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Abstract. Experiments on concrete have shown a considerable increase of apparent tensile strength with increasing 
loading rate. This phenomenon can be attributed to various mechanisms such as kinetics of energy barriers and inertia 
effects in the vicinity of a running crack. After a general introduction into the behaviour of concrete under a uniaxial 
tensile stress, a model is presented which accounts for flaws in concrete and the inertia effects around a crack at high 
loading rates. It turns out that the quite crude model predicts rather accurately the relation between apparent strength 
and loading rate, the influence of concrete quality on this relation, and the relation between crack propagation velocity 
and loading rate. 

1. Introduction 

Civil engineering structures are usually exposed to static loading or slowly varying loading. 
However, there are loading cases with high rates of loading such as impact of vehicles or planes 
on structures, earthquake loading, explosions and hazards. Although these are the exceptional 
loading cases, rather than the rule, they may be vital for the structure and for the inhabitants 
or users. Therefore, strength and fracture energy at high loading rate are important parameters 
in assessing the safety of structures. 

Tensile behaviour of concrete controls cracking, minimum reinforcement ratio, shear failure 
of beams and slabs, bond deterioration and bond slip of steel bars in concrete, and local splitting 
failure. As has been shown by John and Shah [1], loading rate may be responsible for the 
transition of ductile bending type failure to brittle shear type failure of beams. 

Although tensile strength is only one parameter which governs failure of concrete, it is a 
dominant one. It controls the onset of a fictitious crack according to Hillerborg [2]. According 
to this model, a tensile member is stressed up to the maximum stress, then deformation 
continues while the stress decreases. The softening causes elastic stress release of the uncracked 
part of the tensile member and irreversible deformation of a crack process zone. At complete 
stress decay, the crack borders are separated and a discrete crack has formed. 

The area under the complete stress-displacement curve represents the fracture energy Gv. The 
ascending part of the stress-deformation line is linear to about 0.6 times the tensile strength 
whereafter an overproportional increase of deformation appears. The descending part is 
nonlinear. The shape of the line depends on the type of material and on the loading conditions 
[3]. Gv can be described by a function of crack opening w with the scale factor f which is the 
tensile strength 

oF = f,g(w), (1) 

where g may be a bilinear or multilinear, or a continuous function of crack opening w. 
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In experiments on plain concrete and on steel fibre reinforced concrete, it has been shown 
that g(w) is little affected by loading rate [4]. If g(w) is taken as approximately the same for all 
loading rates, the rate dependence of Gv is the same as for the tensile strength. It is then 
sufficient to determine the tensile strength of concrete at various loading rates and to measure 
the complete stress-deformation curve at static loading. 

2. Some aspects of fracture at high loading rates 

The aforementioned relation between Gv and f~ is true for one single crack. This implies that, 
at high loading rates, also a single crack may occur. If multiple cracks form in the measuring 
length, the energy must be larger than in the case of a single crack. 

There are at least three aspects which require attention: first, the bond breaking process, 
second, the inertia effect of the material adjacent to the crack, and third, the crack propagation 
velocity. 

The breaking of bonds has been described by the kinetics of energy barriers (see for instance 
[5]). It is assumed that there is a bond breaking rate and a bond healing rate. If there is a 
mechanical stress applied, the breaking rate exceeds the healing rate. This causes time dependent 
deformation and/or cracking. Mihashi and Wittmann [6] have applied this model to concrete 
and found good correlation between model predictions and experiments. The rate dependence 
is expressed there by a power function 

ft/f~,o = (61(ro)", (2) 

with f ,  and f,,o tensile strength at high loading rates and static loading, respectively, and ~ the 
appropriate stress rates, n is a material constant with values between 0.03 and 0.06. According to 
this theory, the mechanism which leads to fracture is the same for all loading rates. Rigorous 
studies have shown that the power function expression is only valid for a moderate crack velocity 
[5], while higher velocities should be described by a more rigorous application of kinetics theory. 

If two pieces of material are separated by a crack, they move away from each other with a 

certain velocity. The velocity depends on the crack propagation velocity, the compliance and 
mass density of the material, on the stress and, at varying stresses, on the loading rate. Kipp et 
al. [7] have shown that a rate dependence of tensile strength exists like 

f, =/3~ 1'3, (3) 

with fl a material constant which depends on Young's modulus, critical stress intensity factor, 
and shear wave velocity. In fact, (3) is based on the effect of inertia of a single flaw under high 
strain rates. The applicability of the formula is confined to strain rates greater than 102 s-  1 for 
concrete assuming a flaw size of 5 ram. 

Crack propagation velocity is theoretically limited to about the Rayleigh wave velocity since 
this is the velocity of a wave which transports energy along a surface, for instance a crack 
surface. However, even under high strain rates, there have been no values measured which reach 
this terminal velocity ([8] and [9]). While [8] reports values of about 200m/s, [9] reports 
velocities of about 1000m/s. It should be noted, however, that the value mentioned last is 
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determined in compressive loading tests with a less sensitive method than has been used in I-8]. 
It seems at the moment that the crack propagation velocity of concrete is considerably lower 
than the Rayleigh wave speed. 

If this is true, there should be an influence on the tensile strength at very high loading rates 
when the loading increases continuously but the crack cannot propagate fast enough. Theoreti- 
cally, the apparent strength could rise without limit. Curbach [10] performed tests and carried 
out finite element analyses assuming a crack propagation velocity of 500 m/s. He found a steep 
increase of tensile strength at strain rates greater than i s- ~. At ~ = 50 s- 1 the theoretical ratio 
between tensile strength and static tensile strength amounted to 5. 

In the following section, an attempt will be made to close the gap between the three aspects 
which seem to be independent from each other. This model will incorporate kinetic theory and 
inertia effects and will predict tensile strength as a function of loading rate, and crack velocity as 
a function of loading time and loading rate. 

3. Concrete model 

Failure of concrete is determined by the fracture process. In the model the fracture process, 
which occurs at micro level, is characterized by the extension of schematic cracks in a fictitious 
fracture plane. The influence of the loading rate on the material response and the ultimate stress 
is reflected in crack extension and energy absorption during the pre-peak fracture process. 

3.1. Schematization 

The real fracture plane is represented as a plane containing uniformly distributed penny-shaped 
cracks. These cracks represent the damage before loading. The ratio of the initial crack diameter 
and the intermediate distance (ao/b) characterizes the ratio of damaged and undamaged material 
(for detailed description see [11]). Figure 1 shows the planes of failure in concrete and in the 
corresponding model. 

The geometry of the fictitious failure plane is derived from the static material properties, water 
cement ratio, the aggregate content along with the general feature that bond cracking starts at 
about 60 percent of the strength and matrix cracking at about 75 percent. During the load 
increase the cracks grow and dissipate the fracture energies of bond, matrix and aggregate. 
When the crack size equals the intermediate distance b, the strength is assumed to be reached. 

The only two parameters that cannot be derived from (static) material properties and 
therefore must be estimated are the specific surface energies for bond and aggregates. 

In the fictitious failure plane, the material between the flaws is assumed to be linear elastic. 
Consequently, crack extension in this plane does not describe the processes of crack arrest, crack 
branching or bridging of cracks. But it can reflect the influence of loading rate and geometry on 
average crack growth, energy absorption and thus the influence on strength. 

3.2. Crack extension 

During crack extension, an exchange of energy occurs between deformation energy, external 
work, dissipated fracture energy and kinetic energy in the material around the crack tip. The 
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F i g .  1. Planes of fracture in concrete  and model.  A b = bond  area,  A,, = matr ix  area, .4~ = aggrega te  area, A t. = 

fracture area. 

various energy terms can be determined if the stress, displacement and velocity fields are known. 
To determine these fields for dynamic loading conditions or at crack propagation, the equations 
of motion should be applied. 

The effect of the inertia terms on the stress distribution is amongst others studied by Freund 
[12] and Broberg [13]. For a semi-infinite crack loaded by a longitudinal tension wave, Freund 
derived an expression for the dynamic stress intensity factor. The static factor should be 
multiplied by a function k(4), which depends only on the crack velocity. It equals unity for ci = 0, 
and is reduced to zero at the limiting (Rayleigh) wave velocity (C,). 

For the geometry in the fictitious plane no analytical solution is available, but [14] and [15] 
showed that also for other crack geometries the velocity of crack extension is limited by the 
Rayleigh or shear wave velocity. Considering the force equilibrium around a crack tip this result 
can be argued. The reasoning is as follows. For any crack geometry the stress intensity factor 
will decrease when the crack tip velocity increases because the inertia components in the 
equilibrium become more important, A lower stress intensity means a lower energy flux into the 
fracture zone which causes a decrease of crack extension velocity. For any crack geometry, there 
must be a terminal velocity of crack extension with an equilibrium between the energy flux into 
the fracture zone and the energy release rate. When the terminal velocity equals Cr, the stress 
intensity factor must be zero because at this velocity the material around the newly formed 
crack surfaces cannot respond to the actual crack size and the equilibrium is realized by inertia 
forces. Based on these results, it can be assumed that also for the penny-shaped cracks a 
terminal velocity exists and that the stress intensity factor will decrease with increasing crack tip 
velocity. 
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Another aspect is that for the fictitious fracture plane the influence of the bounded geometry 

on the stress fields under dynamic loading is not as yet known. However a few comments are in 

order. First of all it must be true that also for a bounded geometry the crack tip velocity will 
never exceed C,, and the dynamic stress intensity factor K~D will be zero at this velocity because 
of the inertia effects. Second, from analytical solutions for step loadings on stable cracks, it 
follows that, after a certain time, the stress distribution can be described by the corresponding 

static stress field. The magnitude of this delay time depends on the crack size, the intermediate 
crack distance and the wave velocity C,. For  linear increasing loads, this result leads to a delay 
time in the response to the actual load level. When the time delay is supposed to be zero, the 
error introduced will decrease with decreasing intermediate distance and increasing fracture 
time, e.g. Nozaki et al. [16]. 

The aim of the model is not to give an exact description of the prepeak fracture process, but to 
characterize as simply as possible the crack extension and energy dissipation before the ultimate 
strength is reached. Based on this goal and the aforementioned features of crack extension, it 

was decided to neglect, at first, the time delay and to use the solutions from LEFM for the stress 
and displacement fields under static loading which are adjusted by a function k(d), like Freund 
and Broberg [12, 13] derived, to account for inertia. 

In this way, relatively simple expressions for the various energy terms are obtained and the 
dependency of the rate sensitivity on the various parameters can be examined. Using these 
adjusted solutions, the distribution of the available energy during the fracture process can be 

determined. 
Corresponding to the approach of Mott  [17] and Berry [18] and others, one considers the 

material around the crack tip in which the energy exchange occurs. For the penny-shaped 
cracks the material is bounded by the surface of a torus with radius R. The value of R is not 

known but should be proportional to a characteristic length parameter (see Fig. 2). 
Following the approach of Mort and Berry, the integrated form of the energy balance is used: 

- W  + V + T + D = Eo, (4) 

in which Eo equals the amount of energy inside the surface at the considered initial time to. 
W = external work, V = deformation energy, T = kinetic energy, and D = fracture energy. 
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Fig. 2. The area around the crack tip. A = area boundary, 2 = constant, R = radius of considered area. 
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Using the static solution from LEFM, expressions for the energy terms can be derived. (See 
Appendix). Substitution leads to the result that the balance is a function of load, crack size, 
crack velocity, known constants and one unknown proportionality constant 2. 

Presentation of the mathematical formalism and discussion of the various energy terms 
exceeds the scope of this paper. These are given in [19]. To indicate the nature of the final result 
for the energy balance, it can be written, like the result of Mott and Berry, as a quadratic 
equation of ci: 

AA(t)[b(t)] 2 + BB(t) + (~(t) + CC(t) - 0. (5) 

In this equation the first two terms are mainly determined by the kinetic energy. 
To determine the unknown constant 2, the analytical expressions for the work W(t) and the 

deformation energy under static loading V(t) of Sneddon [20] are used. 2 equals 0.56 for a 
Poisson's ratio of 0.25. Assuming that the size of the fracture zone is not affected by the loading 
rate, the crack extension can be determined by solving (5). 

Some results are presented in Figs. 3 and 4 [19]. Figure 3 shows the crack growth of one 
single crack, in case the stress fields are adjusted by the function k(a) or not. The crack growth in 
the fictitious plane for various loading rates is given in Fig. 4. 

From these results it emerges that for low loading rates the limiting velocity for a single crack 
is the Rayleigh wave, as it should be, but that the terminal crack velocity decreases with 
increasing loading rate. When the finite geometry of the fictitious fracture plane is considered, 
the same feature is observed for the rate dependency (Fig. 4). Calculations showed that the 
velocity decreases with decreasing intermediate crack distance. This aspect emerges also from a 
comparison of Figs. 3a and 4a. 

3.3. Discussion of results 

From the results presented in the former section, it is concluded that at least for low loading 
rates the crack extension model gives reliable results as the terminal crack tip velocity equals Cr. 

For higher loading rates the result is not directly obvious. An analysis of the effect of the loading 
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Fig. 3. Velocity of crack extension for various loading rates p for one crack./~ = 10 2, 10 z, 10 4, 10 5, 5-10 5, 10 6 MPa/s. 
(a) No adjustments for inertia effects. (b) Adjustments for inertia effects. 
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rate on the various energy components showed that the kinetic and deformation energy, 
normalized by the work, increased significantly with increasing loading rate. It seems that the 
rate of energy supply can become too high to be absorbed in the fracture process, resulting in an 
equilibrium in which a major part of the energy supplied is stored around the crack tip as 
kinetic and deformation energy. This should mean that the stress distribution around the crack 
tip changes and the stress intensity factor decreases with increasing loading rate due to the 
contribution of the inertia to the force equilibrium. This is the same result as Curbach [10] 
obtains from his finite element calculation on a notched specimen. It may be noted also that 
there is support for the foregoing results from the damage model of Chen [21]. 

Finite geometry affects the kinetic energy terms through the velocity field during crack 
extension (see Appendix.) In (5) the functions AA(t) and BB(t) increase with decreasing 
intermediate distance resulting in an equilibrium at a lower crack velocity. 

It should be noted that the results of Fig. 4b show that the mean crack tip velocity increases in 
the fictitious fracture plane with increasing loading rates. This feature is consistent with 
experimental observations for macro cracking in [22] and [10]. 
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Fig. 4. The velocity of crack extension for various loading rates b, and finite geometry (a o/b = 0.4, see Fig. 1)./~ = 10-2, 
10 2, 10 4, 10 5, 5.10 5, 10 6 MPa/s. (a) No adjustments for inertia effects. (b) Adjustments for inertia effects. 
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In the following section the crack extension model will be applied to the schematic failure 
plane for concrete. 

4. Comparison of model prediction with test results 

To determine the effect of the loading rate on the failure process and the tensile strength, crack 
propagation for various loading rates is compared with the process under static loading. 
Because no micro cracking, crack arrest or branching are modelled, no absolute values for the 
crack velocity or strength can be obtained without reference to the values under static loading. 
The rate effect on the strength follows from relating the processes modelled under dynamic and 
static loading [19]. 

To show how the effect of the model and loading rate on the crack extension is reflected in the 
dynamic tensile strength, first the fracture energy will be kept constant. Figure 5 shows the 
results for a high (A) and a low (B) quality concrete together with some experimental data. The 
difference in quality is characterized by a factor two in compressive strength. The lines A and B 
in Fig. 5 show that the model predicts the strength increase for high loading rates very well and 
also the more sensitive response for lower concrete quality. 

From this result it must be concluded that the steep strength increase for high loading rates is 
not caused by an increase in fracture energy due to a different fracture path or multiple cracking, 
but is caused by a changing stress and energy distribution in the regions around the crack tip. 
From this result it emerges also that the increase at lower loading rates is caused by increasing 
energy demand, which has to be included in the model. Zielinski [23] studied the different 
fracture planes and multiple cracking under dynamic loading. His work has been used to 
incorporate these effects on the geometry of the fictitious fracture plane and the stress field. The 
results are given in the lines A' and B' of Fig. 5. 

With this approach the predicted dynamic strength corresponds well with the experimental 
data for rates from 10-2 to 10 6 MPa/s. The effect of concrete quality is also represented well for 
the lower rates. 

The phenomena described by the model are well known. For instance, the crack and damage 
extension at high strain rates led to the cube root relation of Kipp (3); recently Curbach applied 
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Takeda [24], and Birkimer on medium and low strength concrete. 
Line A: high quality concrete; constant fracture energy. 
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the experimentally determined maximum velocity for macro cracks to explain the steep strength 
increase in the high rate region. The main inertia effect on material response, i.e. the limiting 
damage extension rate was also applied in the first version of the current model [25]. The newer 
work however reflects a more basic approach, using the conservation of energy; it led to an 
expression for damage extension process for all loading rates. Thus, the model offers the 
opportunity to examine the influence of concrete composition and material properties on the 
fracture process and, in particular, impact on dynamic strength. 

5. Concluding remarks 

It can be concluded that the moderate and steep increase of the tensile strength between low and 
high loading rates are caused by two different phenomena. For loading rates up to about 
10GPa/s the strength increase is caused by an increasing energy demand to form the final 
fracture plane. Aggregate fracture and multiple fracture occurs. The mechanism of the extension 
of the existing damage does not change for these loading rates and the dependency can be 
expressed as a power function with one constant coefficient (see Eqn. (2) of [6]). The steep 
increase beyond 10 GPa/s is caused by a mechanical response of the materials around the crack 
tip in which the inertia effects become dominant. The distribution of the energy supplied 
changes and K~o decreases, thus causing a decreasing crack propagation velocity and a 
corresponding increase in strength. 

The crack extension in the fictitious fracture plane showed that the crack velocity in linear 
elastic material is limited to the Rayleigh wave velocity but also that the terminal crack velocity 
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decreases at higher loading rates to about 0.25 Cr. Comparison of this result with the observed 
crack velocities in real concrete is not justified because these are related to macro cracking in the 
post-peak fracture process in the non-linear and non-elastic material. However, the feature of 
decreasing terminal velocities at higher loading rates, and so increasing strength, remains valid. 

In (1) the fracture energy Gv is coupled to the tensile strength under the condition that no 
multiple cracking occurs in the measured length of the fracture zone. The aspect of multiple 
cracking and the determination of Gv from dynamic tests is also discussed in [26]. From the 
different mechanisms indicated by the model, it emerges that (1) can only be valid for moderate 
loading rates, because for higher loading rates the rate dependency of the strength is not coupled 
to the dissipated fracture energy. 

Finally, in spite of the assumptions and simplifications, the model describes well the rate 
dependency of the uniaxial tensile strength for all loading rates and reflects also the rate 
sensitivity for different concrete qualities. Apparently the most important aspects of the material 
response of concrete under dynamic loading, but before ultimate load, can be characterized by 
the extension of the existing damage in the fictitious fracture plane. 

Appendix: The energy terms 

The terms are given by: 
- The work W(t) is determined by the stress component, normal to the surface A and the 

displacement of the material at the envelope. 

W(t) = f f ( a , ,  du) dA, 

A 

where a, is the component of the stress vector normal to the surface A and du is a component 
of the differential of the displacement vector. 

ft P 2a 2 W ( t ) = 2  (1 +V) . cv ,  [pDqf 2 + ~ - ( f  + f g ) ] d r ,  
E 

with v = Poisson's ratio, p = loading, f =  geometry function, E = Young's modulus, 
/~ = loading rate, g = geometry function, 

The deformation energy V(t) in A is determined by the stress and deformation fields, and 
follows from volume integration of the vector product of both components. 

V(t)=O.5 fv a'edV, 

where e is the strain vector and V the volume inside A. 

V(t) = (1 q- v) CVt.p2qf2. 
E 
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Also the kinetic energy is stored inside A and can be determined when the velocity field is 
known. 

T(t) = 0.5p fv (;,)2 dV, 

with p the density of the material and u the velocity. 

T(t) - (l + v)2 [ ~a ] E2 p'CTt a~2f 2 + p~(l(f 2 + fg) + aZ(f+ g) 2 • 

The fracture energy D(t) is proportional to the specific surface energy 7 and the area of the 
created fracture planes. For penny-shaped cracks D(t) is given by 

O(t) = 2" 7" re" a 2. 

In these expressions the coefficients CVt and CTt are the result of the surface and volume 
integrals and given by 

CVr = CV(t) = (5aR + 2R 2) - v(8aR + 4R2), 

CT,=CT( t )=(3- - -~-32v+3v2)aR3-R4(3-4v , ,  

with R = 2 times characteristic length. 
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