and the corresponding complemen- 
tary determination. In an analysis of RGR, for ex- 
ample, one may find a higher correlation (e.g. r = 
0.65) with LAR than with NAR (r = 0.20) and con- 
clude that RGR is largely determined by LAR (De 
Jong & Jansen, 1992). The complementary determi- 
nation, however, takes into account the negative 
correlation between LAR and NAR. It shows that 
LAR is responsible for 42% of the variation of 
RGR and NAR for the remaining 58%, thus revers- 
ing the conclusion. 

Yield component analysis has been applied in 
crop research in many different ways. In a compre- 
hensive review Fraser & Eaton (1983) list and eval- 
uate 15 different methods. 

A simple analysis of covariance is the most com- 
monly applied procedure (e.g. Goldy, 1988). How- 
ever, as Fraser & Eaton observe correctly, (partial) 
correlation coefficients provide incomplete infor- 
mation about the nature of the relation between 
yield and its components because the components 
are mutually correlated. 

Path coefficient analysis (Li, 1975) is a more am- 
bitious method. It seeks to partition the correlation 
coefficients into their direct and indirect effects. 
Provided it is applied in a sensible manner, based on 
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knowledge of the causal relationships between the 
variables, it provides valuable information on the 
relative importance of the variables involved in a 
given process (e.g. Ottaviano & Camussi, 1981). For 
our form of component analysis, the choice of varia- 
bles as used for a path coefficient analysis is not suf- 
ficiently delimited. 

Sequential component analysis as applied to the 
yield of cranberries (Eaton & McPherson, 1975; 
Eaton & Kyte, 1978) and to the growth of beans (Jo- 
liffe et al., 1982) is a method that is directly applica- 
ble to our situation, even though it has not been ap- 
plied in plant breeding sofar. As discussed, its major 
disadvantage is that it requires log-transformation. 

Thomas & Grafius (1976) use component analy- 
sis 'for predicting offspring yield- surely the central 
problem of plant breeding' and thus go much fur- 
ther than Eaton and co-authors. Thomas & Grafius 
also make the components mutually independent 
but, as in our approach, they do not apply log-trans- 
formation. The variation for a particular compo- 
nent, calculated for orthogonalized data, is divided 
by the variation for untransformed data in order to 
obtain 'true relative genetic variances'. The present 
authors fear that, as a consequence of this method, a 
higher number of preceding components will lead 
to a lower independent variance of any given com- 
ponent. Thus, if the first component were to be sub- 
divided into two components, the 'true relative ge- 
netic variance' of all other components would be 
lowered. We consider this incorrect as, in our view, 
the subdivision of any component, including the 
first one, should not affect the independent varia- 
nce of the other components in any way. 

The problem of 'compensation', a term often 
used to indicate the influence of the variation of one 
component on that of another, is discussed in detail 
by Adams (1967), Rasmusson & Cannell (1970), 
Lee & Kaltsikes (1972) and Grafius et al. (1976). 

Hardwick & Andrews (1980), though quoting 
Thomas & Grafius (1976) in their paper, express the 
opinion that 'it is still not possible to quantify the 
degree of dependence between components'. They 
propose an index W, which is a function of the varia- 

nces and covariances of the log-transformed yield 
components in such a way that: 
W = 0 when there is complete compensation (nega- 
tive correlation), 
W = 1 when there is complete additivity (positive 
correlation, 
W = 0.5 when there is full independence. 

The specific problem we try to solve is the subject 
of a paper by Brown & Alexander (1991) on the 
analysis of variance and covariance of products. 
They discuss, amongst other cases, a 'situation 
where a response variable can be expressed as a 
product of random variables and where there is a 
need to assess which variables contribute most to 
the variation of the overall response'. Their treat- 
ment has certain features in common with ours but 
does not lead to all the practical answers we require. 
It does nevertheless merit a comparative study. 

There appears to be little doubt that an efficient 
and reliable method of component analysis is an es- 
sential prerequisite for a successful genetic im- 
provement of complex traits, whether by traditional 
or biotechnological methods. It is therefore of con- 
siderable interest to compare the scientific and 
practical merits of the various methods proposed in 
the literature. This goes beyond the scope of the 
present paper which is primarily concerned with the 
principle of component analysis and its application 
in plant breeding. We do not claim that the statisti- 
cal method we have adopted is the best one avail- 
able, but we found it to be simpler to use and easier 
to interpret in biological terms than alternative 
methods. 
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