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Abstract 

In an earlier paper [6] we have studied the case of interaction of shear waves with a crack centrally situated in an 
infinite elastic strip; we, in this paper, extend the study to the case of two coplanar Griffith cracks. An integral 
transform method is used to find the solution of the equation of motion from the linear theory for a 
homogeneous, isotropic - elastic material. This method resolves the problem into an integral equation. It has 
been observed that shear waves with frequencies less than a parameter depending on the width of the wave guide 
can only propagate. The integral equation is solved numerically for a range of values of wave frequency, width of 
strip and the inter-crack distance. These solutions are used to calculate the dynamic stress intensity factor. The 
results are shown graphically. 

1. Introduction 

Recent ly  great  interest  is being shown in s tudying the p rob lems  of  in terac t ion  of elastic 
waves with s ingulari t ies  in the form of cracks or inclusions located in two or  three 
d imens iona l  conf igurat ions .  We have, in a series of  papers  [ 1-5], s tudied the in terac t ion  of 
elast ic  waves by  Gr i f f i th  penny- shaped  cracks located at  the interface of two b o n d e d  
diss imi lar  elastic half-spaces.  Al l  these a t t empts  have been based on the assumpt ion  that  
the crack is sufficiently far f rom the ne ighbour ing  boundar ies  and hence the d i s t r ibu t ion  
of  stresses in the solids is a t t r ibu ted  to the crack geomet ry  or  to the wave f requency of  the 
elast ic  waves. Mathemat i ca l ly  speaking the boundar ies  of  the solids are assumed to be at 
inf ini tely large dis tance  from the crack. The b o u n d a r y  value p rob lems  of in terac t ion  of 
elast ic  waves with cracks near  the free b o u n d a r y  are diff icult  to solve since they involve 
add i t iona l  geometr ic  pa ramete r s  descr ibing the d imensions  of  the solids. Such a p rob lem 
in which a Gri f f i th  crack in terac ted  by  a shear wave and located in an infini tely long 
homogeneous ,  i so t ropic  elastic strip with free lateral  surface is considered in [6]. In 
con t inua t ion  to the above  papers  we have considered here a p rob lem in which a pair  of 
cop lana r  Gri f f i th  cracks is s i tuated in an inf ini tely long homogeneous ,  i sot ropic  elastic 
strip,  pe rpend icu la r  to the lateral  surfaces, and  in terac ted  by a shear wave incident  normal  
on  it. 

2. Formulation of the problem 

Cons ider  an infini tely long, homogeneous ,  isotropic,  thin elastic strip of width 2h~, 
con ta in ing  two paral le l  Gr i f f i th  cracks of  infini te  length and finite width.  Cons ider  a 
rec tangular  car tes ian co-ord ina te  system ( x  1, x 2, x3) such that  these cracks occupy  the 
region -a<~x~ <~ - b ,  b<~x z ~<a, - ~  < x  2 < ~ ,  x 3 = 0 .  The cracks are assumed to be 
exci ted by  a normal ly  incident  an t ip lane  shear wave or iginat ing at x 3 = -  ~ .  The 
d i sp lacement  vector  cor responding  to this wave is paral le l  to x2-axis. It is convenient  to 
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normal ize  all lengths with respect  to a which is half of the dis tance between the outer  tips 
of the two cracks. Wri t ing  x t / a  = x,  x j a  =.v, x 3 / a  - z, b / a  - c and h t / a  = h the cracks 
are def ined by - 1  ~ < x ~ < - c , c ~ < x ~ <  1, - z c  < y < o o ,  z = 0 ,  a s s h o w n i n  Fig. 1. 

Let ~0 be the circular  frequency of the incident  wave. In what  follows the time 
dependence  of all the field quant i t ies  assumed to be of the form e "~' will be suppressed 
but  unders tood.  We further suppose  that  the two faces of the cracks do not come in 
contac t  dur ing vibrat ions.  

As discussed in [6] the bounda ry  condi t ion  on the crack faces at : = 0 is 

a , . :=  - q o ,  c~<lx[~< 1 2.1) 

and  we have 

U, = O, 0~<lxl~<c,  l <~ lx[ <~ h 2.2) 

where q0 is a known constant .  
The two edges of the strip are free from traction.  This implies  that on edges x = +_ h we 

have the fol lowing b o u n d a r y  condi t ions  

o ~ ( h , z ) = o , . : ( - h , z ) = O .  (2..~) 

The p rob lem of de te rmining  the stress d is t r ibut ion  reduces to that of ob ta in ing  the 
solut ion of the d i sp lacement  equat ion 

O'U,. a - b ,  
- -  + ~ + k ~ U , ,  = 0 ( 2 . 4 )  
Ox -~ ~z 2 - 

where k_; = p ~- / l ~ ,  Iz being Lame 's  constant ,  O the densi ty  and ~ is the circular  frequencT,. 
of  the incident  wave. 

The solut ion of Eqn. (2.4) for an elastic half space can be ob ta ined  with the help of 
Four ie r  cosine t ransform,  such that  the d isp lacement  at z = oc vanishes and is given by 

i; U , . ( x , z ) = 2  B(~]) e /~ cos ~¢x d~. (2.5) 
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Again the solution of (2.4) for an elastic strip which is symmetrical about the z-axis can 
be obtained with the help of Fourier sine transforms and is given by 

Uv(x, z) =f0~c(~ ") cosh(fl,x) sin(~'z) d~'. (2.6) 

Thus the complete solution of (2.4) suitable for the problem stated above is obtained by 
superposing the two solutions (2.5) and (2.6), and is given by 

~,(x ,z)=Zfo~B(~)e-~Z cos~xd~+ fo~C(~)cosh(~,x)sin~zd~ (2.7) 

where 

f 1 2 = f 2 _ k  2 and f12=~.2_k 2. (2.8) 

B(~) and C(~), unknown functions, are to be determined with the help of boundary 
conditions. 

By using the stress and strain relations, the expression for the component of stress 
tensor comes out to be: 

~ C %=(x, z ) =  - 2 ~ f  ° flB(~)e-a"cos~x.d~+ttfo ~ (~')cosh(/3,x).cos~'z.d~. 

(2.9) 

3. Derivation of the integral solution 

The boundary conditions (2.1) and (2.2) lead to the following integral equations: 

C d~" =--,q° 2f BB(e) cosex de-f c ,x, l (3.1a) 
J0 J0 /t 

f0 ~B(t~) cos~x d~ = 0, 0 ~< 1 h. (3.1b) Ixl ~< C, ~< Ixl ~< 

Applying the condition (2.3) on the boundary of the strip, the following relation 
between the unknown functions B(~) and C(~') is obtained: 

fo~C(~)cosh(fllh)Cos~z d ~  = 2f0~flB(~)e -~: cos(~h)d~ 

which, on using the inversion theorem for the Fourier cosine transform and using simple 
integration, yields 

_ 4 f ~  fl2B(~).____co_s ~h. d~. (3.2) 
~'C(~') cosh(fl,h) - ~ "/0 f12 + ~.2 

Substituting the value of G(~') from (3.2) in (3.1a) and rearranging the terms we get the 
following triple integral equation for the determination of the unknown function B(~): 

f 0 ~ [ l + H ( ~ ) ] B ( ~ ) c o s ~ x d ~ = P ( x ) ,  c<~[x[<~ 1 

f 0 ~ B ( ~ ) c o s ~ x , d ~ = 0 ,  0~<lx[~<c, 1 (3.3b) <~ lxl <~ h 

where 

qo f d~, d~ (3.4) o 

cosh(t~lh)  -0 t~2 + ~2 

O(~):~-1[(~2-k2)l/2-~]. ( 3 . 5 )  
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It can be easily seen that H(~)  ---, 0 as ~ --, ~c. In order to solve the triple integral equation 
(3.3) we set 

qo f ' h B ( ~ ) =  ~ j, ( t Z ) s i n ~ t . d t  (3.6) 

where the function h(t2) shall soon be determined. For the interval 1 ~< Ixj-,< h, (3.3b) is 
automatically satisfied in view of the formula 

fo ~ f ~r/2, Ixl<l I sin ~t cos ~x d~ = 't 0. Ixl > t (3.7) 

and for the interval 0 ~< lxl < c, (3.3b) is satisfied provided 

f,' :) h(t  d t = 0 .  (3.8) 

It is correct to write (3.3a) as 

d 
~B,~  s in~x .d  = P . x  - ~ B ( ~ ) H ( ~ ) c o s ~ x . d ~ ,  c~<tx l<  1 (3.9) 

dx - " 

On substituting the values of P(x)  and B(~) from (3.4) and (3.6) respectively in (3.9) 
and on making use of the following formulae 

f7 i x l s i n x v . s i n a x d x = ~ l o g  y +a 
" V - -  a I 

, rJo (~r } d r  sin~t 

_d_d log' x + t I _ 2t 
dx  x t ~ t 2 v 2 ' 

we get 

B2+f~ " ~x ,f~l~( l ~ 

y' . ,  f,>" )' 'I )"~- ~H(~)J')(~Y)J°(~w d~ d" '  I: 
( t : -  re)  ~': ( x : -  w ~ I 

• dy/dt, c<lxl< 1. (3.10) 

J 

It has been shown by Srivastava and Lowengrub [7] that the solution of the integral 
equation 

2 f, j ' th! t2)dt--- - R ( v ) ,  a < ) ' < b  
t -  V-  

is given by 

f - v2 vR(v) 2 [' t 2 - a  2'  '~ D 
h ( t : ) =  d 

~It,--t-i ~ . :  t ~" ((t e ,~:)(l,=--t:), 
F +  

-> ~ , , V 2  _ ._. ~ t  2 
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with condition that R must be an even function of y so as to make the integral convergent; 
D is an arbitrary constant. Hence the solution of (3.10) as subjected to the condition 

L lh (t 2)dt = 0, is given by 

2(u2-c_~2) '/2 1 f , (  1 - ; 2  1 
h ( u 2 ) = -  ~rl l _ u  2 " ~ ' 4  ~x-~-c 2] 

.n.2( 1 _ _ . i _ . ~ ] 4  u2-c2]'/2flh(t2.)j~ ~ ) r ' [  1 - x  2 ~,/2 

~/2 xdx D + 
(x 2_ u2) {(u2_ c2)( 1 _ u2)},/2 

x [_2 fo" c°sh(B,x) 
(x 2_ u :z) "a" cosh(fl,h) 

t y ~fl2c°s~h'J°(~Y)d~'dy df fo (t2_,,2),-/0 
dfo'foX(fo~H(------~-)J°(~Y)-J°(~--w)-Y--~W.d~}dw.dy].dxdt" 

dx {(t2_yZ)(x2_w2))'/2 

The above equation can be written as 

h(u  2) + L l h ( t a ) [ K , ( u  2, t 2) +K2(u  2, t2)] dt = r ( u  2) 

where 

4 (U2 C2]1/2 2)  _ ['( 1 - x  ' /2xL,(x , t ) .dx  
K'(u2't2)= --~ 1-~-~] J~ ~x2-c  2 ( x 2 - u  2) 

d f , f x  y__wL(y___Lw__~)dwdy 
L'(x't)=-d-xxJoJ o [(x2_w2)(t2_y2)]'/2 

L(y, w)=fo=~H(~)Jo(~Y)Jo(~W) d~ 

8 ( .2  C2\I/2 1( 1--X 2 t I/2 X ~'cosh(fllX) 

" fo' Y .M(y,~)dy.d~.dx (t 2_y2)'/~ 

M(y, ~)= fo~ fl2cos~h.Jo (~y ) d~ 

# = 2 e-&hlo (yfl,)~'2B[ ' , ~> k 2 
q,/, 2 

• ! t ~" =~sm(B,h).go(yB,)-#, , ~ <k= 

F(.2)= 2 ( . 2 _ £ 2  11/2 qo f l(  I -X2 )1/2 x dx q D 
~ 1 - u  2 ] ~-~~J,.. \x--5~_c 2 ( x 2 _ u  :') 

.2 _ C2 i1/2 -t- D 
[( u 2 - c 2)(1 - u 2 )] 1/2 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18a) 

(3.18b) 

[ ( . 2_  c2)(1 _ u2)],/2 

(3.19a) 

(3.19b) 
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and (,8[) 2 = k 2 - ~-2. 
The integrand in (3.16) has no poles, it has only branch point at the point ,~= k,. 

Following the procedure in [8] the infinite integral in (3.16) can be converted into an 
integral with finite limits and is given by 

~f , (  ,.2 L(.v, w) = -ik~_ 1 - ~2) J,,(k :~,w)H~(,"(ka~y) d~. v> w. (3.20) 
0 

From (3.20) putting the value of L(y ,  w) in (3.15)• we get 

) L , ( x , t ) = - , K 2 j  ° V ' - ¢  c°stKecx; ' , l~ ) ~ ? ~  . d r  ,d,~. (3.21) 
l . ' 

Further using the relation (3.18) in (3.17) and simplifying it we get 

4 £ 
K , ( u  2 _  , t 2 )  = ,k~- l - u  2 ~ i; 2' ~/1 .... s~ ' t an(k , . sh )  

"Jo( vk,s ),: - -  - - -  d . v  I:~ds 

~c ~/i + r 2 Io( k2)'r ) ~,,+ f 
J0 cosh( k 2 rh ) 

e 

t [ ' f l [  1 - x ~  ] ' ' : '  ' xcosh(_ksx  )dx}, dr  d r .  (3.22) 
"] , / x 2 - c 2 I  ( v 2 - u 2 )  , 

It may be noted that the first integral is convergent only when the dimensionless 
frequency k 2 is such that k 2 < vr/2h. Hence it is concluded that the only shear waves with 
k 2 < w / 2 h  can propagate in an elastic strip of width 2h. This fact is_in agreement with the 
well known result that in a strip, only guided waves of frequencies less than a parameter 
depending on width of the strip can propagate. 

Furthermore in order to evaluate D, the unknown constant of (3.19), we integrate (3.13) 
with respect to u between the limits c to 1, and using the condition (3.8) we find that 

D : ~ f  g ( u ' )  d u + ~  h ( t Z ) { K ~ ( u " , t ~ ) + K 2 ( u ~ - . t 2 ) } d t  .du (3.23 

where 

1 { u :  - c 2 t ,2  

F =  F(rr/2,  ~/1 - C 2 ) is the elliptic integral of first kind and K~(u< t~). Kz (u  2. t ~- ) are 
given by (3.14) and (3.22) respectively. 

Finally, on putting the value of D from (3.23) in (3.13) and on further simplifying it. we 
get the following integral equation 

( . 2  

• { K , ' ( . - .  , 2 ) +  ~:~(.~, ,:))-~ , 5 - - 7 , . ; ,  

• ( K , ' ( s  2, r e ) +  K~(s  2, t 2 ) ) d s } ] d t  
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($2--C2] I/2 

=uZ-c2+IL'  ~_s2] ds 

where 

I l_[i~ ~ ( rtyH(ol)(k2~y)dy } 
K~(u2, t2)=ifo ~1-~  tJ ° ~t2_ ~ 

'( 1-x  t ' ' x  c°s(k2  ) dx.d  f~2_c2  ] (~2-u2) 
and 

gl(Id2, t2)=fot Y [fo'~/1-s2tan(k2sh)Jo(yk2 s) 

( [ l (  1 - 1 2  ]'/2xcos(k2SX)dx}ds L~/l+r2I°(k2yr) 
J~ lx ~-c  21 (x2_.2) - o  ) • - -  cosh ( k 2 rh 

• lx---f-~_c21 c°sh(k2rX).dx dr dy. 

Further let 

h(u2) .  [ (u2_  c2)(1 _ u2)]'/2 = H(u2 ) 

and on making the substitutions 

u 2 = sin2~ + cZcos2~ 

t 2 = sin20 + C2COS20 

in (3.24), we get 

fo,,/2 G(O) 
G(~) + 1/sin20 4- c2cos20 

"(K"(e°'O)+Kh(eo'O))--ff 1 l-s2 ] 

.(K~(s2,0)+Kh(s2,0)) ds}] dO 

=(1-c2).sin24~+lj, l~_s2 ] .as 

. ( 4  k ~ ) [ ( l _ c  2 ~-5" )" sin2* 

where 

G(~)  = H(sin2* + c2cosZq~) 

G( O) = H(sinaO + cZcos20) 
K, (q,, 0) = K~ (sin2q~ + c2c0s2~, sin20 + c2cosZ0) 

Kh( , ,  0) = KI (sin2q, + c2cos2q~, sin20 + c2c0s20) 

K,(s 2, O) = K~(s 2, sin20 + c2c0s20) 

Kb(s 2, 0) = K~(s 2, sin 0 + c2c0s20). 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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4 .  S t r e s s - i n t e n s i ~  f a c t o r s  

On putt ing the value of B(~) from (3.6) in (2.9) and further soMng  it for z = 0, we get 

f '  th( t_ 2 )d r  
o,.:(x.O)= -2%/*~ (t2 x2 ) + X / ,  (4.1) 

where 

X, =/*fo°c~'C(~ " ) cosh(fllX)d~'. (4.2) 

Since h ( t :  ) = [(t 2 _ c: )( 1 - t 2 )] i,, 2H(t 2 ) and t 2 = c 2cos20 + sin20, (4. l ) can be written 
as; 

_ rer/2 H(sin20 + c2cos20)d0 
%_(x, O)= - :./*q,,j,, (sin2O + c--?cos2~_ x ~  + X, 

or 

_ r , ~ / 2  G(O)dO 
OIz (X ,  O) 

-2/*q"Jo" (I - x 2 ) s i n 2 0  + (,,2 _ xa )cos20 
+ Xl 

where 

G(O) = H(sin20 + c2cos20) 

on integrating the right hand side of (4.3) by parts, we get the following: 

- 2 / * %  %(x.0)- 
[ (1- .  2)(,2_ x-')]' -' 

X CO~ 1 I - -  X 2 - -  . t a n 0  .G(O) + 0 ( 1 ) ,  x < c  
C 2 . ¥ 2  

() 

o , : (x ,0 )=  

and 

(4.3) 

- 2 / * %  

x 2 - - 1  
× tan  i . t a n 0  - G ( 0  

X 2 _ ( ,2 

~r/*qo (G (0)) 
+0(1): 

- . , . : ) ( , :_  _,.:)], : 

] " ~ + 0 ( l ) ,  
o 

.',,7 < ( '  

. . . ( 4 . 4 a )  

- rr/*qoG (~r/2) 
o,=(x.O)- [( x 2 - ( ' 2 ) ( x  2 _  1)], 2 + 0 ( 1 ) "  x >  1. (4.6) 

The stress intensity factors A~; and N~ at the two tips of the crack are defined by: 

N = l i m - ( c - x ) ' " 2 - ( - 2 / , ) . [ o ~ = ( x , 0 ) ] ,  0 < x < c  
x *( 

N , =  lim + ( _ v - 1 ) " 2 ( - 2 / * ) [ 0 , : ( x , 0 ) ] ,  .v> 1. 

Thus with the help of (4.5) and (4.6) we get: 

2 ~r/*~ qoG (0) 
N - (4,7) 

[2c( l -  

o,:(x, 0) = (4.5) 

x > 1 (4.4b) 
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and 

2 ~rlz2qo G (~r/2) 
N 1 = [2 ( I -c2) ]  '/2 

When c tends to zero two cracks merge into one and 

qo [27r/~2G (~r/2)] N l = ~ -  

which is in agreement with our earlier paper [6] in which g(1)-- 21r/~ZG(~r/2). 

5. Numerical calculations: 

(4.8) 

The integral equation (3.27) has been solved numerically for a wide range of dimensionless 
frequency k 2. Using the method of Fox and Goodwin [9] (3.27) has been converted into a 
system of linear algebraic equations. The infinite integral involved in the kernel K2~(u 2, t 2) 
has been evaluated using five point Gauss-Laguerre quadrature formula while the integrals 
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'002 

l '001 

with finite limits have been evaluated using Simpson's quadrature formula. At relatively 
high frequencies the number of divisions in the finite interval are increased until the value 
of the integral reaches a stable value. A complex computer programme has been used to 
evaluate vG(q~). These values have been used to calculate dynamic stress intensity factors 
N and N~ at the two tips of the crack using (4.7) and (4.8) respectively• 

Three different values of inter crack distance have been chosen for which ~ i.e. half of 
the inter crack distance is 0.2, 0.33 and 0.5 respectively. Further associated with each value 
of c there are three different values of the strip width viz. 1.5, 1.8 and 2.0• Keeping the 
limiting condition k 2 < ~r/2h in view the values chosen for/"e corresponding to h = 1.5 are 
from 0 to 1 in step of 0.1. Similarly in case of h = 1.8 and 2.0, k 2 has been taken from 0 to 
0.8 and from 0 to 0.7 respectively. In Figs. 2--4 the amplitude of JG(v/2)J has been plotted 
against k 2 with different values of h for c =  0.2, 0.33 and 0.5 respectively, while Figs. 5 7 
display the graphs of tG(0)] versus k2 plotted for the same values of c and h. 

'30 

"28 

o .26 

t .24 

h°2.0 J ~  

i t i .i 6 
• 2 .3 .4 5 

• k 2 

AMPLITUDE OF I G ( 0 )  [ PLOTTED AGAINST k 2 FOR C = 0.2 

Figure 5. 
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.32 

"30 

.28 

o 

o 
- -  .26 

l .24. 

j 

i 

• 1 .2 .3 .4 .5 .6 .7 

b k 2 

AMPLITUDE OF IG ( 0 ) ]  PLOTTED AGAINST k 2 FOR C--" 0.33 

Figure 6. 

From these graphs it can be concluded that the stress intensity factor at the outer edge 
decreases with the increase of the frequency k 2 while at the interior edge of the cracks the 
stress intensity factor increases with an increase in k 2. However, the nature of the curve 
for h = 1.5 is slightly different. In this particular case the stress intensity factor decreases 
upto the values of k 2 = 0.2 then it continuously increases with the increase in the 
dimensionless frequency k 2. 

It is interesting to compare the results with that of Jain and Kanwal [10]. The nature of 
the curves plotted for stress intensity factor versus the wave frequency at the outer edge of 
the crack is convex in nature in [10], however they are concave in our case. Furthermore at 
the inner edge of the crack the curves in [10] decrease with an increase in wave frequency 
while in our case they increase with the increasing value of wave frequency. The nature of 
the curve plotted for h = 1.5 is in accordance with the one exhibited in [10]. 

The difference in our curves for stress intensity factor from those of Jain and Kanwal is 
due to the effect of finite boundary of the strip. 

o 

T 

3o[ J 
J 

-28~ 

.26 

.24 

.22 

.1 .2 .3 -4 -5 .6 
• k 2 

AMPLITUDE OF IG (0)] PLOTTED AGAINST k 2 FOR C = 0 . 5  

Figure 7. 
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R~sum~ 

Dans un m6moire pr6c~dent (6), on a 6tudi6 le cas de l'interaction d 'ondes de cisaillement avec une fissure situee 
au centre d 'une bande infinie elastique. Dans la pr6sente 6tude, on 6tend l'6tude au cas de deux fissures 
coplanaires de Griffith. Une methode de transformation int6grale est utilisee pour trouver la solution de 
l'6quation de mouvement en partant de la th~orie lin6aire, pour un mat6riau homog6ne isotrope elastique. Cette 
m6thode r+soud le probl6me sous la forme d 'une equation int6grale. On a observe que seules se propagent des 
ondes de cisaillement dont les fr6quences sont inf+rieures /~ un param6tre d6pendant de la largeur du guide 
d'ondes. L'6quation int6grale est r6solue par voie num6rique pour une gamme de valeur de la frequence d'ondes, 
de largeur de bande et de distance entre fissures. Les solutions sont utilis6es pour calculer le facteur d'intensitb de 
contrainte dynamique. Les r~sultats sont expos+s par voie graphique. 


