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Abstract

In an earlier paper [6] we have studied the case of interaction of shear waves with a crack centrally situated in an
infinite elastic strip; we, in this paper, extend the study to the case of two coplanar Griffith cracks. An integral
transform method is used to find the solution of the equation of motion from the linear theory for a
homogeneous, isotropic — elastic material. This method resolves the problem into an integral equation. It has
been observed that shear waves with frequencies less than a parameter depending on the width of the wave guide
can only propagate. The integral equation is solved numerically for a range of values of wave frequency, width of
strip and the inter-crack distance. These solutions are used to calculate the dynamic stress intensity factor. The
results are shown graphically.

1. Introduction

Recently great interest is being shown in studying the problems of interaction of elastic
waves with singularities in the form of cracks or inclusions located in two or three
dimensional configurations. We have, in a series of papers [1-5], studied the interaction of
elastic waves by Griffith penny-shaped cracks located at the interface of two bonded
dissimilar elastic half-spaces. All these attempts have been based on the assumption that
the crack is sufficiently far from the neighbouring boundaries and hence the distribution
of stresses in the solids is attributed to the crack geometry or to the wave frequency of the
elastic waves. Mathematically speaking the boundaries of the solids are assumed to be at
infinitely large distance from the crack. The boundary value problems of interaction of
elastic waves with cracks near the free boundary are difficult to solve since they involve
additional geometric parameters describing the dimensions of the solids. Such a problem
in which a Griffith crack interacted by a shear wave and located in an infinitely long
homogeneous, isotropic elastic strip with free lateral surface is considered in [6]. In
continuation to the above papers we have considered here a problem in which a pair of
coplanar Griffith cracks is situated in an infinitely long homogeneous, isotropic elastic
strip, perpendicular to the lateral surfaces, and interacted by a shear wave incident normal
on 1t.

2. Formulation of the problem

Consider an infinitely long, homogeneous, isotropic, thin elastic strip of width 2k,
containing two parallel Griffith cracks of infinite length and finite width. Consider a
rectangular cartesian co-ordinate system (x,, x,, x;) such that these cracks occupy the
region ~a < x, < —b, b<x,<a, —00 <x,<00, x3=0. The cracks are assumed to be
excited by a normally incident antiplane shear wave originating at x;= —o0. The
displacement vector corresponding to this wave is parallel to x,-axis. It is convenient to
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normalize all lengths with respect to ¢ which is half of the distance between the outer tips
of the two cracks. Writing x, /a = x. x,/a=yv. xy/a=z.b/u=c and h,/a = h the cracks
are defined by ~1 < x< —¢,c<x <1, —20 <y <oo,z=0. as shownin Fig. 1.

Let w be the circular frequency of the incident wave. In what follows the time
dependence of all the field quantities assumed to be of the form ¢ '“’ will be suppressed
but understood. We further suppose that the two faces of the cracks do not come in
contact during vibrations.

As discussed in [6] the boundary condition on the crack faces at = =0 is

U\‘:ZAQ()" (<1X|<l (21)

and we have

I
2]
-_—

U=0. 0g|x|<c. TIgx|Igh (7

where g, is a known constant.
The two edges of the strip are free from traction. This implies that on edges x = +h we
have the following boundary conditions

o.(h.zy=0_(—h.2)=0. (2.3)

Ve

The problem of determining the stress distribution reduces to that of obtaining the
solution of the displacement equation
U, 90U,

4+ ——+ k3U, =0 (2.4)
dx- 9z~

where k3 = pw?’/p, p being Lame’s constant. p the density and w is the circular frequency
of the incident wave.

The solution of Eqn. (2.4) for an elastic half space can be obtained with the help of
Fourier cosine transform, such that the displacement at = = oc vanishes and 1s given by

Ur(x.:)=2fxB($)e"/“'cosgxdg. (2.5
0
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Again the solution of (2.4) for an elastic strip which is symmetrical about the z-axis can
be obtained with the help of Fourier sine transforms and is given by

U(x, z)f (¢) cosh(B,x) sin(¢z) d¢. (2.6)

Thus the complete solution of (2.4) suitable for the problem stated above is obtained by
superposing the two solutions (2.5) and (2.6), and is given by

U(x,z)= 2f0°°B(§) e # cos &x d¢ +j(;°°C(§’) cosh( B,x)sin {z d¢ (2.7)

where

B>=&>—k3 and BI={>—ki. (2.8)

B({) and C({), unknown functions, are to be determined with the help of boundary
conditions.

By using the stress and strain relations, the expression for the component of stress
tensor comes out to be:

0,.(x,z)= —2;;/000,83(5)6‘3“’ coséx-d&+ ,uj:ofC({) cosh( B,x)-cos {z - d¢.

(2.9)

3. Derivation of the integral solution

The boundary conditions (2.1) and (2.2) lead to the following integral equations:

2/00,BB(§) cosﬁx-di—/wKC(f) cosh(B,x)d =@, c<|x]< 1 (3.1a)
0 0 L

fgoB(ﬁ)cosgxd£=0, O<ix|<e, 1<|x|<h. (3.1b)
0

Applying the condition (2.3) on the boundary of the strip, the following relation
between the unknown functions B(§) and C(¢{) is obtained:

fwg“C({) cosh(B,h) cos ¢z d¢ = Z/w,BB(g)e_ﬁ“' cos(¢h)d¢
0 0

which, on using the inversion theorem for the Fourier cosine transform and using simple
integration, yields

$C($) cosh(B,h) =

f BB(&)costh (3.2)

BZ + {2
Substituting the value of G({) from (3.2) in (3.1a) and rearranging the terms we get the
following triple integral equation for the determination of the unknown function B(§):

_/(;wg[l + H(¢)]B(¢) coséxdé=P(x), c<|x|<]

fB(g)cosgx,dg=o, O<|x|<ec, 1<|x|<h (3.3b)
0

where

P(x)=g—z+£-/(;oo cosh( B,x) /oo B2B(&)cos £h Lde. dt (3.4)

7 Jy cosh(Bh) Jo B2+ ¢2
H(8)=6"[(£ - k3)" —¢]. (3.5)
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It can be easily seen that H(£) — 0 as £ — oc. In order to solve the triple integral equation
(3.3) we set

B(¢)= qgo R(1%) sin &1 - dr (3.6)

where the function A(¢*) shall soon be determined. For the interval 1 <|x| < h. (3.3b) is
automatically satisfied in view of the formula

2, | <
/ £ 'sin§rcos Ex dE= ’W/ x| <1 (3.7}
10 |x] > ¢
and for the interval 0 < x| < ¢, (3.3b) is satisfied provided
f’h(rz)dz=o. (38)

P

It is correct to write (3.3a) as
%j;}xB(é) sin £x‘d£=P(x)—[)x£B($)H(§) coséx-d¢é, c<gix]< L (3.9)

On substituting the values of P(x) and B(§) from (3.4) and (3.6) respectively in (3.9)
and on making use of the following formulae

o +
fx'lsmxv smaxdx"log‘} a:

— |

/—1 rJ,( gr)dr sin &t
Vit— 2 §

_d_1 ‘x+t|_ 2t
dx Og!’,(_,;":#yxz
we get
1th(t*)de 1 2 .1, =cosh(Bx) | ;1 y
——— ==+ — | h(t ¢ pr—
/: 1P-x? p 77-/; ( )-/(; cosh(ﬁ,h)\\/ol,[z_\z
% Bcos £hJ,(£y | d :
f M-dgd}'l‘df dt—m[lh([~)
o Bl / dx

h 2

=ty

e {f(( s [TeH ) e ) d

-dy|dr, eg|x|< T (3.10)

It has been shown by Srivastava and Lowengrub [7] that the solution of the integral
equation

is given by
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with condition that R must be an even function of y so as to make the integral convergent;
D is an arbitrary constant. Hence the solution of (3.10) as subjected to the condition

flh(tz)dt =0, is given by

C

mH

2(u2—c2)]/2 1 1(1-)52)‘/2 xdx D

h(u?)= -~ 2 2 I 1,2
" (=) (=) =)’

1—u x*—¢

—i(uz_cz)l/zflh(tz)fl( 1 — x2 )1/2 x EwaOSh(B‘X)
7\ 1—u? c c \x?=¢? (x2=u?)|{7Jo cosh(Bh)

e — o 1R
o (tz_yz)]/Z 0 ,32+§2

d§-dy-d§

_d e °°§H(5)Jo(§)’)~]0(§w))’w.
dx/(.)/o {-/(; ((tz—yz)(xz—w2)>‘/2

The above equation can be written as

dg}dw-dy -dx dr. (3.12)

h(?)+ [TR()[K (2, 2) + Ko (u?, 12)] dr = F(u?) (3.13)
where ‘
4 [u2=c\"? pf 1=x2 "2 xL\(x,1)
Kl(uz,t2)=—;(l_u2) fc(xz_cz) (le_uz)-dx (3.14)
_d popx ywL(y,w)dwdy 315
L](X,t) dx_/(;j(; [(xz—wz)(tz—y?‘)]l/z ( )
L(y.w)= [TEH()Jo(83) Jo(8w) a8 (3.16)
2 __8_ u—¢? V2o 1—x? 12 X % cosh( B,x)
Kalu?, ¢ )_7r3( l—uz) -/;(xz—cz) (xz—uz)-/(.) cosh(B,h)
! Y
'LW'M(y,f)dy'df-dx (3.17)
w B2cos th-Jy (£y ) dé
M(y,§)=f0 Bzigz
—Ze (BB >k, (3.18a )
2
=3 sin(BiR) HOB) S <k (3.18b )
2 =_£ uz—Cz)]/z_qi l(l*x2 )1/2 xdx D
) '”( 1—u? "Tli-l; x?—c? (xz—u2)+ [(uz——cz)(l—uz)]l/2
(3.19a)
1 [(u?=c\"" D
‘m'(l—uz) wt[(uz_cz)(l_uz)]l/2 (3.19b)
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and (B))* =k3 - {2

The integrand in (3.16) has no poles, it has only branch point at the point §= k..
Following the procedure in [8] the infinite integral in (3.16) can be converted into an
integral with finite limits and is given by

L(y.w)= —ik2 f VR (k Ew)H (KkSEr) dE. 1w (3.20)
From (3.20) putting the value of L(y. w) in (3.15). we get

| yH D (k£ r)

L(x.1)= —ikiﬁ)’\f'ffg@ cos(kzgx)a{ jo dy }Jdg. (3.21)

yor -y

Further using the relation (3.18) in (3.17) and simplifying it we get

12
/'%-‘;— f'\/l ~ s tan(k, - sh)
O 1o

2 cos( kasx) - x
cos( “VXZ) n |

{x?—u?)

Ky (i 1) = 2k

7o

f o2 2
u - —c
1—u’

'J()(_Vk:s){fl(/ 12_ Xi oy

\Ye VX — "

fx \/1 +r2 ICksyr)
0 cosh{ k,rh) ¢
"% x cosh(k,rx)

- —=d.x l -dr
(x°—u”) I

dy. (

[
t
(i)

=

{/‘( ] —x?
\'\ < Xz - ('2

It may be noted that the first integral is convergent only when the dimensionless
frequency k , is such that k, < #/2h. Hence it is concluded that the only shear waves with
k, <m/2h can propagate in an elastic strip of width 2/. This fact is.in agreement with the
well known result that in a strip, only guided waves of frequencies less than a parameter
depending on width of the strip can propagate.

Furthermore in order to evaluate D, the unknown constant of (3.19), we integrate (3.13)
with respect to u between the limits ¢ to 1. and using the condition (3.8) we find that

2 1
G I A KR T RS SR RVRNERE
where
5 =_1(le“(_
glu”) L E

N

F=F(n/2.y1—¢?)is the elliptic integral of first kind and K,(#>. 17). K (u”. 17) are
given by (3.14) and (3.22) respectively.

Finally, on putting the value of D from (3.23) in (3.13) and on further simplifving it. we
get the following integral equation

[ = ey =) ity s f | Sad | L = )

KN uP )+ Ko (uh, }VLF{[I(\“ _f‘:)

(KNP )+ K (s ) ds )] de



Interaction of shear waves with two coplanar Griffith cracks 9

2_ 2)\V2
=u2—c2+%/](s c) ds (3.24)

1 —s?

where

(yHV (k d
Kl'(uz,t2)=if0]ﬁi?{nyHof—t(z_ziyz) y}

fl( [— 2 )1/2xcos(k2€x)dx'd$ (3.25)

JEpE (x2~u2)

4

and

Kzl(uz, t2)=/l\/_—2y_—2—t/lv 1 —sztan(kzsh)JO(ykzs)
0 /¢ -y 0

{'/;1( 1—-x?2 )]/Zxcos(kzsx)dx}ds_j(-)w V1+r2I,(kyyr)

x?=c? (x*—u?) cosh(k,rh)
1/2
] 1 L=x? x cosh(k,rx) ”
e {j; (xz—cz) =) dxdr|dy. (3.26)

Further let

h(w?)-[(w? = ) (1 = )] = H(u?)
and on making the substitutions

u® = sin’*¢ + c’cos’p

t? = sin’@ + ccos?8
in (3.24), we get

G(o)+ -(—-kz) (1—c?)-sin’¢p
‘/0 Vsin®6 + ccos?8 \m !
1 i s2—c\'"?
'(Ka(¢a3)+Kb(¢,0)>_7:{]; ( 1 — 52 )
(K, (s%,8)+K,(s,8)) ds}] de
. 1 p1fs?=c2\"?
=(1—c2)-51n2¢+F£(1_S2) -ds (3.27)
where
G(¢) = H(sin’¢ + c’cos’¢p)
G(9) = H(sin’d + c*cos*d)
K,(¢,8) = K|(sin’+ c’cos’sp, sin’d + c*cos’)
K,(¢,0) = Ki(sin’p + c*cos’p, sin’d + c’cos’0 )

K,(s%.0) = K](s? sin’d+ c*cos’f)
K,(s%,8) = K,(s? sinf+ c’cos’d).



10 K.N. Srivastava, R-M. Palaiva and D.S. Karaulia
4. Stress—intensity factors

On putting the value of B(£) from (3.6) in (2.9) and further solving it for = = 0, we get
2
1 th (e )de N

o (x,0)=—2q,p = ~ X, . 4.1)
E 9y /{ (1= %) / (
where
X, = [ ¥C(8) cosh( B,x)ds. (42)
0
Since A2y =[(t* — > )1 —¢*)] Y2H(1?)and 1* = ¢’cos’@ + sin’6. (4.1) can be written
as:
=2 H(sin?@ + ¢’cos?6)dé
0,.(x,0)=-2 -+ X
(x:0) ,uq(,f(] (sin®6 + c2cos’0) — x> '
or
7/2 G(8)de
0. (x,0)= —2,uq0/ S (6) — — + X, (4.3)
o (1 —x?)sin’@+ (¢* — x7)cos?d
where

G(6)= H(sin’8 + c*cos?8)
on integrating the right hand side of (4.3) by parts, we get the following:
—2pq,

o _(x.0)= —
(1=x)) (2 =xH]""
X | cot ‘(\/ 11—“h “tan @ |- G(8) +0(1), x<c¢ ... (4.4a)
cT— X"
0.(x.0)= :2"“{” 1
[(x“~(‘)(x"—])] -
e |
X {tan —— -tanf | -G(0) +0(1), x> 1 (4.4b)
x?—?
o.(x.0)= W“"O(G(O))j L H0(1): x<e (4.5)
[(l - ,\”3)(('2~x*)] "’L
and
6, (x.0)= “RaC(T/2) Ly s (4.6

[(xz _ ()3)()(2 _ l)]]""l

The stress intensity factors N_and N, at the two tips of the crack are defined by:

No=1lim—(c—x)" (=2p) [0,.(x.0)]. O<x<c

Ny=lim + (x = 1) (=2p)]0,.(x.0)]. x> 1.
|
Thus with the help of (4.5) and (4.6) we get:
27u’q,G (0
N = 7uq,G (0) (4.7)

[2(’(] - ('3)]1":
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and
2ap*qyG(m/2)
Ny =L (4.8)
[2(1-¢2)]”

When ¢ tends to zero two cracks merge into one and

N, = % [2702G (7 /2)]

which is in agreement with our earlier paper [6] in which g(1) = 27p2G(7/2).
5. Numerical calculations:

The integral equation (3.27) has been solved numerically for a wide range of dimensionless
frequency k,. Using the method of Fox and Goodwin [9] (3.27) has been converted into a
system of linear algebraic equations. The infinite integral involved in the kernel Kj(u?, 1?)
has been evaluated using five point Gauss-Laguerre quadrature formula while the integrals
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— [6(T2))

ke
AMPLITUDE OF |G ( Tr/2)| PLOTTED AGAINST k, FOR C= 0.5

Figure 4.

with finite limits have been evaluated using Simpson’s quadrature formula. At relatively
high frequencies the number of divisions in the finite interval are increased until the value
of the integral reaches a stable value. A complex computer programme has been used to
evaluate vG (). These values have been used to calculate dynamic stress intensity factors
N_and N, at the two tips of the crack using (4.7) and (4.8) respectively.

Three different values of inter crack distance have been chosen for which ¢ r.e. half of
the inter crack distance is 0.2, 0.33 and 0.5 respectively. Further associated with each value
of ¢ there are three different values of the strip width viz. 1.5. 1.8 and 2.0. Keeping the
limiting condition k, < /2 h in view the values chosen for &, corresponding to & = 1.5 are
from O to 1 in step of 0.1. Similarly in case of 2 = 1.8 and 2.0. &, has been taken from 0 to
0.8 and from 0 to 0.7 respectively. In Figs. 2-4 the amplitude of |G (7 /2)| has been plotted
against k, with different values of /# for ¢ = 0.2, 0.33 and 0.5 respectively. while Figs. 5 7
display the graphs of |G(0)| versus k, plotted for the same values of ¢ and 4.

— [6(0)]

-1 -2 -3 -4 -5 6 7

AMPLITUDE OF |G (0) | PLOTTED AGAINST ky FOR C = 0-2

Figure 5.
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AMPLITUDE OF |6 (0)] PLOTTED AGAINST k; FOR C = 0-33

Figure 6.

From these graphs it can be concluded that the stress intensity factor at the outer edge
decreases with the increase of the frequency &, while at the interior edge of the cracks the
stress intensity factor increases with an increase in k,. However, the nature of the curve
for h = 1.5 is slightly different. In this particular case the stress intensity factor decreases
upto the values of k,=0.2 then it continuously increases with the increase in the
dimensionless frequency k,.

It is interesting to compare the results with that of Jain and Kanwal [10]. The nature of
the curves plotted for stress intensity factor versus the wave frequency at the outer edge of
the crack is convex in nature in [10], however they are concave in our case. Furthermore at
the inner edge of the crack the curves in [10] decrease with an increase in wave frequency
while in our case they increase with the increasing value of wave frequency. The nature of
the curve plotted for A = 1.5 is in accordance with the one exhibited in [10].

The difference in our curves for stress intensity factor from those of Jain and Kanwal is
due to the effect of finite boundary of the strip.

-1 2 -3 - -5 -6 7
—_— kz
AMPLITUDE OF |G (0 )] PLOTTED AGAINST ky FOR C=0-5

Figure 7.
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Résumé

Dans un mémoire précédent (6), on a étudié le cas de l'interaction d’ondes de cisaillement avec une fissure située
au centre d’une bande infinie élastique. Dans la présente étude, on étend I'étude au cas de deux fissures
coplanaires de Griffith. Une méthode de transformation intégrale est utilisée pour trouver la solution de
I'équation de mouvement en partant de la théorie linéaire, pour un matériau homogene isotrope élastique. Cette
méthode résoud e probléme sous la forme d’une équation intégrale. On a observe que seules se propagent des
ondes de cisaillement dont les fréquences sont inférieures 4 un paramétre dépendant de la largeur du guide
d’ondes. L’équation intégrale est résolue par voie numérique pour une gamme de valeur de la fréquence d’ondes,
de largeur de bande et de distance entre fissures. Les solutions sont utilisées pour calculer le facteur d'intensité de
contrainte dynamique. Les résultats sont exposés par voie graphique.



